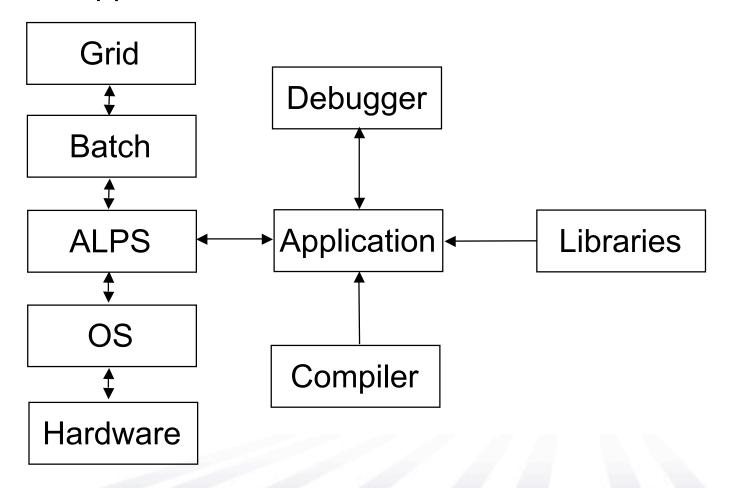
ALPS User Tutorial (Base Camp)

Michael Karo mek@cray.com CUG 2007

Topics

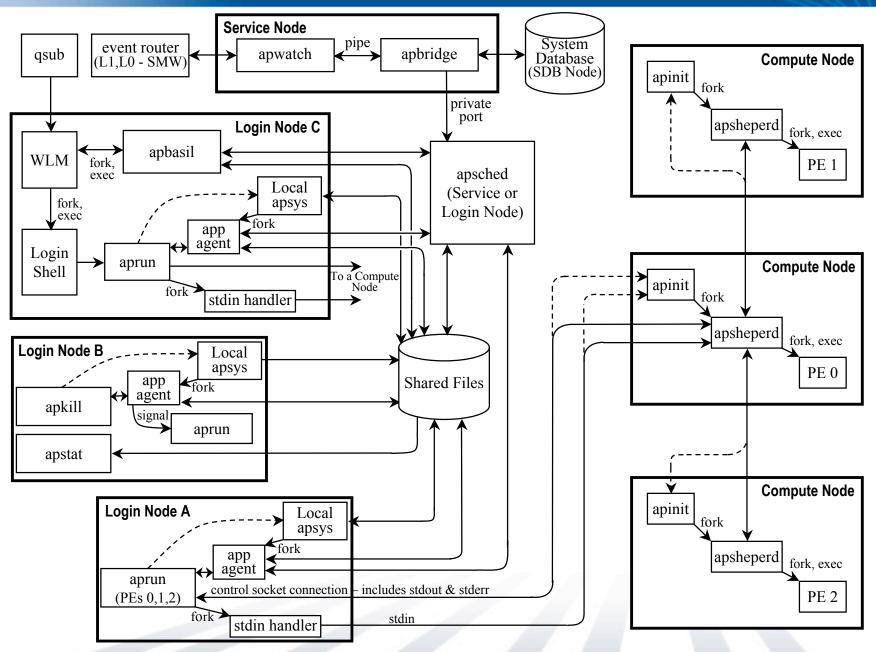

- ALPS Overview
- Launching applications
- Node attributes
- Application status information
- ALPS and PBS Pro
- ALPS, MPI, and OpenMP
- Debugging Applications
- MPMD application launch
- Heterogeneous systems
- Troubleshooting ALPS

Base Camp Summit

ALPS Overview

ALPS = Application Level Placement Scheduler

The ALPS Suite


Clients

- aprun Application submission
- apstat Application status
- apkill Signal delivery
- apmgr Administration interface
- apbasil Workload manager interface

Servers

- apsys Client interaction on login nodes
- apinit Process management on compute nodes
- apsched Reservations and placement
- apbridge System data collection
- apwatch Event monitoring
- And now, the big picture...

ALPS "hostname" Launch

- Use the aprun client with the following parameters:
 - -b = Bypass binary transfer
 - -n 4 = Specify a width of four PEs

What happened?

ALPS "hostname" Launch (again)

- What went wrong...
 - Application initialization includes changing to the current directory.
 - /home/crayadm did not exist on the compute node.
 - We must be in /tmp or a Lustre mounted directory.
- Try again...

```
/home/crayadm> cd /tmp
/tmp> aprun -b -n 4 /bin/hostname
aprun: [NID 25]Apid 122: cannot execute: exit(107) exec failed
/tmp> echo $?
1
/tmp>
```

Now what?

ALPS "hostname" Launch (or something like it)

- What went wrong...
 - CNL is very lightweight, no "hostname" command is installed.
 - Instead of "hostname", we can acquire the NID.
- One more time...

```
/home/crayadm> cd /tmp
/tmp> aprun -b -n 4 /bin/cat /proc/cray_xt/nid
44
45
46
47
Application 123 resources: utime 0, stime 0
/tmp> echo $?
0
/tmp>
```

Eureka!

ALPS "hostname" Launch (the real thing)

- But, I really want to launch hostname!
- Take the "-b" off and ALPS will distribute the binary

- Caution 1: If the binary requires dynamic libraries, they must be installed on the compute nodes.
- Caution 2: This works for x86_64 compute nodes only!

Preparing an Application

- Choose your compiler
 - gcc
 - PathScale
 - PGI

```
/tmp> PS1="\$ "
$ module purge
$ module load Base-opts PrgEnv-gnu xtpe-target-cnl
$ module swap PrgEnv-gnu PrgEnv-pathscale
$ module swap PrgEnv-pathscale PrgEnv-pgi
$
```


A Simple MPI "Hello, world!"

```
$ cat hello.c
#include "mpi.h"
int main(int argc, char *argv[])
    int rank, nid;
   MPI Init(&argc, &argv);
    MPI Comm rank(MPI COMM WORLD, &rank);
    PMI CNOS Get nid(rank, &nid);
    printf("Hello from rank %d on nid%05d\n", rank, nid);
    MPI Finalize();
    return(0);
```


Compile the Application

Stripping binary reduces file size.

