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ABSTRACT: This paper will present an overview of I/O methods on Cray XT3/XT4 supercomputers.  
It will show several benchmark results and interpret those results to propose guidelines for maintaining 
efficient I/O rates on a Lustre filesystem on a Cray XT3/XT4.  Finally it will show results from an 
application implementing these guidelines and describe possible future investigations. 
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1 Introduction  
There has been a clear trend in recent years 

towards increasingly larger-scale supercomputers.  
One can examine the historical data provided by the 
Top 500 List [TOP500] to find a wealth of evidence to 
support this claim.  As microprocessor makers move 
their products to multi-core processors in order to 
sustain Moore’s Law, the number of processor cores in 
even the smallest supercomputers will begin to seem 
massive by today’s standards.  Researchers are 
currently scrambling to determine how to scale their 
algorithms to machines with tens or hundreds of 
thousands of cores, but computational performance is 
only one of the challenges they will face at this scale.  
The days when I/O could be treated as an after-thought 
to algorithmic performance are coming to an end.  It is 
important that application developers begin to examine 
the I/O capabilities that will be available to them and 
how to best utilize them.   

In this paper we will give an overview of the I/O 
subsystem on Cray XT3/XT4 computers.  We will 
then show and interpret data to evaluate the current 
state of I/O on a large-scale, Cray XT3/XT4 system 
and provide guidelines for efficient I/O on large, Cray 
XT3/XT4 systems.   

2 An overview of Lustre on a 
Cray XT3/XT4 

When high-bandwidth I/O operations are required 
on an XT3/XT4 system, they should be done within a 
Lustre parallel filesystem [LUSTRE].  Cray has 
partnered with Cluster Filesystems, Inc (CFS) [CFS] 
to develop a client for Lustre on the XT3/XT4 in the 
form of liblustre. 

2.1 Lustre Basics 
Lustre is a clustered filesystem designed to 

provide large, high-bandwidth storage on large, 
clustered computers.  Figure 1 depicts how the lustre 
architecture is connected to compute nodes of a Cray 
XT3/XT4 system.   

 

 
Figure 1: Lustre architectural diagram [LUSTREDIAG]. 
 

At its lowest level, the Lustre filesystem (LFS) has 
two basic types of servers: the Metadata Server (MDS), 
and Object Storage Servers (OSS).  As the name implies, 
the MDS is a database that holds the file metadata for the 
entire filesystem.  Whenever a metadata operation occurs, 
such as an open, the client must poll the MDS.  At the time 
of writing this paper, a Lustre filesystem is limited to one 
MDS.  A Lustre filesystem may have one or more OSSes, 
which handle storing data to disk.  Each OSS has one or 
more Object Storage Targets (OST), where the file data 
actually reside.  It is not uncommon for a single OSS to 
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serve several OSTs.  Files are broken into objects, 
which are stored on OSTs in a round-robin fashion. 

A user’s files are striped over one or more OSTs 
when they are written to the filesystem.  The user has 
the ability to adjust the number of stripes (stripe width) 
and the size of the objects on disk (stripe size).  To put 
it more plainly: stripe width relates to how many OSTs 
are used to store a file and the stripe size relates to 
how large an object is on disk.  Files inherit these 
parameters from their parent directory, and users may 
adjust these parameters using the lfs command.  A file 
cannot have a stripe width greater than the total 
number of OSTs configured in the host filesystem.  At 
publication time, the stripe width of any given file on a 
Lustre filesystem is limited to 160. 

2.2 Lustre on Jaguar 
Over the course of collecting data for this paper, 

the Lustre filesystem on the Cray XT3/XT4 system at 
Oak Ridge National Laboratory (“Jaguar”) underwent 
reconfiguration.  Early benchmark results were 
collected on a filesystem with 160 OSTs, broken over 
40 OSSes.  More recent results are taken from a 
slightly smaller filesystem, configured with 144 OSTs 
on 36 OSSes.  The actual filesystem configuration will 
be explicitly given for each of the benchmark results 
below. 

