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Accelerating NCBI BLAST 
 

FPGA Supercomputing Coming of Age 

Henrik Abelsson, Göran Sandberg and Stefan Möhl, 
Mitrionics AB 

ABSTRACT: Using field programmable gate arrays (FPGAs) as coprocessors has long 
been a promising solution for accelerating software algorithms. With the development of 
an accelerated version of NCBI's BLAST application, FPGA supercomputing takes the 
step from proof-of-concept programs to the acceleration of full-blown production appli-
cations. In response to expressed interest from users of the NCBI BLAST application for 
comparing gene and protein sequences, Mitrionics has ported parts of the BLASTN algo-
rithm to run on the Mitrion Virtual Processor in an FPGA. The work includes integration 
of the accelerated code into the original NCBI BLAST application, giving users access to 
their familiar tool, but with 10x – 20x performance improvements on gene searches. The 
Mitrion-C source code for the accelerated BLASTN algorithm, as well as the source code 
for the NCBI BLAST application, have been published by Mitrionics as Open Source as 
part of the Mitrion-C Open Bio Project. The purpose of the project is to provide a 
framework for the creation of Open Source accelerated versions of major bioinformatics 
applications. Presently, work is being done to accelerate the BLASTP algorithm for pro-
tein comparisons. Depending on the priorities of the developers’ community, other algo-
rithms considered are Translated BLAST, Smith-Waterman and Hidden Markov Models. 
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1. Introduction 
The National Center for Biotechnology Information 

(NCBI) Basic Local Alignment Search Tool (BLAST) [1] 
is one of the most widely used bioinformatics applications 
used to compare gene or protein sequences to sequence 
databases. 

 
As the explosive growth of genomic data continues 

to outpace the performance increases for traditional CPU-
based server technology, there is an expressed interest to 
develop alternative solutions to accelerate these searches. 
The use of Field Programmable Gate Arrays (FPGAs) as 
accelerators for this purpose has a number of significant 
advantages: 

 
 
 

 
• First of all, the flexibility of the FPGA architec-

ture allows highly efficient operations on the 
narrow bit-width data used to represent gene and 
protein sequences, without the overhead of the 
fixed processor register sizes used by traditional 
processors. 

• FPGAs are significantly less power-hungry than 
high performance CPUs, typically using less 
than ¼ of the power. This, combined with an 
attained algorithm acceleration of 10x – 20x, 
reduces the required power to a small fraction.  

• In contrast to other acceleration technologies, 
FPGA-accelerated systems have been around for 
several years, and are readily available off the 
shelf from major system vendors.  

  



Beyond proof-of-concept 
In order for FPGA acceleration technologies to gain 

acceptance it must be proven that the technology has 
passed the point were it is only meaningful for 
experimental and proof-of-concept use. For this reason, 
the critical parts of the NCBI BLASTN application were 
accelerated by porting them to run on the Mitrion Virtual 
Processor (MVP) and then fully integrated with the 
standard distribution of NCBI BLASTN. This gives 
acceleration of a full production quality application, 
rather than just an indication of what could be possible 
with the technology. For the user, it is simply their 
familiar application, only much faster. 
 

About the Mitrion Platform 
The Mitrion Platform enables software developers to 

target FPGA-based computers without needing any of the 
hardware design skills required by traditional FPGA 
development.  

The core of the Mitrion Platform is the Mitrion 
Virtual Processor, a configurable processor design for a 
fine-grain massively parallel, soft-core processor. You 
program this processor using standard software 
development methods. In order to make efficient use of 
the resources available on the FPGA, the processor is 
then automatically adapted to the program it is going to 
run. The result is a configuration file for the FPGA, 
which will turn it into a co-processor running your 
software algorithm 10-30 times faster than the latest  
generation high-performance CPUs, like AMD Opteron 
or Intel Itanium. 

To access the massive parallelism afforded and 
required by the Mitrion Virtual Processor, a fully parallel 
programming language is needed. It is simply not 
sufficient to rely on vector parallel extensions or parallel 
instructions. The Mitrion-C programming language is 
designed to make it easy for programmers to write 
parallel software that makes the best use of the Mitrion 
Virtual Processor. Mitrion-C has a C-family syntax, but 
the focus is on describing data dependencies rather than 
order of execution. The Mitrion-C compiler is able to 
extract all the parallelism of the algorithm being 
developed. 