Launch the Application

- Invoke aprun with the following parameters:
 - Specify a width of four PEs (-n 4)
 - Do not specify "-b", ALPS will distribute the binary.

```
$ aprun -n 4 ./hello
Hello from rank 0 on nid00024
Hello from rank 1 on nid00025
Hello from rank 2 on nid00026
Hello from rank 3 on nid00027
Application 124 resources: utime 0, stime 0
$
```


The aprun Client, Explained

```
$ man aprun
Reformatting aprun(1), please wait...
aprun(1)
                                                          aprun(1)
NAME
       aprun -- Launches an application
SYNOPSIS
       aprun [-a sys] [-b] [-d depth] [-D value | -q]
            [-h hard label | -s soft label]
            [-L nodes] [-m size] [-n procs]
            [-N pes] [-S] [-t sec] executable [options]
       [: -n pes [-d depth] [-N pes] [-a sys] [-L nodes] executable 2
       [: -n pes [-d depth] [-N pes] [-a sys] [-L nodes] executable 3 [:...]]]
IMPLEMENTATION
       UNICOS/lc systems with CNL
```


Terminology

- Node
 - All resources managed by a single CNL instance
- Processing Element (PE)
 - ALPS launched binary invocation on a compute node
- Width (aprun -n)
 - Number of PEs to Launch
 - Applies to both single-core and multi-core systems
- Depth (aprun -d)
 - Number of threads per PE (OpenMP)
 - Applies to multi-core systems only
- PEs Per Node / PPN (aprun -N)
 - Number of PEs per CNL instance (multiple MPI ranks per node)
 - Applies to multi-core systems only
- Node List (aprun -L)
 - A user supplied list of candidate nodes to constrain placement

Application Width (aprun -n)

```
-n <u>pes</u> Specifies number of PEs needed. Default is 1. The application will be allocated the number of processor cores determined by the <u>depth</u> multiplied by <u>pes</u>.
```

- Specifies number of PEs
- MPI rank is derived from PE count
- $\lambda = (width * depth)$
- ALPS reserves λ processor cores for use by the application
- Applies to both single-core and multi-core systems

Application Depth (aprun -d)

```
-d <u>depth</u> Specifies the depth (number of threads) of each PE. The meaning of this option is dependent on the programming model. Default is 1. The application will be allocated the number of processors determined by the <u>depth</u> multiplied by the <u>pes</u>. This option should be specified when using OpenMP code.
```

- Specifies number of threads per PE
- Not part of MPI rank assignment
- $(width * depth) \cong (pes * threads)$
- ALPS invokes <u>width</u> instances of the binary
- Application spawns (<u>depth</u> 1) additional threads per PE
- Applies only to multi-core systems
- Compute nodes must have at least <u>depth</u> cores

Application PEs Per Node (aprun -N)

-N pes Specifies number of processing elements per node.

- Specifies number of PEs per node
- Not part of MPI rank assignment
- When specified...
 - Places specified number of PEs per node
 - A sufficient number of cores must exist on each node
- When not specified...
 - Allows ALPS to pack PEs tightly
 - Behavior dependent upon application and system resources
- Applies only to multi-core systems
- ALPS assigns the same number of PEs to all nodes, regardless of whether PPN is specified. (DM requirement)

Node List (aprun -L)

```
-L node_list

Specifies a user-defined candidate node list.

The syntax allows a comma-separated list of nodes (node[,node), a range of nodes (nodel-node2]...), and a combination of both formats. Node values can be expressed in decimal, octal, and hexadecimal. The first number in a range must be less than the second number (i.e., 8-6 is invalid). A complete node list is required. If the candidate node list is too short for the -n, -d, and -N options, a fatal error is produced. This option can be specified multiple times.
```

- Specifies a list of NIDs as candidates for placement
- The node list is a superset of the placement list
- Multiple lists may be specified, but only one is used
- Applies to both single-core and multi-core systems

The Test System

\$ apstat -n										
NID	Arch	St	CPUs	PgSz	Avl	Conf	Placed	PEs Apids		
44	XT3	UP	-	4K	256000	0	0	0		
45	XT3	UP	-	4K	256000	0	0	0		
46	XT3	UP	-	4K	256000	0	0	0		
47	XT3	UP	_	4K	256000	0	0	0		
48	XT3	UP	-	4K	256000	0	0	0		
49	XT3	UP	-	4K	256000	0	0	0		
50	XT3	UP	-	4K	256000	0	0	0		
51	XT3	UP	-	4K	256000	0	0	0		
52	XT3	UP	-	4K	256000	0	0	0		
53	XT3	UP	-	4K	256000	0	0	0		
54	хтЗ	UP	-	4K	256000	0	0	0		
55	XT3	UP	_	4K	256000	0	0	0		
56	хтЗ	UP		4K	768000	0	0	0		
57	хтЗ	UP		4K	768000	0	0	0		
58	хтЗ	UP		4K	768000	0	0	0		
59	хтЗ	UP		4K	768000	0	0	0		
60	хтЗ	UP		4K	512000	0	0	0		
61	хтЗ	UP		4K	512000	0	0	0		
62	хтЗ	UP		4K	512000	0	0	0		
63	хтЗ	UP		4K	512000	0	0	0		
Compute node summary: up: 20 idle: 20 \$										

Specifying Width

```
$ aprun -n 4 ./hello
Hello from rank 1 on nid00056
Hello from rank 0 on nid00056
Hello from rank 3 on nid00057
Hello from rank 2 on nid00057
Application 125 resources: utime 0, stime 0
$
```

- ALPS finds the "best" place.
- Packs tightly, minimizes node count.

Specifying PEs Per Node

```
$ aprun -n 4 -N 1 ./hello
Hello from rank 0 on nid00044
Hello from rank 1 on nid00045
Hello from rank 2 on nid00046
Hello from rank 3 on nid00047
Application 129 resources: utime 0, stime 0
$ aprun -n 4 -N 2 ./hello
Hello from rank 0 on nid00056
Hello from rank 1 on nid00056
Hello from rank 3 on nid00057
Hello from rank 2 on nid00057
Application 130 resources: utime 0, stime 0
$ aprun -n 4 -N 4 ./hello
aprun: -N * -d values are invalid for this system
$
```

- Try packing one, two, and four PEs per node
- No quad-core nodes... -N 4 failed, as expected

MPI and OpenMP Enabled hello.c

```
$ cat hello.c
#include <mpi.h>
#include <omp.h>
#include <stdio.h>
int main(int argc, char *argv[])
    int rank, nid, thread;
    MPI Init(&argc, &argv);
    MPI Comm rank(MPI COMM WORLD, &rank);
    PMI CNOS Get nid(rank, &nid);
    #pragma omp parallel private(thread)
        thread = omp get thread num();
        #pragma omp barrier
        printf("Hello from rank %d (thread %d) on nid%05d",
                rank, thread, nid);
        if (thread == 0)
            printf(" <-- MASTER\n");</pre>
        else
            printf(" <-- slave\n");</pre>
    MPI Finalize();
    return(0);
```