The current system configured with 144 OSTs 
uses 36 OSSes.  Each OSS has two 4 gigabit fibre-
channel cards.  Each card serves two OSTs.  The setup 
uses two “tiers” per logical unit number (LUN).  A tier 
is a DDN term that refers to a raid group.  Each tier 
has 9 disks configured as a 8+1 RAID5.  So each LUN 
has 18 disks behind it.  The drives are 300 GB 10K 
RPM fibre channel drives.  A LUN is zoned to specific 
ports, which correspond to specific OSSes.  Aggregate 
peak bandwidth is 144*4 Gb/s = 72 GB/s.   

3 Benchmarking Methodology 
and Results 

In this section three codes are used to test various 
aspects of I/O performance of the Lustre filesystem 
described in Section 2.  As indicated above, results 
were obtained with different configurations of the 
filesystem: namely when configured with 160 OSTs 
and then again with 144 OSTs. 

3.1 Code 1  
Initial benchmarking was done using a custom code 

[CUSTOM1] designed to emulate writing a large amount 
of data to disk from all processors.  This is a very simple 
code that opens an MPI file across the processors and 
performs buffered writes using the 
mpi_file_write_at method to write to a shared file 
at given offsets.  This, of course, assumes that a regular 
amount of data is written by each processor, which makes 
the calculation of offsets and distribution of I/O operations 
trivial.  The benchmark varies the number of writers, the 
size of a user-allocated buffer for each writer, the size of 
the Lustre stripe, and the number of Lustre stripes.  In its 
original form, this benchmark opened the file over a subset 
of the total processors and used MPI operations to 
communicate the necessary data to these processors for 
writing.  It was determined early in testing that the high 
bandwidth SeaStar network of the Cray XT3/XT4 makes 
the communication portion negligible.  For benchmarking 
convenience, the code was rewritten to ignore the subset 
communication and treat each node as a writer.  This 
allowed for more benchmark runs to be made by reducing 
the number of processors needed for each run.  While 
subsetting was not used to collect the data presented in this 
section, it should be assumed when interpreting these 
results that the writers are a subset of the total processors.  
Evidence in support of using a subset of processors to 
achieve better I/O performance will be presented in a later 
section. 

Results in this section were collected on a Cray XT4 
running version 1.5 of Unicos/lc.  The benchmark was 
compiled with version 6.2 of the PGI compiler suite.  The 
Lustre filesystem was configured with 160 OSTs for the 
tests in this section. 

3.1.1 Single Stripe Performance 
There is an unfortunate misconception that sending all 

data to a single node to be written to disk will achieve 
suitable bandwidth when performed on a parallel 
filesystem.  This notion fails to take into account the 
networking overhead of transferring to the single writer 
and the bottleneck of attempting to output all of a 
program’s data through the network connection of a single 
node.  Writing from a single node simply will not saturate 
the available filesystem bandwidth needed for large I/O 
operations, but it can give some insight for tuning parallel 
I/O operations.  For example, Figure 2 illustrates the 
bandwidth of a single writer to a single OST, varying the 
user allocation buffer and stripe size. 
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Figure 2: This graph shows bandwidth when writing 
from one processor to one stripe, varying the size of the 
buffer and stripe. 

 
It should be clear from the figure that one writer 

and one OST will not achieve high bandwidth, but the 
striking observation from this figure is the importance 
of buffering I/O operations.  Observe that varying the 
size of the filesystem stripe had little effect on the 
bandwidth, but varying the size of the user buffer 
affected the over bandwidth greatly.  The need to 
buffer I/O operations should be obvious, and Figure 2 
shows that a 1-10MB buffer can significantly improve 
write performance. 

Figures 3a-b show further evidence of the need to 
use multiple writers to achieve reasonable bandwidth.  
Observe that no matter how widely the file is striped, 
this benchmark was unable to achieve greater that 
700MB/s of write bandwidth.  Although an increase in 
bandwidth was observed, even with maximum striping 
the performance was well below acceptable levels. It is 
simply impossible for a single writer to saturate the 
available filesystem bandwidth. 
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Figure 3a: Bandwidth from one writer with a 100MB buffer, 
varying the stripe size and width. 
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Figure 3b: Bandwidth from 1 writer to a file with a stripe 
width of 160, varying the size of the buffer and stripes. 
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3.1.2 Fixed Number of Stripes 
By fixing the number of stripes for a given file and 

varying the number of writers we are able to make 
observations about the desirable ratio of writers to 
stripes.  While a one-to-one ratio is logical, it may not 
be the most practical or efficient ratio.   

