
Introducing the Cray XMT

Petr Konecny
Cray Inc.

411 First Avenue South
Seattle, Washington 98104

pekon@cray.com

May 5th 2007

Abstract

Cray recently introduced the Cray XMT system, which builds on the parallel architecture of the
Cray XT3 system and the multithreaded architecture of the Cray MTA systems with a Cray-designed
multithreaded processor. This paper highlights not only the details of the architecture, but also the
application areas it is best suited for.

1 Introduction

Cray XMT is the third generation multithreaded ar-
chitecture built by Cray Inc. The two previous gen-
erations, the MTA-1 and MTA-2 systems [2], were
fully custom systems that were expensive to man-
ufacture and support. Developed under code name
Eldorado [4], the Cray XMT uses many parts built
for other commercial system, thereby, significantly
lowering system costs while maintaining the sim-
ple programming model of the two previous genera-
tions. Reusing commodity components significantly
improves price/performance ratio over the two pre-
vious generations.

Cray XMT leverages the development of the Red
Storm [1] system Cray has built for Sandia Na-
tional Laboratory and brought to market as the Cray
XT3 [3]. The Cray XT3 is a large-scale distributed
memory system with custom infrastructure and a
network that can sustain high bandwidth with any
packet size. Cray XMT replaces Opteron proces-
sors in the compute partition of the XT3 with a new
implementation of MTA processor. This enables ef-
ficient injection of small messages into the network
and transforms a distributed memory system into a
shared-memory Cray XMT.

The components of early computer systems ran
at the same speed. Processors ran at about the same
speed as the memory systems. However over the

past two decades the processor speeds have increased
several orders of magnitude while memory speeds
increased only slightly. Despite this disparity the
performance of most applications continued to grow.
This has been achieved in large part by exploiting lo-
cality in memory access patterns and by introducing
hierarchical memory systems. The benefit of these
multilevel caches is twofold: they lower average la-
tency of memory operations and they amortize com-
munication overheads by transferring larger blocks
of data.

The presence of multiple levels of caches forces
programmers to write code that exploits them, if
they want to achieve good performance of their ap-
plication. The problem is exacerbated on large-scale
systems where most memory is remote and the la-
tency of data access becomes much larger. The ap-
plications are forced to transfer larger and larger
blocks of data in order to hide the latency and to
overcome inefficiencies in handling small messages
by conventional interconnection networks. This con-
strains the space of scalable algorithms and increases
application complexity and development cost.

The Cray XMT employs a fundamentally differ-
ent approach. Instead of relying on large message
sizes to amortize overheads, it has efficient support
for small message sizes. And instead of sending large
blocks of data, it relies on thread level fine-grained
parallelism to hide latencies and keep the system

1



components busy. In the next section we highlight
architectural details of Cray XMT. In the third sec-
tion we highlight features of the programming envi-
ronment that enable the massive parallelism needed.

2 Hardware Architecture

Cray XMT is a shared memory system that effi-
ciently exploits fine-grain parallelism in order to hide
latencies and utilize available resources. It is largely
based on Cray XT infrastructure and the software
developed for Cray MTA-2 project. The system
consists of interconnected cabinets housing compute
and service modules. All modules have four Seastar2
chips which provide network interface and routing
functionality. Each compute module has four cus-
tom multithreaded processors. A service module
consist of two AMD Opteron processors and four
PCI-X interfaces. All processors in the system use
commodity DIMM memory.

2.1 Interconnection Network

The Seastar2 chips are connected into a 3D torus
network. Despite inefficiencies in the suboptimal
packet format, the network bandwidth is reasonably
well matched to other paths in the system. Be-
sides routing the network traffic, the Seastar2 trans-
lates remote memory access (RMA) requests and
responses between the network packet format and
the HyperTransport protocol. The communication
is protected from error on a per link basis.

Because the most interesting mode of operation
assumes uniformly distributed traffic, the network
performance is expected to be dominated by the bi-
section bandwidth. This is sub-linear in the system
size. It depends not only on the number of proces-
sors, but also on the exact topology of the system.