Specifying Depth

```
$ cc -mp -g -o hello hello.c
/opt/xt-pe/2.0.03/bin/snos64/cc: INFO: linux target is being used
hello.c:
$ strip hello
$ export OMP_NUM_THREADS=2
$ aprun -n 2 -d 2 ./hello
Hello from rank 0 (thread 0) on nid00060 <-- MASTER
Hello from rank 0 (thread 1) on nid00060 <-- slave
Hello from rank 1 (thread 0) on nid00061 <-- MASTER
Hello from rank 1 (thread 1) on nid00061 <-- slave
Application 136 resources: utime 0, stime 0
$</pre>
```

- Compile application with OpenMP awareness
- Set OMP_NUM_THREADS
- Specify a corresponding depth for aprun

Specifying Node Lists

```
$ aprun -n 8 -d 2 -L56-59 ./hello
aprun: at least one command's user NID list is short
$ aprun -n 2 -d 2 -L56-59 ./hello
Hello from rank 0 (thread 0) on nid00056 <-- MASTER
Hello from rank 0 (thread 1) on nid00056 <-- slave
Hello from rank 1 (thread 0) on nid00057 <-- MASTER
Hello from rank 1 (thread 1) on nid00057 <-- slave
Application 159 resources: utime 0, stime 0
$</pre>
```

- First attempt fails because width is greater than node list length
- Second attempt succeeds with width smaller than node list length
- ALPS uses node list to constrain placement candidates

Application Memory Requirements

-m size Specifies the per processing element maximum
Resident Set Size memory limit in megabytes.
K|M|G suffixes are supported (16 = 16M = 16
megabytes). Any truncated or full spelling of
unlimited is recognized. See the NOTES section
on how to determine the -m default value.

NOTES: The -m option specifies the application per processing
element maximum Resident Set Size (RSS) memory limit.
If the -m option is not specified, the default value
assigned is set to the minimum compute node memory
size divided by the maximum number of processors on
any compute nodes.

- Memory requirements are per PE
- Aggregate OS memory usage not enforced by CNL
- XT restriction: one application per node due to lack of enforceability
- More on this when we discuss X2 compute nodes

Specifying Memory

```
$ OMP_NUM_THREADS=1
$ aprun -n 1 -m 1000m ./hello
Hello from rank 0 (thread 0) on nid00044 <-- MASTER
Application 175 resources: utime 0, stime 0
$ aprun -n 1 -m 3000m ./hello
Hello from rank 0 (thread 0) on nid00056 <-- MASTER
Application 176 resources: utime 0, stime 0
$ aprun -n 1 -m 3001m ./hello
aprun: request exceeds max memory
$</pre>
```

- First launch placed on smaller memory node.
- Second launch placed on larger memory node.
- Third launch fails, memory requirement cannot be met.

Specifying Memory And PPN

```
$ aprun -n 2 -N 2 -m 1501m ./hello
aprun: request exceeds max CPUs, memory
$ aprun -n 2 -N 2 -m 1500m ./hello
Hello from rank 0 (thread 0) on nid00056 <-- MASTER
Hello from rank 1 (thread 0) on nid00056 <-- MASTER
Application 181 resources: utime 0, stime 0
$ aprun -n 2 -N 2 -m 500m ./hello
Hello from rank 1 (thread 0) on nid00056 <-- MASTER
Hello from rank 0 (thread 0) on nid00056 <-- MASTER
Application 182 resources: utime 0, stime 0
$</pre>
```

- First launch fails... (2 * 1501) = 3002
- Second launch placed on larger memory node.
- Third launch uses larger memory node due to PPN.

Node Attributes

- Node attributes do…
 - Provide additional details about compute nodes
 - Architecture
 - OS class
 - Clock speed
 - Memory page size and total pages
 - Labels
 - Help to address issues surrounding heterogeneity
 - Allow users to take more control of application placement
- Node attributes don't...
 - Describe the HSN topology or routing
 - Get set dynamically (yet)
 - Remind you that Mother's Day is Sunday

SDB Node Attributes Table

```
mysql> describe attributes;
                            Null |
  Field
                                          Default
            Type
                                    Key
                                                   Extra
 nodeid
          | int(32) unsigned |
                                   | PRI
 archtype | int(4) unsigned
 osclass | int(4) unsigned
 coremask | int(4) unsigned
 availmem | int(32) unsigned |
 pagesz12 | int(32) unsigned |
                                          12
 clockmhz | int(32) unsigned |
                              YES
                                          NULL
 label0
        | varchar(32) | YES
                                        NULL
 label1 | varchar(32)
                            I YES
                                         NULL
 label2
          | varchar(32)
                                          NULL
                              YES
 label3
          | varchar(32)
                            I YES
                                          NULL
11 rows in set (0.00 sec)
mysql>
```


Displaying Node Attributes

<pre>\$ xtprocadminattrsall</pre>												
Connected												
NID	(HEX)	NODENAME	TYPE	ARCH	OS	CORES	AVAILMEM	PAGESZ	CLOCKMHZ			
32	0 x 20	c0-0c1s0n0	service	xt	(service)	1	2000	4096	2400			
35	0 x 23	c0-0c1s0n3	service	жt	(service)	1	2000	4096	2400			
36	0x24	c0-0c1s1n0	service	xt	(service)	1	2000	4096	2400			
39	0 x27	c0-0c1s1n3	service	xt	(service)	1	2000	4096	2400			
40	0 x 28	c0-0c1s2n0	service	xt	(service)	2	2000	4096	2400			
43	0x2b	c0-0c1s2n3	service	xt	(service)	2	2000	4096	2400			
44	0x2c	c0-0c1s3n0	compute	xt	CNL	1	1000	4096	2000			
45	0x2d	c0-0c1s3n1	compute	xt	CNL	1	1000	4096	2000			
46	0 x 2e	c0-0c1s3n2	compute	xt	CNL	1	1000	4096	2000			
47	0x2f	c0-0c1s3n3	compute	xt	CNL	1	1000	4096	2000			
48	0x30	c0-0c1s4n0	compute	жt	CNL	1	1000	4096	2000			
49	0 x 31	c0-0c1s4n1	compute	xt	CNL	1	1000	4096	2000			
50	0x32	c0-0c1s4n2	compute	xt	CNL	1	1000	4096	2000			
51	0 x 33	c0-0c1s4n3	compute	жt	CNL	1	1000	4096	2000			
52	0x34	c0-0c1s5n0	compute	жt	CNL	1	1000	4096	2000			
53	0x35	c0-0c1s5n1	compute	жt	CNL	1	1000	4096	2000			
54	0 x 36	c0-0c1s5n2	compute	xt	CNL	1	1000	4096	2000			
55	0x37	c0-0c1s5n3	compute	жt	CNL	1	1000	4096	2000			
56	0 x 38	c0-0c1s6n0	compute	жt	CNL	2	3000	4096	2400			
57	0 x 39	c0-0c1s6n1	compute	жt	CNL	2	3000	4096	2400			
58	0x3a	c0-0c1s6n2	compute	жt	CNL	2	3000	4096	2400			
59	0x3b	c0-0c1s6n3	compute	xt	CNL	2	3000	4096	2400			
60	0x3c	c0-0c1s7n0	compute	жt	CNL	2	2000	4096	2400			
61	0x3d	c0-0c1s7n1	compute	жt	CNL	2	2000	4096	2400			
62	0 x 3e	c0-0c1s7n2	compute	xt	CNL	2	2000	4096	2400			
63	0x3f	c0-0c1s7n3	compute	xt	CNL	2	2000	4096	2400			
\$												