 

 

 
Fig. 1, The Mitrion Platform 

The Mitrion Software Development Kit (SDK) is 
used to develop applications for the Mitrion Virtual 
Processor. The Mitrion SDK consists of: 

 
• A Mitrion-C compiler for the Mitrion Virtual 

Processor, 
• A graphical simulator and debugger that allows 

Mitrion-C applications to be tested and evaluated 
without the need to run them in actual FPGA 
hardware 

• A processor configuration unit, which adapts a 
Mitrion Virtual Processor to the compiled 
Mitrion-C code. 

 

2. Mitrion-Accelerated NCBI BLAST 
The application that has been accelerated is the 

BLASTN nucleotide search algorithm of the NCBI 
blastall program. All other functionality of the 
blastall program remains untouched, giving the user 
an identical interface as well as input and output options. 
The blastall program runs on the server, communicat-
ing with and controlling the Mitrion Virtual Processor 
running on the attached FPGA accelerator hardware. 

 

 
 
Fig. 2, Overview – Mitrion-accelerated BLAST 

 

The FPGA Accelerator Hardware 
Typically, FPGA accelerator hardware consists of a 

large FPGA connected to high-speed bus interface for 
communication with the host system, and a to number of 
independent RAM memory banks used to store the data 
the FPGA is operating on.  
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Fig. 3, A typical FPGA accelerator set-up. 

 
The fact that the attached memory banks can be 

accessed independently and simultaneously gives the 
FPGA an important performance benefit with a sustained 
memory bandwidth of 10-20 Gbytes/s. Communication 
with the host system typically has a bandwidth of 3-6 
Gbytes/s. Even more memory bandwidth can be obtained 
from the large number of internal memory banks in the 
FPGA. With the current Xilinx Virtex-4 FPGA 
generation, the bandwidth to the internal memory banks is 
about 0.5TB/s. The draw-back is that this very high 
bandwidth memory is limited to around 750 kB of storage 
in total. 

 

Accelerating the BLASTN Algorithm 
The BLAST algorithm uses three stages of 

processing to filter the contents of the database being 
searched against the query. Each processing stage drops 
the majority of the data, passing on only the possibly 
matching parts of the database to the subsequent stages. 
In this sense, the BLAST algorithm can be seen as a 
sequence of filters. The output from the final stage are the 
BLAST alignments. 

According to research done at Washington 
University [2], the bulk of the data is being processed by 
the first two stages, and these are expected to require 
most of the compute time. We have therefore focused our 
effort on the acceleration of the first two stages and left 
the third stage to run on traditional CPUs. See figure 4. 

 

 
 
Fig. 4, Three-stage deployment of BLAST 

 

The FPGA is loaded with a Mitrion Virtual Processor 
programmed and adapted for the first two stages of the 
NCBI BLASTN algorithm, and the nucleotide database as 
it is streamed through. Resulting matches are fed back to 
the original BLASTN program, which performs the third 
processing stage and presents the results. 

 

Algorithm Details 
In stage one, the BLASTN algorithm looks for exact 

patterns of a certain length (11 bases by default). It is 
divided into two sub-stages (see Figure 4). First a fast 
probabilistic filter returns a list of probable exact 
matches. Then any false positives are filtered out. 

The first sub-stage is implemented using bloom 
filters, a space-efficient probabilistic data structure that is 
used to test whether an element in the database is a 
member of the set of query words. Each bloom filter 
consists of a number of hash functions that check whether 
a specific bit is set or not in memory. One can think of 
bloom filters as a hash-table that does no collision 
detection. This filter may produce false positives, but it 
will not produce any false negatives. 

 
bloomfilter(wmer_list) { 
 /* Create bloom filter buffers */ 
 ht0_1 = _memcreate(mem bits:1[524288] ht0_back); 
 ht1_1 = _memcreate(mem bits:1[524288] ht1_back); 
 ht2_1 = _memcreate(mem bits:1[524288] ht2_back); 
 ht3_1 = _memcreate(mem bits:1[524288] ht3_back); 
 
