Introducing the Cray XMT

Petr Konecny
May 4t 2007

Agenda

= Origins of the Cray XMT

= Cray XMT system architecture

* Cray XT infrastructure
* Cray Threadstorm processor

= Shared memory programming model

* Benefits/drawbacks/solutions
* Basic programming environment features

= Strong Cray XMT application areas

= Examples

* HPCC Random Access
* Hash tables

= Summary

May 07 Slide 2

Origins of the Cray XMT

Cray XMT (a.k.a. Eldorado)
Upgrade Opteron to Threadstorm

Multithreaded Architecture (MTA) Cray XT Infrastructure

Shared memory programming model Scalable

Thread level parallelism /O, HSS, Support

Lightweight synchronization Network efficient for
~. I small messages

-

May 07 Slide 3

CRANY

Cray XMT System Architecture

Service Partition
Linux OS

Compute Service & 10 Specialized Linux nodes

Login PEs

IO Server PEs

Network Server PEs

FS Metadata Server PEs
Database Server PEs

MTK Linux

|

!

|
aaaen -

@ @ 5 Compute Partition

7 7 7 (f MTK (BSD)
el

> Network

H LA...:z:::{{ffi{{i{{{{{{{%}}‘:.-,;-,.._‘,, Fiber Channel

> RAID Controllers

May 07 Slide 4

CRANY

Cray XMT Speeds and feeds

Threadstorm
ASIC

66M cache lines/s
500M memory op/s — l

500M instructions/s Execution Pipes

Switch
Mem
Cache

T

500M memory op/s

110M - 30M memory op/s (1 - 4K processors);
140M memory op/s bisection bandwidth impact

DDR
DRAM 4,8 or 16 GB DDR DRAM

S

May 07 Slide 5

Cray Threadstorm architecture

= Streams (128 per processor)
Registers, program counter, other state

= Protection domain (16 per processor)
Provides address space
Each running stream belongs to exactly one protection domain

= Functional units (three per processor)

= Memory buffer (cache)

Only store data of the DIMMs attached to the processor
All requests go through the buffer
128 KB, 4-way associative, 64 byte cache lines

May 07 Slide 6

Threadstorm CPU architecture (continued)

Protection domain 15
Protection domain 0
F oG =iale h‘ H:mm Rmum
: | Egg ;;: | [SRESp || scurp | [t Concurrency Buffers
Counter . [FReady || o Main
mmm Eda? M Celectable Bmory st e Counter Memory
Enties || Envies Event Reference || counter | [+ Instruction Phantom
Counters (4 Courter »; Buffer Counter
l Instruction Fetch
Stream 147
Siream O + + +
—— Da Conra
SSW Reqgisters (8 per
— stream)
Exception e | RSQRT Approx |
7 — Registers (8 per LogicallBit :
Result Code stream) Operators Branchi
[EE] 0 - J— Data Eﬁ"_ . Bit Operators
- - versio
Count I OTLB I Con 0
| - -
Frotection E:EEEFI'IIDI'I Detecti
Domain %] I on I
Sirearn | RO - | Offsat Scramble |
J [Dawm Distributor |
[] Per stream resource M Pipe A Pipe C Pipe
[C] Fer domain resource
[C] Per processar resaurce Memory - /O
MNetwork

May 07 Slide 7

Shared memory model

= Benefits

* Uniform memory access

* Memory is distributed across all nodes
* No (need for) explicit message passing
* Productivity advantage over MPI

" Drawbacks

* Latency: time for a single operation
* Network bandwidth limits performance
* Legacy MPI codes

May 07 Slide 8

CRANY

Cray XMT addresses shared memory drawbacks

= [atency
Little’s law: Concurrency = Bandwidth * Latency
= e.g.. 800 MB/s, 2us latency => 200 concurrent 64-bit word ops
Need a lot of concurrency to maximize bandwidth
= Concurrency per thread (ILP, vector, SSE) => SPMD
= Many threads (MTA, XMT) => MPMD

= Network Bandwidth

Provision lots of bandwidth
= ~1 GB/s per processor
= ~5 GB/s per router
Efficient for small messages
Software controlled caching (registers, nearby memory)
= Reduces network bandwidth
= Eliminates cache coherency traffic

May 07 Slide 9

CRANY

XMT Programming Environment supports multithreading

= Flat distributed shared memory!