Using Node Attributes

- Use the "cnselect" (compute node select) command to...
 - List available fields and values
 - Generate candidate node lists for aprun
 - Constrain apsched node selection

Using the cnselect Command

```
$ module load MySQL
$ cnselect
44-63
$ cnselect coremask.eq.1
44-55
$ cnselect coremask.gt.1
56-63
$ cnselect clockmhz.ge.2400
56-63
$ cnselect clockmhz.1t.2400
44-55
$ cnselect availmem.lt.2000
44-55
$ cnselect availmem.eq.2000
60-63
$ cnselect availmem.gt.2000
56-59
$ cnselect availmem.lt.3000
44-55,60-63
$ cnselect availmem.lt.3000.and.coremask.eq.1
44-55
$ cnselect availmem.lt.3000.and.coremask.gt.1
60-63
```


Using cnselect with aprun

```
$ NODES=$(cnselect availmem.lt.2000 .and. coremask.eq.1)
$ echo $NODES
44-55
$ aprun -n 2 -d 1 -L $NODES ./hello
Hello from rank 0 (thread 0) on nid00044 <-- MASTER
Hello from rank 1 (thread 0) on nid00045 <-- MASTER
Application 1406 resources: utime 0, stime 0
$</pre>
```

- Use cnselect to construct the node list
- Pass node list to aprun via the -L parameter

Behind the Scenes of cnselect

```
$ cnselect -D availmem.lt.3000.and.coremask.gt.1
SELECT nodeid FROM processor, attributes WHERE
        processor_id = nodeid AND processor_type='compute' AND
        ( availmem<3000 AND coremask>1 ) ;
$ head -6 /opt/xt-os/2.0.03/bin/snos64/cnselect
#!/bin/bash
#
# Copyright 2007 Cray Inc.
#
# simple query interface to node attributes
#
$
```

- Convenient MySQL interface to attributes table
- Why is cnselect a shell script?
 - Not for portability (must be run from a login node)
 - Extensible for site enhancements and customizations
 - Supported "as is"
 - Contributions encouraged

ALPS Status

- ALPS apstat command provides status information for...
 - Reservations
 - Applications
 - Compute nodes
 - Scheduler statistics

Node Status

\$ ap	\$ apstat -n								
NI	Arch	St	CPUs	PgSz	Avl	Conf	Placed	PEs	Apids
4	4 XT3	UP	P	4K	256000	128000	128000	1	1413
4	5 XT3	UP	P	4K	256000	128000	128000	1	1413
4	6 XT3	UP	P	4K	256000	128000	128000	1	1413
4	7 XT3	UP	P	4K	256000	128000	128000	1	1413
4	3 XT3	UP	P	4K	256000	128000	128000	1	1413
4	9 XT3	UP	P	4K	256000	128000	128000	1	1413
5	2 хт3	UP	P	4K	256000	128000	128000	1	1413
5	L XT3	UP	P	4K	256000	128000	128000	1	1413
5	2 XT3	UP	C	4K	256000	128000	0	0	
5	3 XT3	UP	_	4K	256000	0	0	0	
5	4 XT3	UP	_	4K	256000	0	0	0	
5.	5 XT 3	UP	_	4K	256000	0	0	0	
5	6 XT3	UP	PP	4K	768000	128000	128000	1	1411
5'	7 XT 3	UP	PP	4K	768000	128000	128000	1	1411
5	3 XT3	UP	PP	4K	768000	128000	128000	1	1412
5	9 хт3	UP	PP	4K	768000	128000	128000	1	1412
6	о хт3	UP	PP	4K	512000	128000	128000	1	1412
6	L XT3	UP	PP	4K	512000	128000	128000	1	1412
6:	2 XT 3	UP		4K	512000	0	0	0	
6	3 XT 3	UP		4K	512000	0	0	0	
Compute node summary: up: 20 idle: 6									
\$									

Application Status

```
$ apstat -av
Placed Apid ResId
                                                 State Command
                       User
                              PEs Nodes
                                           Age
                                2
       1411
              311
                   crayadm
                                          0h04m run
                                                       sleep
       1412
               312
                   crayadm
                                4
                                          0h03m
                                                 run
                                                       sleep
       1413
               313 crayadm
                                          0h03m run
                                                       sleep
Application detail
Ap[0]: apid 1411, pagg 31312, resId 311, user crayadm,
      gid 14901, account 12795, time 0, normal
 Number of commands 1, control network fanout 32
 Cmd[0]: sleep -n 2 -d 2 -N 0, memory 500MB, type XT3, nodes 2
 Placement list entries: 2
   PE 0, cmd 0, nid 56, CPU map 0x3 - PE 1, cmd 0, nid 57, CPU map 0x3
Ap[1]: apid 1412, pagg 31312, resId 312, user crayadm,
       gid 14901, account 12795, time 0, normal
 Number of commands 1, control network fanout 32
 Cmd[0]: sleep -n 4 -d 2 -N 0, memory 500MB, type XT3, nodes 4
 Placement list entries: 4
   PE 0, cmd 0, nid 58, CPU map 0x3 - PE 1, cmd 0, nid 59, CPU map 0x3
   PE 2, cmd 0, nid 60, CPU map 0x3 - PE 3, cmd 0, nid 61, CPU map 0x3
Ap[2]: apid 1413, pagg 31312, resId 313, user crayadm,
       gid 14901, account 12795, time 0, normal
 Number of commands 1, control network fanout 32
 Cmd[0]: sleep -n 8 -d 1 -N 0, memory 500MB, type XT3, nodes 8
 Placement list entries: 8
   PE 0, cmd 0, nid 44, CPU map 0x1 - PE 1, cmd 0, nid 45, CPU map 0x1
   PE 2, cmd 0, nid 46, CPU map 0x1 - PE 3, cmd 0, nid 47, CPU map 0x1
   PE 4, cmd 0, nid 48, CPU map 0x1 - PE 5, cmd 0, nid 49, CPU map 0x1
   PE 6, cmd 0, nid 50, CPU map 0x1 - PE 7, cmd 0, nid 51, CPU map 0x1
Ap[3]: apid 1414, pagg 0, resId 314, user crayadm,
      gid 14901, account 12795, time 0, normal
 Number of commands 1, control network fanout 32
 Cmd[0]: BASIL -n 1 -d 1 -N 0, memory 500MB, type XT3, nodes 1
 Placement list entries: 0
```