  /* Go through all wmers from the input shifter*/          
  out = foreach(codeword in wmer_list by address) { 
    /* Find addresses in the bloom buffers */ 
 
    addr0 = h3hash_22x19_0(codeword); 
    addr1 = h3hash_22x19_1(codeword); 
    addr2 = h3hash_22x19_2(codeword); 
    addr3 = h3hash_22x19_3(codeword); 
 
    t0 = _memread(ht0_1,addr0); 
    t1 = _memread(ht1_1,addr1); 
    t2 = _memread(ht2_1,addr2); 
    t3 = _memread(ht3_1,addr3); 
    uint:1 ans = ((t0 & t1) & (t2 & t3)); 
    out = _tup(codeword,address); 
    /* If we found a match, pass it on to the next stage */ 
    res = if (ans == 1 ) (. out .) else (.-.); 
 } res; 
 
 ht0_back = ht0_1; 
 ht1_back = ht1_1; 
 ht2_back = ht2_1; 
 ht3_back = ht3_1; 
 
 result = reshape(out,(..));   
} result; 

 
Listing 1, Bloom filter stage in Mitrion C 
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Due to the fact that FPGAs have multiple distributed 
internal memories that can be accessed simultaneously by 
the Mitrion Virtual Processor, it is possible to run a 
number of bloom filters in parallel, depending on the 
query size. In this way, we take advantage of the very 
high bandwidth to the internal memory banks of the 
FPGA. On the SGI® RASC™ RC100, where the 
algorithm has first been implemented, the Mitrion Virtual 



Processor provides a sustained lookup rate of 16 memory 
loads per clock cycle for a 100k query and 64 memory 
loads per cycle for a 10k query. The throughput of the 
first stage is 400 megabases per second for a 100k query 
and 1.6 gigabases per second for a 10k query. 

The second sub-stage used to filter out the false 
positives generated by the bloom filters uses a traditional 
hash table look-up. It also looks up the position of the 
word within the query. The hash-table look-up is usually 
the first stage of the BLAST algorithm. However, through 
the use of the bloom filters, most hits have already been 
filtered away at this stage. Thus, the performance 
requirement of the hash-table look-up are significantly 
reduced. The hash table can sustain one lookup per clock 
cycle to one of the SRAM banks directly attached to the 
FPGA, while the database is simultaneously being read 
from another local SRAM memory bank. 

The matches that pass the hash table look-up are 
passed on to stage 2. 

 

 
 
Fig. 5, Stage 1 processing 

 
The first part of stage two (see Figure 6 and Listing 

2) extends the seed within a fixed window, returning 
matches that pass the threshold score and discarding the 
rest.  It is implemented as an unrolled systolic array that is 
easily expressed as a Mitrion-C loop, which finds the best 
start position, stop position and score of two 64 character 
words in a single clock cycle. 

 
ungapped_extension(hit_list) { 
  out = foreach(elem in hit_list) { 
   (db,query,qidx,dbidx) = _untup(elem); 
   (res_score,res_beginning,res_end) = for(de,qe in db,query) { 
     s = if (de == qe) MATCH_REWARD else MISMATCH_PENALTY; 
     cur_score = score + s; 
 
     (max_score,max_beginning,max_end,beginning,score) = 
     if (cur_score > 0) { 
           (n_max_score, 
            n_max_beginning, 
            n_max_end) = if (cur_score > max_score && i >= WMER_END ) { 
               /* If we have a positive score and we are  
                  after the wmer ended, set a new best end 
                  position. */ 
               n_max_score = cur_score; 
               n_max_beginning = beginning; 
               n_max_end = i; 
            } (n_max_score,n_max_beginning,n_max_end) 
            else { 
               /* keep the old best end position */ 
            } (max_score,max_beginning,max_end); 
            } (n_max_score, 
           n_max_beginning, 
           n_max_end, 
           beginning, 
           cur_score) 

    else { 
       (n_beginning,n_score) = if (i <= WMER_START) { 
          /* score has dropped below zero, so set a new  
             starting position at the current position  
             and hope it yields better results.*/ 
          n_beginning = i; 
          n_score = 0; 
       } (n_beginning,n_score) 
       else { 
         /* we have passed the start of the wmer, so we 
            can't change the beginning any more */ 
       } (beginning,cur_score); 
      } 
(max_score,max_beginning,max_end,n_beginning,n_score); 
      i = i + 1; 
    } (max_score,max_beginning,max_end); 
 
