
 1

Guidelines for Efficient Parallel I/O on the Cray XT3/XT4
Jeff Larkin, Cray Inc. and Mark Fahey, Oak Ridge National Laboratory

ABSTRACT: This paper will present an overview of I/O methods on Cray XT3/XT4 supercomputers.
It will show several benchmark results and interpret those results to propose guidelines for maintaining
efficient I/O rates on a Lustre filesystem on a Cray XT3/XT4. Finally it will show results from an
application implementing these guidelines and describe possible future investigations.

KEYWORDS: CRAY XT3/XT4, PARALLEL IO, IOR, LUSTRE, BENCHMARK, MPI-IO,
PERFORMANCE

1 Introduction
There has been a clear trend in recent years

towards increasingly larger-scale supercomputers.
One can examine the historical data provided by the
Top 500 List [TOP500] to find a wealth of evidence to
support this claim. As microprocessor makers move
their products to multi-core processors in order to
sustain Moore’s Law, the number of processor cores in
even the smallest supercomputers will begin to seem
massive by today’s standards. Researchers are
currently scrambling to determine how to scale their
algorithms to machines with tens or hundreds of
thousands of cores, but computational performance is
only one of the challenges they will face at this scale.
The days when I/O could be treated as an after-thought
to algorithmic performance are coming to an end. It is
important that application developers begin to examine
the I/O capabilities that will be available to them and
how to best utilize them.

In this paper we will give an overview of the I/O
subsystem on Cray XT3/XT4 computers. We will
then show and interpret data to evaluate the current
state of I/O on a large-scale, Cray XT3/XT4 system
and provide guidelines for efficient I/O on large, Cray
XT3/XT4 systems.

2 An overview of Lustre on a
Cray XT3/XT4

When high-bandwidth I/O operations are required
on an XT3/XT4 system, they should be done within a
Lustre parallel filesystem [LUSTRE]. Cray has
partnered with Cluster Filesystems, Inc (CFS) [CFS]
to develop a client for Lustre on the XT3/XT4 in the
form of liblustre.

2.1 Lustre Basics
Lustre is a clustered filesystem designed to

provide large, high-bandwidth storage on large,
clustered computers. Figure 1 depicts how the lustre
architecture is connected to compute nodes of a Cray
XT3/XT4 system.

Figure 1: Lustre architectural diagram [LUSTREDIAG].

At its lowest level, the Lustre filesystem (LFS) has
two basic types of servers: the Metadata Server (MDS),
and Object Storage Servers (OSS). As the name implies,
the MDS is a database that holds the file metadata for the
entire filesystem. Whenever a metadata operation occurs,
such as an open, the client must poll the MDS. At the time
of writing this paper, a Lustre filesystem is limited to one
MDS. A Lustre filesystem may have one or more OSSes,
which handle storing data to disk. Each OSS has one or
more Object Storage Targets (OST), where the file data
actually reside. It is not uncommon for a single OSS to

 2

serve several OSTs. Files are broken into objects,
which are stored on OSTs in a round-robin fashion.

A user’s files are striped over one or more OSTs
when they are written to the filesystem. The user has
the ability to adjust the number of stripes (stripe width)
and the size of the objects on disk (stripe size). To put
it more plainly: stripe width relates to how many OSTs
are used to store a file and the stripe size relates to
how large an object is on disk. Files inherit these
parameters from their parent directory, and users may
adjust these parameters using the lfs command. A file
cannot have a stripe width greater than the total
number of OSTs configured in the host filesystem. At
publication time, the stripe width of any given file on a
Lustre filesystem is limited to 160.

2.2 Lustre on Jaguar
Over the course of collecting data for this paper,

the Lustre filesystem on the Cray XT3/XT4 system at
Oak Ridge National Laboratory (“Jaguar”) underwent
reconfiguration. Early benchmark results were
collected on a filesystem with 160 OSTs, broken over
40 OSSes. More recent results are taken from a
slightly smaller filesystem, configured with 144 OSTs
on 36 OSSes. The actual filesystem configuration will
be explicitly given for each of the benchmark results
below.