= Rely on the parallelizing compilers
* They do great with loop level parallelism

= Some computations need to be restructured
* To expose parallelism
* For thread safety

= Light-weight threading
* Full/empty bit on every word
= witeef/readfe/readf f/witeff
* Compact thread state
* Low thread overhead
* Low synchronization overhead

= Performance tools
* Apprentice2 — parse compiler annotations, visualize runtime behavior

May 07 Slide 10

Traits of strong Cray XMT applications

1. Use lots of memory
Cray XMT supports terabytes

2. Lots of parallelism

Amdahl’s law
Parallelizing compiler

3. Fine granularity of memory access
Network is efficient for all (including short) packets

4. Data hard to partition
Uniform shared memory alleviates the need to partition

5. Difficult load balancing
Uniform shared memory enables work migration

May 07 Slide 11

CRANY

Several Cray XMT application areas

= Graph problems (intelligence, protein folding, bioinformatics)

= Optimization problems (branch-and-bound, linear
programming)

= Computational geometry (graphics, scene recognition and
tracking)

= Coupled physics with multiple materials and time scales

Let’s look deeper at two kernels common to these apps....

May 07 Slide 12

HPCC Random Access (part 1)

= Update a large table based on a random number generator

= NEXTRND returns next value of RNG
unsigned rnd = 1;
for(i1=0; 1<NUPDATE;, i ++) {
rnd = NEXTRND(r nd) ;
Tabl e[rnd&(si ze-1)] "= rnd;
}
= HPCC st art s(k) returns k-th value of RNG
for(i=0; 1<NUPDATE;, 1++) {
unsigned rnd = HPCC starts(i);
Tabl e[rnd&(si ze-1)] ~= rnd;
}

= Compiler can automatically parallelize this loop
" |t generates r eadf e/wri t eef for atomicity

May 07 Slide 13

HPCC Random Access (part 2)

= HPCC st art s is expensive

= Restructure loop to amortize cost
for(i1=0; 1|I<NUPDATE; i +=bigstep) {
unsigned v = HPCC starts(i);
for()=0;)<bigstep;i++) {
v = NEXTRND(V) ;
Tabl e[(V&(size-1)] "= v;
}
}

= The compiler parallelizes outer loop across all processors

= Apprentice2 reports

Five instructions per update (includes NEXTRND)
Two (synchronized) memory operations per update

May 07 Slide 14

HPCC Random Access (part 3)

= Performance analysis
Most cache lines are dirty
Loads usually miss the memory buffer
= Write back and evict some cache line
= Load new data into freed cache line
The data is usually still in the buffer at the time of store
Two DIMM transfers per update
= Peak of 33 M updates/s/processor

= On 64 CPU pre-production hardware
Hardware bug workarounds limit memory performance
1.3 Gup/s on 64P: about 60% of peak
95% scaling efficiency (from 1P to 64P)

May 07 Slide 15

Chained Hash Table

Tabl e Node
> 7 > 91 > 133 » 42 | e
o
o
. Tabl e is an array of pointers to Node
» 80 » 129 | e
o 53 | o * Node contains key and a pointer to
. the next Node
» 34 —F——> e0e —» 27 » 62 °
[

May 07 Slide 16

Key Lookup

Node* | ookup(KeyType key) {
Node *node = Tabl e[hash(key)];
whi |l e (node && node->key != key) {
node = node- >next;

}

return node;

= Low concurrency per thread (a node at a time)
= Poor cache reuse

= Can perform multiple concurrent lookups
= Control dependency in the loop complicates vectorization

May 07 Slide 17

Using Hash table

= Use large table

* To get O(1) amortized cost per operation
* To avoid contention

= Single lookup is still limited by latency
= |nsert random elements

= Lookup all elements, count how many are absent
for(i=0; i<DSIZE;, i++)
bad += (| ookup(datali])==0);

= The compiler parallelizes the loop across all processors
= |t turns += Into a reduction

May 07 Slide 18

Software performance — rules of thumb

= |nstructions are cheap compared to memory ops
Most workloads will be limited by bandwidth

= Keep enough memory operations in flight at all times
Load balancing
Minimize synchronization

= Use moderately cache friendly algorithms
Cache hits are not necessary to hide latency
Cache can improve effective bandwidth
= ~40% cache hit rate for distributed memory
= ~80% cache hit rate for nearby memory
Reduce cache footprint
Be careful about speculative loads (bandwidth is scarce)

May 07 Slide 19

Summary

= Cray XMT adds value for an important class of problems
* Terabytes of memory
* Irregular access with small granularity
* Lots of parallelism

= Shared memory programming is good for productivity

= Starting to gather numbers now on the pre-production
system

May 07 Slide 20