The graphs in Figures 4a-d plot the I/O 
performance for a fixed strip count of 150 while 
varying the stripe and buffer sizes along the axes and 
varying the number of writers between graphs.  
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Figure 4a: Write bandwidth with 50 writers and 150 
stripes.  The bottom and side axes of each graph are the 
stripe size and buffer size, respectively. 
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 Figure 4b: Write bandwidth with 100 writers and 150 
stripes.  The bottom and side axes of each graph are the 
stripe size and buffer size, respectively. 
 

The point that should be observed from Figure 4d 
is that having significantly fewer writers than stripes 
does result in lower write bandwidth, while having 
nearly as many or slightly more writers than stripes 
achieves higher performance.  The difference between 

the achieved bandwidth at 100 writers is insignificant from 
the bandwidth at 150 or 300 writers. 
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Figure 4c: Write bandwidth with 150 writers and 150 
stripes.  The bottom and side axes of each graph are the 
stripe size and buffer size, respectively. 
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Figure 4d:  Write bandwidth with 300 writers and 150 
stripes.  The bottom and side axes of each graph are the 
stripe size and buffer size, respectively. 
 

These graphs suggest that there is no reason to have 
more or less than a one-to-one relationship between writers 
and stripes.  Data presented in a later benchmark, however, 
approaches this question from a different direction and 
implies that one-to-one may not actually be the correct 
ratio. 

3.1.3 Fixed Number of Writers 
Fixing the number of writers and varying the other 

parameters can also provide interesting insights.  The 
graphs in Figures 5a-d fix the number of writers and 
emphasize the need for buffering by varying the size of 
buffers between graphs.   
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 Figure 5a: Write bandwidth with 50 writers and 1 MB 
buffer.  The bottom and side axes are stripe size and 
stripe count respectively. 
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 Figure 5b: Write bandwidth with 50 writers and 10 MB 
buffer.  The bottom and side axes are stripe size and 
stripe count respectively. 
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 Figure 5c: Write bandwidth with 50 writers and 30 MB 
buffer.  The bottom and side axes are stripe size and 
stripe count respectively. 
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Figure 5d: Write bandwidth with 50 writers and 100 MB 
buffer.  The bottom and side axes are stripe size and stripe 
count respectively. 

One should note the significant improvement in 
performance as the buffer size increases.  Buffer sizes 
below 1MB are not shown, but are even below the 
performance of 1MB.  Many applications are unable to 
sacrifice 100MB for use in I/O buffers, but the above 
graphs should make it clear that whatever sacrifice can be 
made for I/O buffers will result in improved I/O 
performance. 
 

3.1.4 Interpretation of results 
The clearest result from the above benchmarks is the 

emphasis of buffering I/O operations.  While adjusting the 
stripe size and width does provide noticeable gains in write 
performance, the use of large I/O buffers seems to have the 
most pronounced effect on performance.  This benchmark 
also encourages using at least as many writers as the stripe 
count, but does not show a benefit from utilizing more 
writers than stripes. 

3.2 Code 2: IOR  
IOR (Interleaved Or Random) [IOR] is a parallel file 

system test code developed by the Scalable I/O Project at 
Lawrence Livermore National Laboratory.  This parallel 
program performs parallel writes and reads to/from a file 
using MPI-IO (or optionally POSIX or HDF5) and reports 
the throughput rates. The name of the program is 
something of an historical artifact because this version has 
been simplified to remove the random I/O options. IOR 
can be used for testing performance of parallel file systems 
using various interfaces and access patterns.  IOR uses 
MPI for process synchronization. 
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Results in this section were collected on a Cray 
XT4 running version 1.5 of Unicos/lc.  The benchmark 
was compiled with version 6.1 of the PGI compiler 
suite.  The Lustre filesystem was configured with 144 
OSTs for the tests in this section. 

3.2.1 Scaling results 
IOR was used to test the scalability of the lustre 

filesystem by doing parallel I/O tests out to many 
thousands of processors. Figure 6 shows the 
performance results when using IOR with constant 
buffer size per client (core), and increasing the number 
of clients.   