The current system configured with 144 OSTs
uses 36 OSSes. Each OSS has two 4 gigabit fibre-
channel cards. Each card serves two OSTs. The setup
uses two “tiers” per logical unit number (LUN). A tier
is a DDN term that refers to a raid group. Each tier
has 9 disks configured as a 8+1 RAID5. So each LUN
has 18 disks behind it. The drives are 300 GB 10K
RPM fibre channel drives. A LUN is zoned to specific
ports, which correspond to specific OSSes. Aggregate
peak bandwidth is 144*4 Gb/s = 72 GB/s.

3 Benchmarking Methodology
and Results

In this section three codes are used to test various
aspects of I/O performance of the Lustre filesystem
described in Section 2. As indicated above, results
were obtained with different configurations of the
filesystem: namely when configured with 160 OSTs
and then again with 144 OSTs.

3.1 Code 1
Initial benchmarking was done using a custom code

[CUSTOM1] designed to emulate writing a large amount
of data to disk from all processors. This is a very simple
code that opens an MPI file across the processors and
performs buffered writes using the
mpi_file_write_at method to write to a shared file
at given offsets. This, of course, assumes that a regular
amount of data is written by each processor, which makes
the calculation of offsets and distribution of I/O operations
trivial. The benchmark varies the number of writers, the
size of a user-allocated buffer for each writer, the size of
the Lustre stripe, and the number of Lustre stripes. In its
original form, this benchmark opened the file over a subset
of the total processors and used MPI operations to
communicate the necessary data to these processors for
writing. It was determined early in testing that the high
bandwidth SeaStar network of the Cray XT3/XT4 makes
the communication portion negligible. For benchmarking
convenience, the code was rewritten to ignore the subset
communication and treat each node as a writer. This
allowed for more benchmark runs to be made by reducing
the number of processors needed for each run. While
subsetting was not used to collect the data presented in this
section, it should be assumed when interpreting these
results that the writers are a subset of the total processors.
Evidence in support of using a subset of processors to
achieve better I/O performance will be presented in a later
section.

Results in this section were collected on a Cray XT4
running version 1.5 of Unicos/lc. The benchmark was
compiled with version 6.2 of the PGI compiler suite. The
Lustre filesystem was configured with 160 OSTs for the
tests in this section.

3.1.1 Single Stripe Performance
There is an unfortunate misconception that sending all

data to a single node to be written to disk will achieve
suitable bandwidth when performed on a parallel
filesystem. This notion fails to take into account the
networking overhead of transferring to the single writer
and the bottleneck of attempting to output all of a
program’s data through the network connection of a single
node. Writing from a single node simply will not saturate
the available filesystem bandwidth needed for large I/O
operations, but it can give some insight for tuning parallel
I/O operations. For example, Figure 2 illustrates the
bandwidth of a single writer to a single OST, varying the
user allocation buffer and stripe size.

 3

10K
200K

1M
10M

30M
100M

64K

640K

6.4M

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

Bandw idth B/s

Buffer size

Stripe size

1 Node, 1 Stripe

Figure 2: This graph shows bandwidth when writing
from one processor to one stripe, varying the size of the
buffer and stripe.

It should be clear from the figure that one writer

and one OST will not achieve high bandwidth, but the
striking observation from this figure is the importance
of buffering I/O operations. Observe that varying the
size of the filesystem stripe had little effect on the
bandwidth, but varying the size of the user buffer
affected the over bandwidth greatly. The need to
buffer I/O operations should be obvious, and Figure 2
shows that a 1-10MB buffer can significantly improve
write performance.

Figures 3a-b show further evidence of the need to
use multiple writers to achieve reasonable bandwidth.
Observe that no matter how widely the file is striped,
this benchmark was unable to achieve greater that
700MB/s of write bandwidth. Although an increase in
bandwidth was observed, even with maximum striping
the performance was well below acceptable levels. It is
simply impossible for a single writer to saturate the
available filesystem bandwidth.