Reservation Status

```
apstat -rv
ResId
        ApId From Arch PEs N d Memory State
 311
        1411 aprun
                  XT3
                         2 0 2
                                 500 atomic, conf, claim
 312
        1412 aprun XT3
                          4 0 2 500 atomic, conf, claim
 313 1413 aprun XT3
                         8 0 1 500 atomic, conf, claim
 314 1414 batch XT3
                          1 0 1
                                 500 conf
```

- The first three reservations are "claimed" by applications
 - Atomic = Reservation is from an interactive launch (not batch)
 - Conf = Reservation is confirmed
 - Claim = Application has claimed the confirmed reservation
- The last reservation is "confirmed" by a batch job

Scheduler Status

- 267 264 = 3 claimed (in execution)
- 268 267 = 1 confirmed

ALPS and PBS Pro

- Batch and Application Scheduler Interface Layer (BASIL)
 - XML interface between ALPS and the batch system
 - Four basic methods:
 - Inventory
 - Reservation creation
 - Reservation confirmation
 - Reservation cancellation
- ALPS apbasil command implements BASIL for CNL
- CPA catnip command implements BASIL for Catamount
- One PBS Pro release supports both CNOS environments

BASIL Hierarchy

Architecture Independence

Grid (Globus, UNICORE, etc.) Batch (PBS Pro, Torque/Moab, etc.) BASIL Client (apbasil) BASIL Client (catnip) **ALPS CPA** CNL Catamount

BASIL Inventory

```
$ cat basil inventory request
<?xml version="1.0"?>
<BasilRequest protocol="1.0" method="QUERY" type="INVENTORY"/>
$ cat basil inventory request | apbasil
<?xml version="1.0"?>
<BasilResponse protocol="1.0">
 <ResponseData status="SUCCESS" method="QUERY">
 <Inventory>
  <NodeArray>
   <Node node id="44" name="c0-0c1s3n0" architecture="XT" role="BATCH" state="UP">
   </Node>
  </NodeArray>
   <ReservationArray>
   <Reservation reservation id="316" user name="crayadm" account name="DEFAULT"/>
   <Reservation reservation id="317" user name="crayadm" account name="DEFAULT"/>
   <Reservation reservation id="318" user name="crayadm" account name="DEFAULT"/>
   <Reservation reservation id="319" user name="crayadm" account name="DEFAULT"/>
   </ReservationArray>
 </Inventory>
</ResponseData>
</BasilResponse>
```


BASIL Inventory - Node Detail

```
<Node node id="60" name="c0-0c1s7n0" architecture="XT" role="BATCH" state="UP">
<ProcessorArray>
 <Processor ordinal="0" architecture="x86 64" clock mhz="2400">
  <ProcessorAllocation reservation id="317"/>
 </Processor>
 <Processor ordinal="1" architecture="x86 64" clock mhz="2400">
  <ProcessorAllocation reservation id="317"/>
 </Processor>
</ProcessorArray>
<MemoryArray>
 <Memory type="OS" page size kb="4" page count="512000">
  <MemoryAllocation reservation id="317" page count="128000"/>
 </Memory>
</MemoryArray>
<LabelArray/>
</Node>
```

- Node attributes are included
- Processor and memory allocations are identified
- Data is passed from PBS MOM to the scheduler

BASIL Reservation

- Reserve 4 PEs with depth and PPN of one
- The PBS MOM daemon does this during job initialization

BASIL Confirmation

- Confirm reservation with identifier 339
- PBS MOM daemon does this after creating reservation
- Two step process to support creation within batch scheduler

BASIL Claim

```
$ apstat -r
ResId     ApId From Arch     PEs N d Memory State
339     1441 batch XT3     4 1 1 500 conf
$
```

- Confirmed reservation can now be claimed
- User invokes aprun within the batch job to claim
- More than one aprun may claim the confirmed resources in serial or in parallel
- Aggregate resources claimed may not exceed those of the confirmed reservation
- Ensures batch job has constant and immediate access to reserved resources

BASIL Cancellation

- Cancel reservation with identifier 339
- PBS MOM daemon does this after job completes
- ALPS frees resources associated with reservation

PBS Pro MPP Resources

Specialized PBS resources map to aprun parameters

aprun	qsub	Resource Description		
-n 4	-l mppwidth=4	Width		
-d 2	-l mppdepth=2	Depth		
-N 1	-l mppnppn=1	Number of PEs Per Node		
-L 5,6,7	-I mppnodes=\"5,6,7\"	Node List		
-m 1000m	-l mppmem=1000mb	Memory Per PE		
-t 3600	-l mpptime=1:00:00	CPU Time Limit		
-a xt	-I mpparch=XT	Target Architecture		
	-l mpplabels=\"foo,bar\"	Node Attribute Labels		
-l mpphost=pike		Target MPP Host		

Submitting PBS Pro Jobs

```
$ module load pbs
$ cat myjob
#PBS -i oe
#PBS -1 mppwidth=4
#PBS -1 mppdepth=2
#PBS -1 mppmem=1000mb
sleep 30
cd /tmp
aprun -n 4 -d 2 ./sleep 30
$ qsub myjob
5.sdb
$ qstat -a
sdb:
                                                       Reg'd Reg'd
                                                                     Elap
              Username Queue Jobname SessID NDS TSK Memory Time S Time
Job ID
5.sdb crayadm workq myjob 13327
                                                                -- R 00:00
```

Job allows us to see both the confirm and claim states

PBS Pro Job Status Data

```
$ qstat -f
Job Id: 5.sdb
   Job Name = myjob
   Job Owner = crayadm@nid00040
   qtime = Wed May 2 16:17:45 2007
   Rerunable = True
   Resource List.mpparch = XT
   Resource List.mppdepth = 2
   Resource List.mppmem = 1000mb
   Resource List.mppwidth = 4
   Resource List.ncpus = 1
   Resource List.nodect = 1
   Resource List.place = pack
   Resource List.select = 1
   stime = Wed May 2 16:17:45 2007
   session id = 13327
   job dir = /home/crayadm
   comment = Job run at Wed May 02 at 16:17 on (login0:ncpus=1)
   etime = Wed May 2 16:17:45 2007
```


ALPS Reservation Data

```
apstat -r
ResId
         ApId From Arch PEs N d Memory State
                                1000 conf
  537
         1485 batch XT3
                           4 0 2
$ apstat -a
No placed applications are present
$ apstat -r
ResId
         ApId From Arch PEs N d Memory State
         1485 batch XT3
  537
                                  1000 conf, claim
 537
         1486 batch XT3
                                   500 conf, claim
$ apstat -a
Placed Apid ResId
                User PEs Nodes
                                   Age State Command
       1486 537 crayadm
                                     0h00m
                                                 sleep
                                           run
```

