
Application Requirement Analysis for the LCF

O. E. Bronson Messer, Doug Kothe, & Ricky Kendall
National Center for Computational Sciences

Oak Ridge National Laboratory

Abstract

We have attempted to organize, analyze, and interpret several sets of empirical data regarding LCF
applications with an eye towards using actual science requirements to guide future system design. Much
of this analysis has centered on the application of many different methodologies to the same sets of data.
Perhaps surprisingly, many of these attempts have provided a somewhat consistent picture of what future
NLCF platforms must be capable of to satisfy most application requirements.
KEYWORDS: applications, architectures, performance, programming environments

1 Introduction

A requirement is a condition or capability needed by
a user to solve a problem or achieve an objective or
is a condition or capability that must be met or pos-
sessed by a system to satisfy a contract, standard,
specification, or other formally imposed document.
Both definitions apply for the breakthrough com-
putational science requirements used in the design,
procurement, deployment, and operation of the De-
partment of Energy (DOE) Leadership Computing
Facility (LCF) at the National Center for Compu-
tational Sciences (NCCS). By articulating these re-
quirements and using them to manage and arbitrate
decisions, the NCCS will align LCF systems to the
maximum extent possible with the needs and goals
of the breakthrough science projects using these re-
sources. LCF requirements for the NCCS apply to
the entire end-to-end analysis process followed by
scientists using the NCCS facilities, from system
hardware, to system software, to the integrated de-
velopment environment, and, finally, to the problem
solving environment, which includes data analysis,
management, and visualization. We expect that ef-
fective requirements development, management, and
planning will positively influence the design, pro-
curement, deployment, and operation of an NCCS
system by improving the quality, quantity, or fidelity
of the output of one or more breakthrough science
simulation applications in a measurable way. For re-
quirements to be useful to the NCCS, they must be
actionable, i.e. as quantitative as possible, without

being solutions. In reality, requirements flow in both
directions: applications impose requirements on the
LCF systems, and the LCF systems in turn impose
real requirements upon the applications.

A valid requirements process must follow three
basic steps: development, management, and plan-
ning. The NCCS requirements effort in 2006 was
principally devoted to establishing the methods by
which the three-step requirements process is exe-
cuted, and the first step in the requirements pro-
cess, namely requirements development. Key in re-
quirements development is elicitation , which is an
ongoing process involving both analysis of existing
documentation as well as direct queries of users. In-
formation from users was elicited in three separate
instances that were either distilled from previous in-
formation from science teams or questionnaires given
directly to the science project team members:

• A requirements survey constructed and col-
lected by the NCCS Application Requirements
Council (ARC);

• A code project survey constructed by the Ad-
vanced Scientific Computing Advisory Com-
mittee (ASCAC) sub-panel on science met-
rics for the Advanced Scientific Computing Re-
search (ASCR) computing facility metrics; and

• Answers to science and code questions embod-
ied in the LCF and INCITE project proposal
applications.

For the 22 projects allocated on the NCCS LCF sys-
tems in 2006, 8 projects responded to the ARC sur-

1



vey, 19 responded to the ASCAC survey, and all 22,
of course, filled out proposal applications (necessary
for allocation awards). Answers to these surveys
helped to define requirements from the following
points of reference: science motivation and impact,
science quality and productivity, application models,
application algorithms, application software, appli-
cation footprint, and data management and analysis.
For the most part, our first attempts at synthesiz-
ing these data has been of three types: understand-
ing what scientific questions are currently being ad-
dressed, what scientific questions are hoped to be
addressed as we reach 250 TF and 1 PF of peak
computational capability, and what are the machine
and infrastructure characteristics most important to
examine to reach these scientific goals.