64K
192K 640K

1920K
6.4M

19.2M

1

50

150

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

Stripe Size

Bandwidth B/s

Stripe Count

1 Node, 100MB Buffer

Figure 3a: Bandwidth from one writer with a 100MB buffer,
varying the stripe size and width.

64K
192K

640K
1920K

6.4M
19.2M

10K

1M

30M

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

Bandwidth B/s

Stripe Size

Buffer Size

1 Node, 160 Stripes

Figure 3b: Bandwidth from 1 writer to a file with a stripe
width of 160, varying the size of the buffer and stripes.

 4

3.1.2 Fixed Number of Stripes
By fixing the number of stripes for a given file and

varying the number of writers we are able to make
observations about the desirable ratio of writers to
stripes. While a one-to-one ratio is logical, it may not
be the most practical or efficient ratio.

The graphs in Figures 4a-d plot the I/O
performance for a fixed strip count of 150 while
varying the stripe and buffer sizes along the axes and
varying the number of writers between graphs.

64K
192K

640K
1920K

6.4M
19.2M

10K

1M

30M

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

1.00E+10

Bandwidth B/s

Stripe Size

Buffer Size

50 Writers, 150 Stripes

Figure 4a: Write bandwidth with 50 writers and 150
stripes. The bottom and side axes of each graph are the
stripe size and buffer size, respectively.

64K
192K

640K
1920K

6.4M
19.2M

10K

1M

30M

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

1.00E+10

Bandwidth B/s

Stripe Size

Buffer Size

100 Writers, 150 Stripes

 Figure 4b: Write bandwidth with 100 writers and 150
stripes. The bottom and side axes of each graph are the
stripe size and buffer size, respectively.

The point that should be observed from Figure 4d
is that having significantly fewer writers than stripes
does result in lower write bandwidth, while having
nearly as many or slightly more writers than stripes
achieves higher performance. The difference between

the achieved bandwidth at 100 writers is insignificant from
the bandwidth at 150 or 300 writers.

64K 192K
640K

1920K
6.4M

19.2M

10K

1M

30M

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

1.00E+10

Bandwidth B/s

Stripe Size

Buffer Size

150 Writers, 150 Stripes

Figure 4c: Write bandwidth with 150 writers and 150
stripes. The bottom and side axes of each graph are the
stripe size and buffer size, respectively.

64K 192K
640K

1920K
6.4M

19.2M

10K

1M

30M

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

1.00E+10

Bandwidth B/s

Stripe Size

Buffer Size

300 Writers, 150 Stripes

Figure 4d: Write bandwidth with 300 writers and 150
stripes. The bottom and side axes of each graph are the
stripe size and buffer size, respectively.

These graphs suggest that there is no reason to have
more or less than a one-to-one relationship between writers
and stripes. Data presented in a later benchmark, however,
approaches this question from a different direction and
implies that one-to-one may not actually be the correct
ratio.

3.1.3 Fixed Number of Writers
Fixing the number of writers and varying the other

parameters can also provide interesting insights. The
graphs in Figures 5a-d fix the number of writers and
emphasize the need for buffering by varying the size of
buffers between graphs.

 5

64K
192K

640K
1920K

6.4M
19.2M

1

50

150

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

Bandwidth B/s

Stripe Size

Stripe Count

50 Writers, 1M Buffer

 Figure 5a: Write bandwidth with 50 writers and 1 MB
buffer. The bottom and side axes are stripe size and
stripe count respectively.

64K
192K

640K
1920K

6.4M
19.2M

1

50

150

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

Bandwidth B/s

Stripe Size

Stripe Count

50 Writers, 10M Buffer

 Figure 5b: Write bandwidth with 50 writers and 10 MB
buffer. The bottom and side axes are stripe size and
stripe count respectively.

64K
192K

640K
1920K

6.4M
19.2M

1

50

150

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

Bandwidth B/s

Stripe Size

Stripe Count

50 Writers, 30M Buffer

 Figure 5c: Write bandwidth with 50 writers and 30 MB
buffer. The bottom and side axes are stripe size and
stripe count respectively.