     /* Pass the result on to the next stage if the resulting  
        score is larger than the threshold */ 
     r = if (res_score > ungapped_threshold) {          
       e = _tup(res_score,res_beginning,res_end,qidx,dbidx); 
       r = (. e .) ; 
     } r else { 
       r = (.-.); 
    } r; 
  } r; 
  final = reshape(out,(..)); 
} final; 
 
Listing 2, Un-gapped extension implemented as an unrolled 
systolic array. 

 
All alignments that pass the threshold score are 

passed to a filter that discards matches that are so close to 
each other that they could not be extended without being 
joined. In the standard NCBI implementation, this is done 
as part of stage 1, but for the Mitrion implementation, we 
have found that the performance is improved by doing 
this filtering after the un-gapped extension. This is due to 
the fact that the MVP implementation of the un-gapped 
extension is significantly faster than the implementation 
on traditional CPUs. 

 

 
 
Fig. 6, Stage 2 processing 

 
Matches that pass the final filer are returned from the 

MVP to the host. Here, the un-accelerated parts of NCBI 
BLAST may extend them even further through gapped 
extension. The final alignments and scores are then 
generated and the results formatted and printed. 

 

3. Results 
Presently the Mitrion-accelerated NCBI BLAST 

application runs on SGI® RASC™ RC100 hardware, 
which has been used to develop and evaluate the 
application. The acceleration that has been obtained with 
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the Mitrion Virtual Processor on this system provides an 
order of magnitude leap in performance over a traditional 
CPU-only solution. 

We have found that the speedup varies with the 
queries used as well as the databases being searched. An 
important factor is the impact of Amdahl’s Law from the 
amount of data being forwarded to the un-accelerated 
gapped extension stage. Though it is usually very low, it 
becomes significant in some queries. Speedups of 10x – 
20x are observed on the current implementation. 

 

 
 
Fig. 7, Speedup searching the EST Mouse database. 

 

4. Future Directions 
The Mitrion-accelerated NCBI BLAST application 

has been released as open source under the GNU general 
public license as part of the Mitrion-C Open Bio Project 
at SourceForge (http://mitc-openbio.sourceforge.net). The 
purpose of the Mitrion-C Open Bio Project is to support 
the public in accelerating key bioinformatics applications 
by porting them to the Mitrion Virtual Processor. 

For the BLASTN algorithm, work is being done to 
further optimize the use of the available hardware. A 
possible future enhancement would be to use the Mitrion 
Virtual Processor to accelerate the gapped extension parts 
of the algorithm, which typically consumes half of the 
remaining execution time in the accelerated BLAST. 
Also, as new CRAY FPGA computing platforms become 
available, the porting of the accelerated application to 
these is a priority. 

Within the Mitrion-C Open Bio Project, progress is 
being made to enhance the usefulness of the accelerated 
version of NCBI BLAST by accelerating the BLASTP 
protein search algorithm. Possible future developments 
being discussed are the translated BLAST versions, the 
Smith-Waterman algorithm and Hidden Markov Models.  

 

5. Conclusion 
The use of the Mitrion Virtual Processor to run 

software in an FPGA makes it possible to accelerate real 
applications, without resorting to circuit design such as 
done by earlier proof-of-concept accelerated algorithms. 

With Mitrion-accelerated NCBI BLAST, users can 
continue using their familiar BLAST application, while at 
the same time getting their BLASTN searches completed 
10 to 20 times faster. 

Since the source code is released as open source, 
users who own Mitrion Virtual Processor licenses can run 
the code for free, as well as tweak and adapt the code for 
their own purposes.  
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