2.2 Multithreaded processor

Each multithreaded processor consists of four major
components:

1. instruction execution logic

2. DDR memory controller, data cache

3. HyperTransport logic and physical interface

4. a switch that connects these three components

2.2.1 Instruction logic

The processor has 128 hardware streams and a 64
KB, 4-way set associative instruction cache divided
equally among them. A hardware stream consists
of 31 general purpose 64-bit registers, 8 target reg-
isters and a status word that includes the program
counter. The processor schedules instructions onto
three functional units, M,A and C. It stalls, if no
stream has an instruction ready. The instruction
word contains one operation (possibly a NOP) for
each functional unit. On every cycle, the M unit
can issue a memory operation, the A unit can ex-
ecute an arithmetic operation and the C unit can
execute a control operation or a simple arithmetic
operation.

In order to eliminate dependencies and simplify
the implementation, no stream can have more than
one instruction in the pipeline at any given time. Af-
ter issuing a memory operation, a stream can issue
up to seven other instructions (which may include
memory operations), before it has to wait for the
completion of the first memory operation. There-
fore the processor can keep 1024 memory operations
in flight. The cycle speed is 500 MHz and it can exe-
cute three floating point operations per cycle. How-
ever we will see that the peak performance of 1.5
Gflop/s is largely theoretical as most workloads will
be limited by bandwidth.

2.2.2 Memory interface

The processor provides an interface to commodity
DIMM memory. Like MTA-2, the Cray XMT im-
plements extended memory semantics. Each word
of memory consists of 64 data bits and two state
bits that are used for synchronization.

The logic of the memory controller handles not
only reads and writes, but also a variety of atomic
memory operations that manipulate the state and
data bits. The requests for the memory operations
can originate in any M-unit in the system, not only
the one in the same processor. The responses are
sent back to the originating M-unit.

The memory controller encodes in 288 bit blocks.
It combines four words (64+2 bits each) with error
correcting code in a block. The ECC code protects
the block from single bit errors. The blocks are al-
ways transferred in pairs and the eight word cache
lines are cached in a 128KB, 4-way set associative
buffer. Note that this buffer never stores remote
data and hence the system is trivially cache coher-

2



ent. All memory requests allocate space in the cache.
While cache hits do have lower latency than cache
misses, this benefit is not necessary to achieve peak
bandwidth.

Assuming random access pattern the theoretical
peak of the memory controller is 66 million cache
lines per second, or 4.224 GB/s. The interface to
the memory buffer supports 500 million single word
operations per second, or 4 GB/s.

2.2.3 Network Interface

A HyperTransport link connects the processor to a
Seastar2 chip. The link is used to transfer RMA
requests and responses in and out of the network.
The processor can also use it to perform DMA oper-
ations to transfer data between its nearby memory
and the memory of a service processor. The theo-
retical peak bandwidth depends on the type of the
operation performed. For instance the link can per-
form 140 million loads per second.

2.3 Other system components

The Cray XMT system reuses all of Cray XT infras-
tructure. This includes I/O, hardware supervisory
system (HSS), power and cooling.

3 Software

Like Cray XT3 and MTA-2 system, the XMT utilizes
multiple operating systems. The compute nodes
form a partition that runs a single instance of MTK -
a multithreaded operating system developed for the
MTA-2 project. Each service node runs an instance
of the Linux operating system.

3.1 Programming environment

The applications for the Cray XMT can be devel-
oped in C and C++ programming languages. Cray
provides a compiler that is capable of parallelizing
many common loops. The compiler itself runs on a
login node and the applications are then launched on
the compute partition. Besides parallelizing loops,
the compiler supports language extensions for light-
weight thread creation and synchronization. The
goal of an XMT programmer is to expose enough
parallelism to allow many operations to proceed con-
currently, thereby hiding latencies.

Performance tools are an indispensable part of
the development process on the XMT. They al-
low the programmer to view compiler annotations:
which loop are parallelized, what mix of operations
is in their kernels and how many streams are neces-
sary to execute them efficiently. They also provide
an insight into runtime application performance by
analyzing hardware performance counters and pro-
filing information.