64K 192K
640K

1920K
6.4M

19.2M

1

50

150

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

8.00E+09

9.00E+09

Bandwidth B/s

Stripe Size

Stripe Count

50 Writers, 100M Buffer

Figure 5d: Write bandwidth with 50 writers and 100 MB
buffer. The bottom and side axes are stripe size and stripe
count respectively.

One should note the significant improvement in
performance as the buffer size increases. Buffer sizes
below 1MB are not shown, but are even below the
performance of 1MB. Many applications are unable to
sacrifice 100MB for use in I/O buffers, but the above
graphs should make it clear that whatever sacrifice can be
made for I/O buffers will result in improved I/O
performance.

3.1.4 Interpretation of results
The clearest result from the above benchmarks is the

emphasis of buffering I/O operations. While adjusting the
stripe size and width does provide noticeable gains in write
performance, the use of large I/O buffers seems to have the
most pronounced effect on performance. This benchmark
also encourages using at least as many writers as the stripe
count, but does not show a benefit from utilizing more
writers than stripes.

3.2 Code 2: IOR
IOR (Interleaved Or Random) [IOR] is a parallel file

system test code developed by the Scalable I/O Project at
Lawrence Livermore National Laboratory. This parallel
program performs parallel writes and reads to/from a file
using MPI-IO (or optionally POSIX or HDF5) and reports
the throughput rates. The name of the program is
something of an historical artifact because this version has
been simplified to remove the random I/O options. IOR
can be used for testing performance of parallel file systems
using various interfaces and access patterns. IOR uses
MPI for process synchronization.

 6

Results in this section were collected on a Cray
XT4 running version 1.5 of Unicos/lc. The benchmark
was compiled with version 6.1 of the PGI compiler
suite. The Lustre filesystem was configured with 144
OSTs for the tests in this section.

3.2.1 Scaling results
IOR was used to test the scalability of the lustre

filesystem by doing parallel I/O tests out to many
thousands of processors. Figure 6 shows the
performance results when using IOR with constant
buffer size per client (core), and increasing the number
of clients.

The upper plot in Figure 6 is the case when writing
or reading with 1 file per client, while the lower graph
is for a shared file. The maximum achieved
bandwidths are 42 GB/s (read) and 25 GB/s (write) for
one file per client and 34 GB/s (read) and 22 GB/s
(write) for a shared file.

Figure 6: These graphs fix the buffer size per core at 2,
8, or 32MB and vary the number of clients along the x-
axis. The y-axis is the achieved bandwidth.

The scalability of Lustre was also tested by
keeping the aggregate file size constant while

increasing the number of clients – an attempt to more
accurately simulate what a user of a large-scale XT3/XT4
machine might consider when designing a large run. In
Figures 7 and 8, the aggregate size of the file was kept
constant at 16 GB and 64 GB, respectively. In other
words, as the number of clients increased, the I/O per core
decreased. In Figures 7 and 8, the upper plot shows the
performance for 1 file per client while the lower depicts
the shared-file performance with a stripe width of 143.

In Figure 7, the maximum write performance is
approximately 22 GB/s for both file-per-process and
shared-file methods. The maximum read performance is
approximately 37 GB/s when doing a file-per-process and
33 GB/s for a shared file.

Figure 7: These graphs fix the aggregate file size at 16 GB
and vary the number of clients along the x-axis. The y-axis is
the achieved bandwidth.

In Figure 8, the maximum write performance is

approximately 26 GB/s for the file-per-process method and
22 GB/s for the shared-file method. The maximum read
performance is approximately 40 GB/s when doing a file-
per-process and 37 GB/s for a shared file. As expected, I/O
is more efficient when writing out larger buffers as shown

 7

by the greater I/O bandwidths for the 64 GB file
versus the 16 GB file.

Figure 8: These graphs fix the aggregate file size at 64
GB and vary the number of clients along the x-axis. The
y-axis is the achieved bandwidth.

