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Agenda

� Origins of the Cray XMT
� Cray XMT system architecture

• Cray XT infrastructure
• Cray Threadstorm processor

� Shared memory programming model
• Benefits/drawbacks/solutions
• Basic programming environment features

� Strong Cray XMT application areas
� Examples

• HPCC Random Access
• Hash tables

� Summary
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Origins of the Cray XMT

Multithreaded Architecture (MTA)
Shared memory programming model
Thread level parallelism
Lightweight synchronization

Cray XT Infrastructure
Scalable
I/O, HSS, Support
Network efficient for 
small messages

Cray XMT (a.k.a. Eldorado)
Upgrade Opteron to Threadstorm
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Cray XMT System Architecture

MTK Linux

Compute Service & IO

RAID Controllers

Network

PCI-X
10 GigE

Fiber Channel
PCI-X

Service Partition
• Linux OS
• Specialized Linux nodes

Login PEs
IO Server PEs
Network Server PEs
FS Metadata Server PEs
Database Server PEs

Compute Partition
MTK (BSD)
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Cray XMT Speeds and feeds

Threadstorm
ASIC

140M memory op/s

500M memory op/s

500M instructions/s

500M memory op/s

66M cache lines/s

110M→→→→30M memory op/s (1 →→→→ 4K processors); 
bisection bandwidth impact

4,8 or 16 GB DDR DRAM
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Cray Threadstorm architecture 

� Streams (128 per processor)
• Registers, program counter, other state

� Protection domain (16 per processor)
• Provides address space
• Each running stream belongs to exactly one protection domain

� Functional units (three per processor)
� Memory buffer (cache)

• Only store data of the DIMMs attached to the processor
• All requests go through the buffer
• 128 KB, 4-way associative, 64 byte cache lines
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Threadstorm CPU architecture (continued)
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Shared memory model

� Benefits
• Uniform memory access
• Memory is distributed across all nodes
• No (need for) explicit message passing
• Productivity advantage over MPI

� Drawbacks
• Latency: time for a single operation
• Network bandwidth limits performance
• Legacy MPI codes
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Cray XMT addresses shared memory drawbacks

� Latency
• Little’s law: Concurrency = Bandwidth * Latency

� e.g.: 800 MB/s, 2µs latency  => 200 concurrent 64-bit word ops
• Need a lot of concurrency to maximize bandwidth

� Concurrency per thread (ILP, vector, SSE) => SPMD
� Many threads (MTA, XMT) => MPMD

� Network Bandwidth
• Provision lots of bandwidth

� ~1 GB/s per processor
� ~5 GB/s per router

• Efficient for small messages
• Software controlled caching (registers, nearby memory)

� Reduces network bandwidth
� Eliminates cache coherency traffic
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XMT Programming Environment supports multithreading

� Flat distributed shared memory!
� Rely on the parallelizing compilers

• They do great with loop level parallelism

� Some computations need to be restructured
• To expose parallelism
• For thread safety

� Light-weight threading
• Full/empty bit on every word

� writeef/readfe/readff/writeff
• Compact thread state
• Low thread overhead
• Low synchronization overhead

� Performance tools
• Apprentice2 – parse compiler annotations, visualize runtime behavior



May 07 Slide 11

Traits of strong Cray XMT applications

1. Use lots of memory 
• Cray XMT supports terabytes

2. Lots of parallelism 
• Amdahl’s law
• Parallelizing compiler

3. Fine granularity of memory access
• Network is efficient for all (including short) packets

4. Data hard to partition 
• Uniform shared memory alleviates the need to partition

5. Difficult load balancing
• Uniform shared memory enables work migration
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Several Cray XMT application areas

� Graph problems (intelligence, protein folding, bioinformatics)

� Optimization problems (branch-and-bound, linear 
programming)

� Computational geometry (graphics, scene recognition and 
tracking)

� Coupled physics with multiple materials and time scales

Let’s look deeper at two kernels common to these apps….
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HPCC Random Access (part 1)

� Update a large table based on a random number generator
� NEXTRND returns next value of RNG

unsigned rnd = 1;
for(i=0; i<NUPDATE; i++) { 
rnd = NEXTRND(rnd);
Table[rnd&(size-1)] ^= rnd;

}

� HPCC_starts(k) returns k-th value of RNG
for(i=0; i<NUPDATE; i++) { 
unsigned rnd = HPCC_starts(i); 
Table[rnd&(size-1)] ^= rnd;

}

� Compiler can automatically parallelize this loop
� It generates readfe/writeef for atomicity
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HPCC Random Access (part 2) 

� HPCC_starts is expensive
� Restructure loop to amortize cost

for(i=0; i<NUPDATE; i+=bigstep) {
unsigned v = HPCC_starts(i);
for(j=0;j<bigstep;i++) {
v = NEXTRND(v);
Table[(v&(size-1)] ^= v;

}
}

� The compiler parallelizes outer loop across all processors
� Apprentice2 reports

• Five instructions per update (includes NEXTRND)
• Two (synchronized) memory operations per update
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HPCC Random Access (part 3)

� Performance analysis
• Most cache lines are dirty
• Loads usually miss the memory buffer

� Write back and evict some cache line
� Load new data into freed cache line

• The data is usually still in the buffer at the time of store
• Two DIMM transfers per update

� Peak of 33 M updates/s/processor

� On 64 CPU pre-production hardware
• Hardware bug workarounds limit memory performance
• 1.3 Gup/s on 64P: about 60% of peak
• 95% scaling efficiency (from 1P to 64P)
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Chained Hash Table

7 91 133 42

80

53

129

34 27 62

NodeTable

• Table is an array of pointers to Node

• Node contains key and a pointer to 
the next Node
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Key Lookup

Node* lookup(KeyType key) {

Node *node = Table[hash(key)];

while (node && node->key != key) {

node = node->next;

}

return node;

}

� Low concurrency per thread (a node at a time)
� Poor cache reuse
� Can perform multiple concurrent lookups
� Control dependency in the loop complicates vectorization
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Using Hash table

� Use large table
• To get O(1) amortized cost per operation
• To avoid contention

� Single lookup is still limited by latency
� Insert random elements
� Lookup all elements, count how many are absent

for(i=0; i<DSIZE; i++) 
bad += (lookup(data[i])==0);

� The compiler parallelizes the loop across all processors
� It turns += into a reduction
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Software performance – rules of thumb 

� Instructions are cheap compared to memory ops
� Most workloads will be limited by bandwidth

� Keep enough memory operations in flight at all times
� Load balancing
� Minimize synchronization

� Use moderately cache friendly algorithms
� Cache hits are not necessary to hide latency
� Cache can improve effective bandwidth

� ~40% cache hit rate for distributed memory
� ~80% cache hit rate for nearby memory

� Reduce cache footprint
� Be careful about speculative loads (bandwidth is scarce)
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Summary

� Cray XMT adds value for an important class of problems
• Terabytes of memory
• Irregular access with small granularity
• Lots of parallelism

� Shared memory programming is good for productivity
� Starting to gather numbers now on the pre-production 

system