2 Science Drivers

Over the past five years, the DOE Office of Sci-
ence SciDAC-1 Program has achieved simulation-
based scientific accomplishments through focused
collaboration and active partnership of domain sci-
entists, applied mathematicians, and computer sci-
entists. The LCF at NCCS has played a role in
many of these successes, e.g., nanoscience, accel-
erator design, astrophysics, chemistry, combustion,
climate modeling, and fusion. Even more com-
pelling opportunities for scientific discovery have fos-
tered a new SciDAC-2 Program in which a series
of coordinated investments across all DOE/SC Pro-
grams (Basic Energy Sciences, Biological and En-
vironment Research, Fusion Energy Sciences, High-
Energy Physics, and Nuclear Physics) promises to
further the achievement of breakthrough science
through simulation through (1) focused efforts on
scientific applications in specific domain and (2) en-
abling technologies in computer science, software in-
frastructure, and applied mathematics through Cen-
ters for Enabling Technologies (CETs), university-
led Institutes, and Scientific Application Partner-
ships (SAPs). SciDAC-2 thrust areas (with exam-
ples) include accelerator science (ILC design), astro-
physics (understanding of nucleosynthesis), climate
modeling (global carbon cycle prediction), biology
(protein interaction networks), fusion (ITER de-
sign), groundwater (subsurface reactive transport),
high energy physics (dark universe and neutrinos),
nuclear physics (NNSA physics), and QCD (lattice
gauge theory). Other science areas ripe for discovery
include nanoscience, chemistry, nuclear energy, and

manufacturing. Many successful INCITE proposals
are associated with these science teams, and they
laid out in their proposals for FY2007 a raft of scien-
tific milestones for their projects. The current state-
of-the-art in various computational science domains,
and best guesses for increased physical fidelity are
given in Figure 1.

3 Algorithms and Implemen-
tations

The algorithms used by computational scientists in
various fields do much to determine the scaling and
performance capabilities of the codes they build and
use. For the most part, the choice of algorithm sets
an envelope of performance characteristics that is
then filled to greater or lesser extent by the imple-
mentation of the algorithm on a given computational
platform. Therefore, algorithms and implementa-
tions should be considered together, and in tandem
with the hardware and software environment chosen.

A prerequisite to implementing any algorithm is
decided the software stack, including programming
languages and libraries, among other things, that
will be used to perform the implementation. This
choice is unique to individual codes. Current con-
straints of this type can be seen in Figure 2

Once the software stack is set, one can turn to al-
gorithmic characteristics. A popular foil to describe
the algorithmic characteristics of a given application
is the so-called “7 dwarfs” first promulgated by P.
Colella. (N.B. the “dwarfs” considered here may
well be slightly different from the lists of others, as
the concept has tended to persist, while the specific
algorithmic tropes have tended to change based on
the purposes of the author). Shown in Figure 3 is
our best understanding of how the applications we
interrogated fit in the “7 dwarfs” space.

Several trends are notable in the “7 dwarfs” cat-
egorization of codes in Figure 3:

• The 7 algorithm types are scattered broadly
among science domains, with no one particu-
lar algorithm being ubiquitous and no one al-
gorithm going unused;

• Structured grids and dense linear algebra algo-
rithms are the most widely used algorithms (by
over half of the representative codes), hence
system attributes such as node peak flops and
memory capacity, memory latency, and inter-
connect latency will be important;

2



Figure 1: Increase in science simulation fidelity possible with a 1 PF LC system for specific application codes
in various science domains.

3



Figure 2: Functional software requirements for specific application codes in various science domains.

4



Figure 3: Colellas “7 dwarfs” categorization of algorithms employed by specific application codes in various
science domains. An X entry denotes a particular algorithm that is utilized by that code.

5



• Particle-based and Monte Carlo algorithms,
which have similar properties from a system
standpoint, are also broadly used, and can tax
interconnect latency and in some cases node
memory capacity, depending upon implemen-
tation and usage.

These algorithm characteristics and their associ-
ated implementations lead naturally to a set of ap-
plication hardware requirements. A given algorith-
mic tends to stress different parts of a computational
platform. Examples of these kinds of requirements
are shown in Figure 2.

Given these requirements, and the understand-
ing of individual scientists regarding what they need
from computation, one can attempt to rank compo-
nents of a LCF as regards their relative importance
for a given application. This is, perhaps, a dan-
gerous exercise, as the tendency might be to regard
some components as “important” and others as “not
important.” This is to be avoided, as a balanced sys-
tem seems to be the only reasonable response. Nev-
ertheless, an example of such ranking can be seen in
Figure 5.

4 A Few Conclusions

The end result of the described data collection and
analysis is not yet a coherent, whole set of clear rec-
ommendations. However, some impressions and, at
least anecdotally supported, claims can be stated.