3.2.2 Interpretation of Results
The results from above clearly illustrate that the

achievable bandwidth drops dramatically in all three
scenarios for both a file per process and a shared file
after it reaches a maximum somewhere around 500-
2000 clients. Thus, it seems clear that using a subset
of the application tasks to do I/O will result in overall
better performance at scale. Additionally, these plots
indicate that using more than 1 client per OST is the
only way to get the practical peak performance. And
a third observation is that performing I/O with one file
per client with approximately 1K clients is noticeably
more efficient than doing I/O to a shared file.

3.3 Code 3
Since the IOR results indicated a subset of clients

performing I/O would be more efficient than all clients
at scale, another custom I/O code [CUSTOM2] was
written to test this hypothesis. This custom Fortran
code is designed to write out contiguous buffers by

each process either to a single-shared file, or alternatively,
to a file per process. Furthermore, this code was designed
to take in runtime parameters to define a subset of
processes with which to do I/O, and, in addition, to use one
of several methods of moving the data to the subset of
processes to do the I/O. The intent (as with [CUSTOM1])
was to model the behavior of writing a large amount of
data to disk, as in a checkpoint.

3.3.1 Subsetting results
Test 1: Results for this test were collected on a Cray

XT3 running version 1.5 of Unicos/lc. The benchmark
was compiled with version 6.1 of the PGI compiler suite.
The Lustre filesystem was configured with 96 OSTs for
the tests in this section. First, the code was run with 8640
processes with all processes writing (and then reading) a 5
MB buffer to their own file. This test resulted in an
effective bandwidth of 1.4 GB/s for writes and 2.0 GB/s
for reads. Then a run was done with a subset of 960
processes out of 8640 aggregating the buffers from 9 tasks
and then writing out a 45 MB buffer. For this run, the
aggregate bandwidth was 10.1 GB/s for writes and 10.3
GB/s for reads.

Test 2: Results for this test were collected on a Cray
XT4 running version 1.5 of Unicos/lc. The benchmark
was compiled with version 6.1 of the PGI compiler suite.
The Lustre filesystem was configured with 144 OSTs for
the tests in this section. This test is very similar to test 1,
but with a few changes. The code was run with 9216
processes each with an 8 MB buffer. First, with all
processes doing I/O, the aggregate write bandwidth was
0.6 GB/s. Then, with 1024 processes aggregating I/O from
9 processes each to write out a 72 MB buffer, the
aggregate bandwidth was 10.4 GB/s.

3.3.2 Interpretation of Results
The results clearly provide evidence that using a

subset of nodes for I/O results in significantly better
performance than when using all available processes at
scale.

4 I/O Guidelines
Based on the data and the corresponding observations

presented above, the following guidelines are proposed:
1. Do large I/O. It is recommended to use buffers of

at least 1 MB, and 10 MB if possible. In some

 8

cases one can use IOBUF on the XT3/XT4
platform to buffer output.1

2. Do parallel I/O. The only way to take full
advantage of the Lustre filesystem is to do
parallel I/O.

3. Stripe as close to the maximum number of
OSTs as possible if writing to a shared file and
if you have more clients than OSTs.

4. If running with more than 20X2 clients than
OSTs, use a subset of clients to do I/O.

5. Create a natural partitioning of nodes so that
data will go to disk in a way that makes sense.

6. Make your I/O flexible so that you can tune to
the problem and machine.

5 Future Work
MPI I/O [MPIIO] provides a mechanism whereby

a programmer can supply “hints” to the MPI library.
Providing hints may enable an MPI implementation to
deliver increased I/O performance. There are some
hints in ROMIO MPI that are recognized on the
XT3/XT4 platform, including:

• romio_cb_write: when enabled forces
parallel writes avoiding lock serialization,

• cb_buffer_size: defines the size of the
MPI I/O buffer on each target node,

• cb_config_list: defines the name of the
nodes participating in the I/O operation, and

• cb_nodes: specifies the number of target
nodes to be used for collective buffering.