The upper plot in Figure 6 is the case when writing 
or reading with 1 file per client, while the lower graph 
is for a shared file.  The maximum achieved 
bandwidths are 42 GB/s (read) and 25 GB/s (write) for 
one file per client and 34 GB/s (read) and 22 GB/s 
(write) for a shared file.  

 
 

 
Figure 6: These graphs fix the buffer size per core at 2, 
8, or 32MB and vary the number of clients along the x-
axis.  The y-axis is the achieved bandwidth. 
 

The scalability of Lustre was also tested by 
keeping the aggregate file size constant while 

increasing the number of clients – an attempt to more 
accurately simulate what a user of a large-scale XT3/XT4 
machine might consider when designing a large run.  In 
Figures 7 and 8, the aggregate size of the file was kept 
constant at 16 GB and 64 GB, respectively.  In other 
words, as the number of clients increased, the I/O per core 
decreased.  In Figures 7 and 8, the upper plot shows the 
performance for 1 file per client while the lower depicts 
the shared-file performance with a stripe width of 143. 

In Figure 7, the maximum write performance is 
approximately 22 GB/s for both file-per-process and 
shared-file methods.    The maximum read performance is 
approximately 37 GB/s when doing a file-per-process and 
33 GB/s for a shared file. 

 

 
Figure 7: These graphs fix the aggregate file size at 16 GB 
and vary the number of clients along the x-axis.  The y-axis is 
the achieved bandwidth. 

 
In Figure 8, the maximum write performance is 

approximately 26 GB/s for the file-per-process method and 
22 GB/s for the shared-file method.    The maximum read 
performance is approximately 40 GB/s when doing a file-
per-process and 37 GB/s for a shared file. As expected, I/O 
is more efficient when writing out larger buffers as shown 
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by the greater I/O bandwidths for the 64 GB file 
versus the 16 GB file.  

 

 
Figure 8: These graphs fix the aggregate file size at 64 
GB and vary the number of clients along the x-axis.  The 
y-axis is the achieved bandwidth. 

3.2.2 Interpretation of Results 
The results from above clearly illustrate that the 

achievable bandwidth drops dramatically in all three 
scenarios for both a file per process and a shared file 
after it reaches a maximum somewhere around 500-
2000 clients.  Thus, it seems clear that using a subset 
of the application tasks to do I/O will result in overall 
better performance at scale.  Additionally, these plots 
indicate that using more than 1 client per OST is the 
only way to get the practical peak performance.   And 
a third observation is that performing I/O with one file 
per client with approximately 1K clients is noticeably 
more efficient than doing I/O to a shared file. 

3.3 Code 3 
Since the IOR results indicated a subset of clients 

performing I/O would be more efficient than all clients 
at scale, another custom I/O code [CUSTOM2] was 
written to test this hypothesis. This custom Fortran 
code is designed to write out contiguous buffers by 

each process either to a single-shared file, or alternatively, 
to a file per process.  Furthermore, this code was designed 
to take in runtime parameters to define a subset of 
processes with which to do I/O, and, in addition, to use one 
of several methods of moving the data to the subset of 
processes to do the I/O.  The intent (as with [CUSTOM1]) 
was to model the behavior of writing a large amount of 
data to disk, as in a checkpoint. 

3.3.1 Subsetting results 
Test 1: Results for this test were collected on a Cray 

XT3 running version 1.5 of Unicos/lc.  The benchmark 
was compiled with version 6.1 of the PGI compiler suite.  
The Lustre filesystem was configured with 96 OSTs for 
the tests in this section.  First, the code was run with 8640 
processes with all processes writing (and then reading) a 5 
MB buffer to their own file.  This test resulted in an 
effective bandwidth of 1.4 GB/s for writes and 2.0 GB/s 
for reads.  Then a run was done with a subset of 960 
processes out of 8640 aggregating the buffers from 9 tasks 
and then writing out a 45 MB buffer.  For this run, the 
aggregate bandwidth was 10.1 GB/s for writes and 10.3 
GB/s for reads. 