3.2 HPCC Random Access

We present an application kernel and steps in its
implementation on the Cray XMT. RandomAccess
is one of the HPC Challenge Benchmarks [5]. It is
a variant of the famous GUPS benchmark. It re-
peatedly performs a commutative update operator
on data at randomly selected locations in a large ta-
ble. In this case the operator is bitwise XOR. The
serial version of the code is quite simple:

u64Int ran;
ran = 1;
for (i=0; i<NUPDATE; i++) {
ran = (ran << 1) ^

(((s64Int) ran < 0) ? 7 : 0);
table[ran & (TableSize-1)] ^= ran;

}

It generates a sequence of random numbers using a
linear feedback shift register and uses them to locate
and update a value in a table. As written this code
has data dependency between iterations and is not
suitable for any parallel computer. To parallelize the
code we employ function HPCC starts which, given
an integer i, returns the i-th value in the random
number sequence. We rewrite the loop using this
function:

for (i=0; i<NUPDATE; i++) {
u64Int ran = HPCC_starts(i);
ran = (ran << 1) ^

(((s64Int) ran < 0) ? 7 : 0);
table[ran & (TableSize-1)] ^= ran;

}

The XMT compiler can parallelize this loop with-
out user intervention. It recognizes that the only
dependency between iterations is through the up-
dates of the table. Because XOR is commutative,
the updates can be performed in any order as long
as each update is atomic. The compiler generates a
code that uses the state bits in each word to protect

3



it from unsafe concurrent modifications by multiple
threads.

While this was a successful parallelization of
the code it is not an efficient one. The function
HPCC starts is quite expensive. In order to amor-
tize its cost we can manually block the parallel loop:

for (i=0; i<NUPDATE; i+=bigstep) {
u64Int ran = HPCC_starts(i);
for(j=0; j<bigstep; j++) {
ran = (ran << 1) ^

(((s64Int) ran < 0) ? 7 : 0);
table[ran & (TableSize-1)] ^= ran;

}
}

Now the inner loop is same as the one in the se-
rial version of the benchmark and the Apprentice2
performance tool reveals that each iteration con-
sists of five instructions with two memory opera-
tions. This includes all random number generation,
address computation and the synchronized update
to the table. Increasing the block size helps amortize
the cost of HPCC starts, while decreasing available
parallelism.

3.2.1 RandomAccess Performance

The two memory accesses (load and store) in the
kernel are the bottleneck in its performance. Each
involves RMA request and response messages being
sent across the network. Since the stream of ad-
dresses is pseudo-random, we can expect the loads
to miss cache and hope that stores will hit it. In the
best case the hardware will perform about two cache
line transfers per update operation (upto a small
fraction of dirty cache lines that stay in the cache
at the end). Thus the peak is 33 million updates
per second per processor. The bisection bandwidth
does not become a limiting factor until the system
size exceeds about 1000 processors.

Cray has built a prototype 64 processor XMT
system. While this system is functional at the time
of writing this paper, there are multiple known hard-
ware bugs in the multithreaded processor. Avoiding
them requires workarounds that negatively impact
performance. Cray plans to re-spin the processor
in the second half of 2007 to address the problems.
Despite the shortcomings the system is capable of
executing 1.28 billion updates per second, or 20 mil-
lion updates per second per processor. This signifi-
cantly exceeds the per processor performance of any

published results. It is noteworthy that it exceeds
even the performance of the AMD Opteron using the
same directly attached DIMM memory.

3.3 Conclusion

We have highlighted features of the Cray XMT
system that enable efficient implementation of the
shared memory programming model:

• efficient support for small messages

• ability to hide latencies through increased con-
currency

• parallelizing compiler

• performance tools

While performance of real applications remains
to be determined, the Cray XMT system promises a
solution for problems that are too difficult to solve
on distributed memory systems. The common traits
of strong Cray XMT applications are:

1. use lots of memory

2. lots of parallelism

3. fine granularity of data access

4. data is hard to partition

5. load balancing problems

Application areas that share these traits include:

• Problems on large graphs (intelligence, protein
folding, bio-informatics)

• Optimization problems (branch-and-bound,
linear programming)

• Computational geometry (graphics, scene
recognition and tracking)

References

[1] Cray Red Storm Project [Online].
http://www.cray.com/products/programs/red storm/

[2] Cray MTA-2 Project [Online].
http://www.cray.com/products/programs/mta 2/

[3] Cray XT3 system [Online].
http://www.cray.com/products/xt3/

4



[4] J. Feo, D. Harper, S. Kahan, and P. Konecny.
ELDORADO. In Proceedings of the Second
Conference on Computing Frontiers, 2005, Is-

chia, Italy, May 4-6, 2005.

[5] HPC Challenge Benchmarks [Online].
http://icl.cs.utk.edu/hpcc/

5