It is expected that some or all of these hints can help
increase performance. With regard to buffering, the
cb_buffer_size hint potentially provides a simple
way for a programmer to set the buffer to an
appropriate size for performance. Similarly, the
cb_nodes hint may provide a mechanism to do the
subsetting approach, which has proven to be an
effective approach when running with thousands of
clients. These hints will be need to be tested to find
out if they are effective and when.

As of the writing of this report
romio_cb_write has been shown effective for one
specific test code, while providing no benefit to

1 IOBUF performance was outside the scope of this paper,
but has shown to be very beneficial.
2 This formula is based on the set of experiments done at
ORNL. It has yet to be tested if it applies to other
configurations.

another. We intend to explore the performance in
additional codes.

In addition to ROMIO buffering hints, a future version
of IOBUF on the Cray XT3/XT4 may add support for MPI
I/O operations. We intend to track the progress of this
library and do further experiments if and when it becomes
available.

Finally, it was our intention to include performance
results from a real application implementing our
guidelines. Due to circumstances out of our control, we
were unable to include these results here. We will
continue to examine real application results and, if
necessary, modify our guidelines given the results.

6 Conclusions
It is clear that increasingly larger-scale

supercomputers will require that application developers
examine the I/O capabilities that will be available to them
and determine how best to utilize them. To this end, the
I/O performance characteristics of the Lustre filesystem on
the Cray XT3/XT4 at ORNL were investigated.

A convincing amount of data was provided that
suggests several (independent) strategies an application
writer should follow when designing their I/O to be run on
massively parallel supercomputers. These guidelines
(presented in section 4) provide fairly simple recipes for
obtaining good performance in a Lustre filesystem on a
large Cray XT3/XT4 system. The most important
suggestions are to write/read using the largest possible
buffers, do parallel I/O with enough clients to saturate the
filesystem, and when running at large scale (say >2K
clients) use a subset of clients to perform the I/O.

7 Acknowledgments
This research was sponsored by the Mathematical,

Information, and Computational Sciences Division, Office
of Advanced Scientific Computing Research, US
Department of Energy, under Contract No. DE-AC05-
00OR22725 with UT-Battelle, LLC.

This research used resources of the National Center for
Computational Sciences at Oak Ridge National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725.

Data for [CUSTOM1] was collected by Gene
Wagenbreth.

 9

8 About the Authors
Mark R. Fahey is a senior Scientific Application

Analyst in the Center for Computational Sciences at
Oak Ridge National Laboratory. He is the past CUG
X1-Users SIG chair and current CUG Treasurer. Mark
has a PhD in mathematics from the University of
Kentucky. He can be reached at Oak Ridge National
Laboratory, P.O. Box 2008 MS6008, Oak Ridge, TN
37831-6008, E-Mail: faheymr@ornl.gov.

Jeff M. Larkin is an applications engineer in the
Cray Supercomputing Center of Excellence and is
located at Oak Ridge National Lab. Jeff has a
Master’s Degree in Computer Science from the
University of Tennessee. He can be reached at Oak
Ridge National Laboratory, P.O. Box 2008 MS6173,
Oak Ridge, TN 37831-6008, E-mail:
larkin@cray.com.

9 References
1. [CFS] http://www.clusterfs.com/
2. [CUSTOM1] A custom I/O benchmark written

by Gene Wagenbreth
3. [CUSTOM2] A custom I/O benchmark written

by Mark Fahey
4. [IOR] IOR Benchmark,

ftp://ftp.lanl.gov/pub/siop/ior
5. [LUSTRE] http://www.lustre.org/
6. [LUSTREDIAG] “Lustre Tutorial,” by Rick

Slick, Proceedings of the 48th Cray User
Group, Lugano, May 2006.

7. [MPIIO] “MPI – The Complete Reference:
Volume 2 - The MPI Extensions,” by William
Gropp, Steven Huss-Lederman, Andrew
Lumsdaine, Ewing Lusk, Bill Nitzberg,
William Saphir, and Mark Snir, MIT Press,
September, 1998.

8. [TOP500] http://top500.org/