- The first two commands were run during the initial sleep
- Subsequent commands were run after aprun was invoked
- "A" stands for Allocation against a batch reservation

Why Is My MPP Job Stuck?

```
$ tracejob 0
Job: 0.sdb
05/02/2007 07:53:55 L
                         Considering job to run
05/02/2007 07:53:55 L
                         Evaluating subchunk: ncpus=1
05/02/2007 07:53:55 L
                         Evaluating MPP resource requirements.
05/02/2007 07:53:55 L
                         Failed to satisfy subchunk: 1:ncpus=1
05/02/2007 07:53:55 S
                         Job Queued at request of crayadm@nid00040, owner =
                         crayadm@nid00040, job name = myjob, queue = workq
05/02/2007 07:53:55 S
                         Job Modified at request of Scheduler@nid00035
05/02/2007 07:53:55 L
                         MPP nodes on "pike": 20 total, 0 fit, failed: 0 arch,
                         0 state, 20 role, 0 procs, 0 mem, 0 nodelist 0 labels
05/02/2007 07:53:55 L
                         No matching MPP host found.
05/02/2007 07:53:55 L No available resources on nodes
```

- Output from tracejob on the SDB (pbs_sched) node
- Note that 20 nodes were excluded based on role

SDB Node Allocation Mode

```
$ xtshowmesh
Compute Processor Allocation Status as of Thu May 3 09:18:20 2007
       C 0 (X dir)
 Z dir -> 01234567
 Y dir 0 SSS;;;;;
       1 ;;;;;
         ;;;;;
       3 SSS;;;;;
Legend:
                         S service node
  nonexistent node
; free interactive compute CNL - free batch compute node CNL
  allocated, but idle compute node ? suspect compute node
                      Y down or admindown service node
  down compute node
X
 admindown compute node
                                R node is routing
Available compute nodes: 20 interactive, 0 batch
$
```


Setting Node Allocation Mode to "Batch"

```
su
Password:
# module load xt-boot
# i=44; while [ $i -lt 64 ]; do \
      xtprocadmin -k m batch -n $i; \
     let i=i+1; \
 done
Connected
  NID
          (HEX)
                   NODENAME
                                 TYPE
                                             MODE
    44
           0x2c
                 c0-0c1s3n0
                              compute
                                            batch
Connected
  NID
          (HEX)
                   NODENAME
                                 TYPE
                                             MODE
    63
           0x3f
                 c0-0c1s7n3
                             compute
                                            batch
 exit
```

Use xtprocadmin (as root) to modify node allocation mode

Viewing the Configuration Change

```
$ xtshowmesh
Compute Processor Allocation Status as of Thu May 3 09:18:20 2007
       C 0 (X dir)
 Z dir -> 01234567
 Y dir 0 SSS----
       3 SSS----
Legend:
                          S service node
  nonexistent node
; free interactive compute CNL - free batch compute node CNL
  allocated, but idle compute node ? suspect compute node
  down compute node
                      Y down or admindown service node
X
  admindown compute node
                                R node is routing
Available compute nodes: 0 interactive, 20 batch
$
```


Reasons Why Jobs Get "Stuck"

- Arch Nodes that do not satisfy mpparch
- State Nodes not in "available" state
- Role Not enough "batch" nodes
- Procs Nodes not satisfying mppwidth/mppdepth/mppnppn
- Mem Nodes not satisfying mppmem
- Nodelist Nodes not present in mppnodes
- Labels Nodes not providing requested mpplabels

```
MPP nodes on "pike": 20 total, 0 fit, failed: 0 arch, 0 state, 20 role, 0 procs, 0 mem, 0 nodelist 0 labels
```


Node Labels

- Used to "tag" nodes
- Node labels defined by administrator
- Use cnselect to generate corresponding node list
- Prepare to assign node labels:

```
$ su
Password:
# module load xt-boot
#
```


View Existing Labels

```
# xtprocadmin -a label0
Connected
           (HEX)
  NID
                                  TYPE
                    NODENAME
                                                                    LABEL0
    32
           0x20
                  c0-0c1s0n0
                               service
    35
           0x23
                  c0-0c1s0n3
                               service
    36
           0x24
                  c0-0c1s1n0
                               service
           0x27
    39
                  c0-0c1s1n3
                               service
           0x28
    40
                  c0-0c1s2n0
                               service
           0x2b
    43
                  c0-0c1s2n3
                               service
    44
           0x2c
                  c0-0c1s3n0
                               compute
    45
           0x2d
                  c0-0c1s3n1
                               compute
    46
           0x2e
                  c0-0c1s3n2
                               compute
    47
           0x2f
                  c0-0c1s3n3
                               compute
    48
           0x30
                  c0-0c1s4n0
                               compute
                  c0-0c1s4n1
    49
           0x31
                               compute
           0x32
                  c0-0c1s4n2
    50
                               compute
    51
           0x33
                  c0-0c1s4n3
                               compute
           0x34
    52
                  c0-0c1s5n0
                               compute
    53
           0x35
                  c0-0c1s5n1
                               compute
                  c0-0c1s5n2
    54
           0x36
                               compute
    55
           0x37
                  c0-0c1s5n3
                               compute
    56
           0x38
                  c0-0c1s6n0
                               compute
    57
           0x39
                  c0-0c1s6n1
                               compute
    58
           0x3a
                  c0-0c1s6n2
                               compute
                  c0-0c1s6n3
    59
           0x3b
                               compute
    60
           0x3c
                  c0-0c1s7n0
                               compute
    61
           0x3d
                  c0-0c1s7n1
                               compute
    62
           0x3e
                  c0-0c1s7n2
                               compute
    63
           0x3f
                  c0-0c1s7n3
                               compute
```


Assign Labels "red", "green", and "blue"

```
# xtprocadmin -a label0=red -n 44
Connected
  NID
          (HEX)
                   NODENAME
                                 TYPE
                                                                  LABELO
    44
           0x2c c0-0c1s3n0
                              compute
                                                                     red
# xtprocadmin -a label0=yellow -n 48
Connected
          (HEX)
                   NODENAME
  NID
                                 TYPE
                                                                  LABELO
    48
           0x30
                 c0-0c1s4n0
                              compute
                                                                  yellow
 xtprocadmin -a label0=blue -n 52
Connected
  NID
          (HEX)
                   NODENAME
                                 TYPE
                                                                  LABELO
    52
           0x34
                 c0-0c1s5n0
                                                                    blue
                              compute
```