Test 2: Results for this test were collected on a Cray 
XT4 running version 1.5 of Unicos/lc.  The benchmark 
was compiled with version 6.1 of the PGI compiler suite.  
The Lustre filesystem was configured with 144 OSTs for 
the tests in this section.  This test is very similar to test 1, 
but with a few changes.  The code was run with 9216 
processes each with an 8 MB buffer.  First, with all 
processes doing I/O, the aggregate write bandwidth was 
0.6 GB/s.  Then, with 1024 processes aggregating I/O from 
9 processes each to write out a 72 MB buffer, the 
aggregate bandwidth was 10.4 GB/s. 

3.3.2 Interpretation of Results 
The results clearly provide evidence that using a 

subset of nodes for I/O results in significantly better 
performance than when using all available processes at 
scale. 

4 I/O Guidelines  
Based on the data and the corresponding observations 

presented above, the following guidelines are proposed: 
1. Do large I/O.  It is recommended to use buffers of 

at least 1 MB, and 10 MB if possible.  In some 
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cases one can use IOBUF on the XT3/XT4 
platform to buffer output.1 

2. Do parallel I/O.  The only way to take full 
advantage of the Lustre filesystem is to do 
parallel I/O. 

3. Stripe as close to the maximum number of 
OSTs as possible if writing to a shared file and 
if you have more clients than OSTs. 

4. If running with more than 20X2 clients than 
OSTs, use a subset of clients to do I/O. 

5. Create a natural partitioning of nodes so that 
data will go to disk in a way that makes sense. 

6. Make your I/O flexible so that you can tune to 
the problem and machine. 

5 Future Work  
MPI I/O [MPIIO] provides a mechanism whereby 

a programmer can supply “hints” to the MPI library.  
Providing hints may enable an MPI implementation to 
deliver increased I/O performance.  There are some 
hints in ROMIO MPI that are recognized on the 
XT3/XT4 platform, including: 

• romio_cb_write: when enabled forces 
parallel writes avoiding lock serialization, 

• cb_buffer_size: defines the size of the 
MPI I/O buffer on each target  node, 

• cb_config_list: defines the name of the 
nodes participating in the I/O operation, and 

• cb_nodes: specifies the number of target 
nodes to be used for collective buffering. 

It is expected that some or all of these hints can help 
increase performance.  With regard to buffering, the 
cb_buffer_size hint potentially provides a simple 
way for a programmer to set the buffer to an 
appropriate size for performance.  Similarly, the 
cb_nodes hint may provide a mechanism to do the 
subsetting approach, which has proven to be an 
effective approach when running with thousands of 
clients.  These hints will be need to be tested to find 
out if they are effective and when.   

As of the writing of this report 
romio_cb_write has been shown effective for one 
specific test code, while providing no benefit to 

                                                        
1 IOBUF performance was outside the scope of this paper, 
but has shown to be very beneficial. 
2 This formula is based on the set of experiments done at 
ORNL.  It has yet to be tested if it applies to other 
configurations. 

another.  We intend to explore the performance in 
additional codes. 

In addition to ROMIO buffering hints, a future version 
of IOBUF on the Cray XT3/XT4 may add support for MPI 
I/O operations.  We intend to track the progress of this 
library and do further experiments if and when it becomes 
available. 

Finally, it was our intention to include performance 
results from a real application implementing our 
guidelines.  Due to circumstances out of our control, we 
were unable to include these results here.  We will 
continue to examine real application results and, if 
necessary, modify our guidelines given the results. 

6 Conclusions  
It is clear that increasingly larger-scale 

supercomputers will require that application developers 
examine the I/O capabilities that will be available to them 
and determine how best to utilize them.  To this end, the 
I/O performance characteristics of the Lustre filesystem on 
the Cray XT3/XT4 at ORNL were investigated. 

A convincing amount of data was provided that 
suggests several (independent) strategies an application 
writer should follow when designing their I/O to be run on 
massively parallel supercomputers.  These guidelines 
(presented in section 4) provide fairly simple recipes for 
obtaining good performance in a Lustre filesystem on a 
large Cray XT3/XT4 system.  The most important 
suggestions are to write/read using the largest possible 
buffers, do parallel I/O with enough clients to saturate the 
filesystem, and when running at large scale (say >2K 
clients) use a subset of clients to perform the I/O.   
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