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Origins of the Cray XMT

Cray XMT (a.k.a. Eldorado)
Upgrade Opteron to Threadstorm

Multithreaded Architecture (MTA) Cray XT Infrastructure

Shared memory programming model Scalable

Thread level parallelism /O, HSS, Support

Lightweight synchronization Network efficient for
~. I small messages

-
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CRANY

Cray XMT System Architecture
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Cray XMT Speeds and feeds

Threadstorm
ASIC

66M cache lines/s
500M memory op/s — l

500M instructions/s Execution Pipes

Switch
Mem
Cache

T

500M memory op/s

110M - 30M memory op/s (1 - 4K processors);
140M memory op/s bisection bandwidth impact

DDR
DRAM 4,8 or 16 GB DDR DRAM

S
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Cray Threadstorm architecture

= Streams (128 per processor)
Registers, program counter, other state

= Protection domain (16 per processor)
Provides address space
Each running stream belongs to exactly one protection domain

= Functional units (three per processor)

= Memory buffer (cache)

Only store data of the DIMMs attached to the processor
All requests go through the buffer
128 KB, 4-way associative, 64 byte cache lines
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Threadstorm CPU architecture (continued)
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Shared memory model

= Benefits

* Uniform memory access

* Memory is distributed across all nodes
* No (need for) explicit message passing
* Productivity advantage over MPI

" Drawbacks

* Latency: time for a single operation
* Network bandwidth limits performance
* Legacy MPI codes
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Cray XMT addresses shared memory drawbacks

= [atency
Little’s law: Concurrency = Bandwidth * Latency
= e.g.. 800 MB/s, 2us latency => 200 concurrent 64-bit word ops
Need a lot of concurrency to maximize bandwidth
= Concurrency per thread (ILP, vector, SSE) => SPMD
= Many threads (MTA, XMT) => MPMD

= Network Bandwidth

Provision lots of bandwidth
= ~1 GB/s per processor
= ~5 GB/s per router
Efficient for small messages
Software controlled caching (registers, nearby memory)
= Reduces network bandwidth
= Eliminates cache coherency traffic
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XMT Programming Environment supports multithreading

= Flat distributed shared memory!

= Rely on the parallelizing compilers
* They do great with loop level parallelism

= Some computations need to be restructured
* To expose parallelism
* For thread safety

= Light-weight threading
* Full/empty bit on every word
= witeef/readfe/readf f/witeff
* Compact thread state
* Low thread overhead
* Low synchronization overhead

= Performance tools
* Apprentice2 — parse compiler annotations, visualize runtime behavior
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Traits of strong Cray XMT applications

1. Use lots of memory
Cray XMT supports terabytes

2. Lots of parallelism

Amdahl’s law
Parallelizing compiler

3. Fine granularity of memory access
Network is efficient for all (including short) packets

4. Data hard to partition
Uniform shared memory alleviates the need to partition

5. Difficult load balancing
Uniform shared memory enables work migration
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Several Cray XMT application areas

= Graph problems (intelligence, protein folding, bioinformatics)

= Optimization problems (branch-and-bound, linear
programming)

= Computational geometry (graphics, scene recognition and
tracking)

= Coupled physics with multiple materials and time scales

Let’s look deeper at two kernels common to these apps....
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HPCC Random Access (part 1)

= Update a large table based on a random number generator

= NEXTRND returns next value of RNG
unsigned rnd = 1;
for(i1=0; 1<NUPDATE;, i ++) {
rnd = NEXTRND(r nd) ;
Tabl e[ rnd&(si ze-1)] "= rnd;
}
= HPCC st art s(k) returns k-th value of RNG
for(i=0; 1<NUPDATE;, 1++) {
unsigned rnd = HPCC starts(i);
Tabl e[ rnd&(si ze-1)] ~= rnd;
}

= Compiler can automatically parallelize this loop
" |t generates r eadf e/wri t eef for atomicity
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HPCC Random Access (part 2)

= HPCC st art s is expensive

= Restructure loop to amortize cost
for(i1=0; 1|I<NUPDATE; i +=bigstep) {
unsigned v = HPCC starts(i);
for()=0;)<bigstep;i++) {
v = NEXTRND(V) ;
Tabl e[ (V&(size-1)] "= v;
}
}

= The compiler parallelizes outer loop across all processors

= Apprentice2 reports

Five instructions per update (includes NEXTRND)
Two (synchronized) memory operations per update
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HPCC Random Access (part 3)

= Performance analysis
Most cache lines are dirty
Loads usually miss the memory buffer
= Write back and evict some cache line
= Load new data into freed cache line
The data is usually still in the buffer at the time of store
Two DIMM transfers per update
= Peak of 33 M updates/s/processor

= On 64 CPU pre-production hardware
Hardware bug workarounds limit memory performance
1.3 Gup/s on 64P: about 60% of peak
95% scaling efficiency (from 1P to 64P)
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Chained Hash Table

Tabl e Node
> 7 > 91 > 133 » 42 | e
o
o
. Tabl e is an array of pointers to Node
» 80 » 129 | e
o 53 | o * Node contains key and a pointer to
. the next Node
» 34 —F——> e0e —» 27 » 62 °
[
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Key Lookup

Node* | ookup(KeyType key) {
Node *node = Tabl e[ hash(key)];
whi |l e (node && node->key != key) {
node = node- >next;

}

return node;

= Low concurrency per thread (a node at a time)
= Poor cache reuse

= Can perform multiple concurrent lookups
= Control dependency in the loop complicates vectorization
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Using Hash table

= Use large table

* To get O(1) amortized cost per operation
* To avoid contention

= Single lookup is still limited by latency
= |nsert random elements

= Lookup all elements, count how many are absent
for(i=0; i<DSIZE;, i++)
bad += (| ookup(datali])==0);

= The compiler parallelizes the loop across all processors
= |t turns += Into a reduction
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Software performance — rules of thumb

= |nstructions are cheap compared to memory ops
Most workloads will be limited by bandwidth

= Keep enough memory operations in flight at all times
Load balancing
Minimize synchronization

= Use moderately cache friendly algorithms
Cache hits are not necessary to hide latency
Cache can improve effective bandwidth
= ~40% cache hit rate for distributed memory
= ~80% cache hit rate for nearby memory
Reduce cache footprint
Be careful about speculative loads (bandwidth is scarce)
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Summary

= Cray XMT adds value for an important class of problems
* Terabytes of memory
* Irregular access with small granularity
* Lots of parallelism

= Shared memory programming is good for productivity

= Starting to gather numbers now on the pre-production
system
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