View New Labels

NID	# xtproca	dmin -a	label0		
32 0x20 c0-0c1s0n0 service 35 0x23 c0-0c1s0n3 service 36 0x24 c0-0c1s1n0 service 39 0x27 c0-0c1s1n3 service 40 0x28 c0-0c1s2n0 service 41 0x2b c0-0c1s2n3 service 42 0x2d c0-0c1s2n3 service 43 0x2b c0-0c1s3n3 compute	Connected				
35	NID	(HEX)	NODENAME	TYPE	LABELO
36	32	0x20	c0-0c1s0n0	service	
39 0x27 c0-0cls1n3 service 40 0x28 c0-0cls2n0 service 43 0x2b c0-0cls2n3 service 44 0x2c c0-0cls3n0 compute	35	0x23	c0-0c1s0n3	service	
40 0x28 c0-0cls2n0 service 43 0x2b c0-0cls2n3 service 44 0x2c c0-0cls3n0 compute	36	0×24	c0-0c1s1n0	service	
43 0x2b c0-0cls2n3 service 44 0x2c c0-0cls3n0 compute	39	0x27	c0-0c1s1n3	service	
44 0x2c c0-0c1s3n0 compute red 45 0x2d c0-0c1s3n1 compute red 46 0x2e c0-0c1s3n2 compute red 47 0x2f c0-0c1s3n3 compute yellow 48 0x30 c0-0c1s4n0 compute yellow 49 0x31 c0-0c1s4n1 compute yellow 50 0x32 c0-0c1s4n2 compute yellow 51 0x33 c0-0c1s5n0 compute blue 52 0x34 c0-0c1s5n0 compute blue 53 0x35 c0-0c1s5n1 compute blue 54 0x36 c0-0c1s5n2 compute blue 55 0x37 c0-0c1s6n0 compute compute 56 0x38 c0-0c1s6n1 compute compute 57 0x39 c0-0c1s6n2 compute compute 59 0x3b c0-0c1s6n3 compute compute 60 0x3c c0-0c1s7n1 compute 61	40	0x28	c0-0c1s2n0	service	
45 0x2d c0-0cls3n1 compute red 46 0x2e c0-0cls3n2 compute red 47 0x2f c0-0cls3n3 compute red 48 0x30 c0-0cls4n0 compute yellow 49 0x31 c0-0cls4n1 compute yellow 50 0x32 c0-0cls4n2 compute yellow 51 0x33 c0-0cls4n3 compute yellow 52 0x34 c0-0cls5n0 compute blue 53 0x35 c0-0cls5n1 compute blue 54 0x36 c0-0cls5n2 compute blue 55 0x37 c0-0cls5n3 compute blue 56 0x38 c0-0cls6n0 compute 57 0x39 c0-0cls6n1 compute 58 0x3a c0-0cls6n2 compute 59 0x3b c0-0cls6n3 compute 60 0x3c c0-0cls7n0 compute 61 0x3d c0-0cls7n1 compute 62 0x3e c0-0cls7n2 compute 63 0x3f c0-0cls7n3 compute	43	0x2b	c0-0c1s2n3	service	
46 0x2e c0-0c1s3n2 compute red 47 0x2f c0-0c1s3n3 compute red 48 0x30 c0-0c1s4n0 compute yellow 49 0x31 c0-0c1s4n1 compute yellow 50 0x32 c0-0c1s4n2 compute yellow 51 0x33 c0-0c1s4n3 compute blue 52 0x34 c0-0c1s5n0 compute blue 53 0x35 c0-0c1s5n1 compute blue 54 0x36 c0-0c1s5n2 compute blue 55 0x37 c0-0c1s5n3 compute blue 56 0x38 c0-0c1s6n0 compute 57 0x39 c0-0c1s6n1 compute 59 0x3b c0-0c1s6n2 compute 60 0x3c c0-0c1s7n0 compute 61 0x3d c0-0c1s7n2 compute 62 0x3e c0-0c1s7n2 compute 63 0x3f c0-0c1s7n3 compute	44	0x2c	c0-0c1s3n0	compute	red
47 0x2f c0-0c1s3n3 compute red 48 0x30 c0-0c1s4n0 compute yellow 49 0x31 c0-0c1s4n1 compute yellow 50 0x32 c0-0c1s4n2 compute yellow 51 0x33 c0-0c1s5n0 compute blue 52 0x34 c0-0c1s5n0 compute blue 53 0x35 c0-0c1s5n1 compute blue 54 0x36 c0-0c1s5n2 compute blue 55 0x37 c0-0c1s6n0 compute compute 56 0x38 c0-0c1s6n1 compute compute 57 0x39 c0-0c1s6n1 compute compute 59 0x3b c0-0c1s6n3 compute compute 60 0x3c c0-0c1s7n0 compute 61 0x3d c0-0c1s7n1 compute 62 0x3e c0-0c1s7n2 compute 63 0x3f c0-0c1s7n3 compute	45	0x2d	c0-0c1s3n1	compute	red
48 0x30 c0-0cls4n0 compute yellow 49 0x31 c0-0cls4n1 compute yellow 50 0x32 c0-0cls4n2 compute yellow 51 0x33 c0-0cls4n3 compute blue 52 0x34 c0-0cls5n0 compute blue 53 0x35 c0-0cls5n1 compute blue 54 0x36 c0-0cls5n2 compute blue 55 0x37 c0-0cls6n0 compute compute 56 0x38 c0-0cls6n1 compute compute 57 0x39 c0-0cls6n2 compute compute 60 0x3c c0-0cls6n3 compute compute 61 0x3d c0-0cls7n1 compute 62 0x3e c0-0cls7n2 compute 63 0x3f c0-0cls7n3 compute	46	0x2e	c0-0c1s3n2	compute	red
49 0x31 c0-0cls4n1 compute yellow 50 0x32 c0-0cls4n2 compute yellow 51 0x33 c0-0cls4n3 compute yellow 52 0x34 c0-0cls5n0 compute blue 53 0x35 c0-0cls5n1 compute blue 54 0x36 c0-0cls5n2 compute blue 55 0x37 c0-0cls5n3 compute blue 56 0x38 c0-0cls6n0 compute compute 57 0x39 c0-0cls6n1 compute 59 0x3b c0-0cls6n2 compute 60 0x3c c0-0cls6n3 compute 61 0x3d c0-0cls7n1 compute 62 0x3e c0-0cls7n2 compute 63 0x3f c0-0cls7n3 compute	47	0x2f	c0-0c1s3n3	compute	red
50 0x32 c0-0c1s4n2 compute yellow 51 0x33 c0-0c1s4n3 compute yellow 52 0x34 c0-0c1s5n0 compute blue 53 0x35 c0-0c1s5n1 compute blue 54 0x36 c0-0c1s5n2 compute blue 55 0x37 c0-0c1s5n3 compute blue 56 0x38 c0-0c1s6n0 compute compute 57 0x39 c0-0c1s6n1 compute compute 59 0x3b c0-0c1s6n2 compute compute 60 0x3c c0-0c1s7n0 compute compute 61 0x3d c0-0c1s7n2 compute 62 0x3e c0-0c1s7n2 compute 63 0x3f c0-0c1s7n3 compute	48	0x30	c0-0c1s4n0	compute	yellow
51 0x33 c0-0c1s4n3 compute yellow 52 0x34 c0-0c1s5n0 compute blue 53 0x35 c0-0c1s5n1 compute blue 54 0x36 c0-0c1s5n2 compute blue 55 0x37 c0-0c1s5n3 compute blue 56 0x38 c0-0c1s6n0 compute 57 0x39 c0-0c1s6n1 compute 58 0x3a c0-0c1s6n2 compute 59 0x3b c0-0c1s6n3 compute 60 0x3c c0-0c1s7n0 compute 61 0x3d c0-0c1s7n1 compute 62 0x3e c0-0c1s7n2 compute 63 0x3f c0-0c1s7n3 compute	49	0x31	c0-0c1s4n1	compute	yellow
52 0x34 c0-0c1s5n0 compute blue 53 0x35 c0-0c1s5n1 compute blue 54 0x36 c0-0c1s5n2 compute blue 55 0x37 c0-0c1s5n3 compute blue 56 0x38 c0-0c1s6n0 compute 57 0x39 c0-0c1s6n1 compute 58 0x3a c0-0c1s6n2 compute 59 0x3b c0-0c1s6n3 compute 60 0x3c c0-0c1s7n0 compute 61 0x3d c0-0c1s7n1 compute 62 0x3e c0-0c1s7n2 compute 63 0x3f c0-0c1s7n3 compute	50	0x32	c0-0c1s4n2	compute	yellow
53 0x35 c0-0c1s5n1 compute blue 54 0x36 c0-0c1s5n2 compute blue 55 0x37 c0-0c1s5n3 compute blue 56 0x38 c0-0c1s6n0 compute 57 0x39 c0-0c1s6n1 compute 58 0x3a c0-0c1s6n2 compute 59 0x3b c0-0c1s6n3 compute 60 0x3c c0-0c1s7n0 compute 61 0x3d c0-0c1s7n1 compute 62 0x3e c0-0c1s7n2 compute 63 0x3f c0-0c1s7n3 compute	51	0x33	c0-0c1s4n3	compute	yellow
54 0x36 c0-0c1s5n2 compute blue 55 0x37 c0-0c1s5n3 compute blue 56 0x38 c0-0c1s6n0 compute 57 0x39 c0-0c1s6n1 compute 58 0x3a c0-0c1s6n2 compute 59 0x3b c0-0c1s6n3 compute 60 0x3c c0-0c1s7n0 compute 61 0x3d c0-0c1s7n1 compute 62 0x3e c0-0c1s7n2 compute 63 0x3f c0-0c1s7n3 compute	52	0x34	c0-0c1s5n0	compute	blue
55	53	0x35	c0-0c1s5n1	compute	blue
56 0x38 c0-0c1s6n0 compute 57 0x39 c0-0c1s6n1 compute 58 0x3a c0-0c1s6n2 compute 59 0x3b c0-0c1s6n3 compute 60 0x3c c0-0c1s7n0 compute 61 0x3d c0-0c1s7n1 compute 62 0x3e c0-0c1s7n2 compute 63 0x3f c0-0c1s7n3 compute	54	0x36	c0-0c1s5n2	compute	blue
57 0x39 c0-0c1s6n1 compute 58 0x3a c0-0c1s6n2 compute 59 0x3b c0-0c1s6n3 compute 60 0x3c c0-0c1s7n0 compute 61 0x3d c0-0c1s7n1 compute 62 0x3e c0-0c1s7n2 compute 63 0x3f c0-0c1s7n3 compute	55	0x37	c0-0c1s5n3	compute	blue
58	56	0x38	c0-0c1s6n0	compute	
59	57	0x39	c0-0c1s6n1	compute	
60 0x3c c0-0c1s7n0 compute 61 0x3d c0-0c1s7n1 compute 62 0x3e c0-0c1s7n2 compute 63 0x3f c0-0c1s7n3 compute	58	0x3a	c0-0c1s6n2	compute	
61 0x3d c0-0c1s7n1 compute 62 0x3e c0-0c1s7n2 compute 63 0x3f c0-0c1s7n3 compute	59	0x3b	c0-0c1s6n3	compute	
62 0x3e c0-0c1s7n2 compute 63 0x3f c0-0c1s7n3 compute	60	0x3c	c0-0c1s7n0	compute	
63 0x3f c0-0c1s7n3 compute	61	0x3d	c0-0c1s7n1	compute	
•	62	0 x 3e	c0-0c1s7n2	compute	
#	63	0x3f	c0-0c1s7n3	compute	
	#				