• As applications are ported to, developed on,
and used on petascale LCF systems, the
change in physical models employed is likely to
be more evolutionary than revolutionary. The
prototypical example is the solution of non-
linear PDEs a petascale LCF system affords
more spatial and temporal resolution, which
modern solution methods should easily sup-
port given a correct formulation. A drastic
change in physical models (e.g., from a deter-
ministic PDE to a non-deterministic model) as
motivated by access to a petascale LCF system
is not likely to be the norm. Exceptions could
be climate, biology, and chemistry, among oth-
ers.

• Parallel algorithm maturity and efficiency vary
widely from one field to another and from one
code to another. For example, fields focused on
“atomistics” (nanoscience, materials science,

chemistry, biology, etc.) have parallelism chal-
lenges that are unique enough to make it dif-
ficult for other fields to contribute useful ap-
proaches.

• A “7 dwarfs” algorithm analysis of applica-
tions indicates, not surprisingly, that there are
no algorithm sweet spots, thereby disallowing
an LCF system to pursue a hardware architec-
ture designed to specifically optimize a partic-
ular algorithm (e.g., FFT).

• Standard programming languages, e.g., For-
tran, C, and C++, remain the scientific com-
puting staple on LCF systems. To a lesser ex-
tent, Co-array Fortran and scripting languages
like Python are also needed, but a demand for
brand new and/or unanticipated languages is
not evident at present.

• Parallel programming strategies continue to
emphasize MPI, along with, in some cases,
OpenMP and Global Arrays. Other paradigms
need to be examined, at least in prototype
form, in order to demonstrate proof of prin-
ciple.

• “Critical” math libraries needed by a large
fraction of applications include BLAS, LA-
PACK, FFTPACK, FFTW, and PETSc. Oth-
ers needed (but not as prevalent) include
ParMETIS, MUMPS, and Zoltan.

• Most applications have chosen to implement
fault-tolerance via their own checkpoint restart
capability rather than rely on the need for a
fault-tolerant communication library. Further
possibilities in this regard should be pursued.

• Creative hybrid parallel programming models
for efficient scaling on multi-core processors
need to be pursued vigorously. And this is not
necessarily just a clever combination of MPI
and OpenMP.

• Large-scale application codes can easily have
useful lifetimes of 20-50 years (corresponding
to 5-10 generations of LCF systems), with the
first 5-10 years (and ≈100 man-years of effort)
used just to reach maturity. Expecting appli-
cations code developers to rewrite a mature
code from scratch (e.g., in a new language,
etc.) in order to achieve better scaling or par-
allel performance is therefore nave. Applica-
tions code developers are talented; they are

6



Figure 4: Science application behavioral and algorithmic drivers for LC system attributes.

7



Figure 5: Three-tier prioritization of twelve system attributes for relevant science domains. In each science
domain, green attributes as those with the highest priority for maximizing, yellow is moderate priority, and
grey lowest priority.

8



adept at and used to refactoring existing code
to achieve better performance. This will be the
approach of preference on petascale LCF sys-
tems. There is no magic language or compiler
that can do better in this short time frame.

• With petascale LCF systems consisting of
100K (or more) nodes and/or processors, par-
allel algorithms must not only work, but their
implementation in software must possess the
highest SQA standards. Software quality, and
the breadth and depth of testing required to
ensure and maintain this quality, is too often
underemphasized or neglected under the pres-
sure of producing timely science results. This
trend could be exacerbated on LCF systems.

• The path forward for many application ar-
eas includes either enhanced resolution or ad-
ditional physics or both. This necessarily
translates to increased aggregate and per-node
memory requirements. Given the present cost
of memory relative to processing power, this
requirement represents a fundamental tension
that must be carefully examined.

• Developer estimates for many code character-
isticse.g. memory usage, network bandwidth,
wallclock timeare often completely swamped
by poor implementations of algorithms and
other software infrastructure. A basic under-
standing of fundamental algorithm character-
isticse.g. floating point operations required,
memory operations requiredis necessary to ac-
curately evaluate such requirements.

5 About the Authors

Bronson Messer is an R&D Staff Member in the Sci-
entific Computing Group of the National Center for
Computational Sciences at Oak Ridge National Lab-
oratory. He spends some of his time thinking about
application performance and requirements. He can
be reached at bronson-at-ornl-dot-gov.

Doug Kothe is the Director of Science at the
NCCS. He can be reached at kothe-at-ornl-gov.

Ricky Kendall is the group leader for Scientific
Computing at the NCCS. He can be reached at
kendallra-at-ornl-dot-gov.

9