Creating Node Lists Based On Labels

```
$ cnselect label0.eq.\"red\"
44-47
$ cnselect label0.eq.\"yellow\"
48-51
$ cnselect label0.eq.\"blue\"
52-55
$
```

- These node lists may be passed to...
 - ALPS as an argument to aprun -L
 - PBS as an argument to mppnodes

ALPS for BlackWidow

- Platform specific apinit daemon
 - DM placement support (NTT, RTT, processor/node granularity)
 - Uses apstart for application initialization
 - PE utilizes DM for IPC
- Placement scheduler (apsched) enhancements
 - Architecture specific placement for DM
 - High radix fat tree reduces placement restrictions
- Client specific enhancements
 - Launch client (aprun) recognizes binary format
 - Status client (apstat) distinguishes between architectures
- Architecture and application data management
 - Support existing (XT/BW), planned (Scorpio) and future architectures
 - Bridge gathers configuration data from SDB, Mazama, etc.
 - Heterogeneous and extensible by design

ALPS BlackWidow Usage

- Interactive use automatically determines binary format
- Batch use requires user/queue to specify architecture
- User may override architecture with aprun -a parameter
- Currently supports launch to one architecture (SPMD)
- Planned support for multiple architectures (MPMD)
 - Requires PE support
 - Additional ALPS development
- Multiple applications may currently communicate via files, pipes, and sockets
 - aprun -n 16 my_bw_app | aprun -n 32 my_xt_app

Scaling To 100K Nodes

- Batch systems use an all-to-one model for multi-node jobs
- ALPS uses a fanout tree for multi-node jobs
- Spread out connections to improve scalability

Tree Radix

		2	4	8	16	32
oth	1	1	1	1	1	1
Depth	2	3	5	9	17	33
Tree [3	7	21	73	273	1057
	4	15	85	585	4369	33825
	5	31	341	4681	69905	1082401