

CUG 2007 Proceedings 1 of 5

Accelerating NCBI BLAST

FPGA Supercomputing Coming of Age

Henrik Abelsson, Göran Sandberg and Stefan Möhl,
Mitrionics AB

ABSTRACT: Using field programmable gate arrays (FPGAs) as coprocessors has long
been a promising solution for accelerating software algorithms. With the development of
an accelerated version of NCBI's BLAST application, FPGA supercomputing takes the
step from proof-of-concept programs to the acceleration of full-blown production appli-
cations. In response to expressed interest from users of the NCBI BLAST application for
comparing gene and protein sequences, Mitrionics has ported parts of the BLASTN algo-
rithm to run on the Mitrion Virtual Processor in an FPGA. The work includes integration
of the accelerated code into the original NCBI BLAST application, giving users access to
their familiar tool, but with 10x – 20x performance improvements on gene searches. The
Mitrion-C source code for the accelerated BLASTN algorithm, as well as the source code
for the NCBI BLAST application, have been published by Mitrionics as Open Source as
part of the Mitrion-C Open Bio Project. The purpose of the project is to provide a
framework for the creation of Open Source accelerated versions of major bioinformatics
applications. Presently, work is being done to accelerate the BLASTP algorithm for pro-
tein comparisons. Depending on the priorities of the developers’ community, other algo-
rithms considered are Translated BLAST, Smith-Waterman and Hidden Markov Models.

KEYWORDS: FPGA, BLAST, bioinformatics, software acceleration, Mitrion

1. Introduction
The National Center for Biotechnology Information

(NCBI) Basic Local Alignment Search Tool (BLAST) [1]
is one of the most widely used bioinformatics applications
used to compare gene or protein sequences to sequence
databases.

As the explosive growth of genomic data continues

to outpace the performance increases for traditional CPU-
based server technology, there is an expressed interest to
develop alternative solutions to accelerate these searches.
The use of Field Programmable Gate Arrays (FPGAs) as
accelerators for this purpose has a number of significant
advantages:

• First of all, the flexibility of the FPGA architec-

ture allows highly efficient operations on the
narrow bit-width data used to represent gene and
protein sequences, without the overhead of the
fixed processor register sizes used by traditional
processors.

• FPGAs are significantly less power-hungry than
high performance CPUs, typically using less
than ¼ of the power. This, combined with an
attained algorithm acceleration of 10x – 20x,
reduces the required power to a small fraction.

• In contrast to other acceleration technologies,
FPGA-accelerated systems have been around for
several years, and are readily available off the
shelf from major system vendors.

Beyond proof-of-concept
In order for FPGA acceleration technologies to gain

acceptance it must be proven that the technology has
passed the point were it is only meaningful for
experimental and proof-of-concept use. For this reason,
the critical parts of the NCBI BLASTN application were
accelerated by porting them to run on the Mitrion Virtual
Processor (MVP) and then fully integrated with the
standard distribution of NCBI BLASTN. This gives
acceleration of a full production quality application,
rather than just an indication of what could be possible
with the technology. For the user, it is simply their
familiar application, only much faster.

About the Mitrion Platform
The Mitrion Platform enables software developers to

target FPGA-based computers without needing any of the
hardware design skills required by traditional FPGA
development.

The core of the Mitrion Platform is the Mitrion
Virtual Processor, a configurable processor design for a
fine-grain massively parallel, soft-core processor. You
program this processor using standard software
development methods. In order to make efficient use of
the resources available on the FPGA, the processor is
then automatically adapted to the program it is going to
run. The result is a configuration file for the FPGA,
which will turn it into a co-processor running your
software algorithm 10-30 times faster than the latest
generation high-performance CPUs, like AMD Opteron
or Intel Itanium.

To access the massive parallelism afforded and
required by the Mitrion Virtual Processor, a fully parallel
programming language is needed. It is simply not
sufficient to rely on vector parallel extensions or parallel
instructions. The Mitrion-C programming language is
designed to make it easy for programmers to write
parallel software that makes the best use of the Mitrion
Virtual Processor. Mitrion-C has a C-family syntax, but
the focus is on describing data dependencies rather than
order of execution. The Mitrion-C compiler is able to
extract all the parallelism of the algorithm being
developed.

Fig. 1, The Mitrion Platform

The Mitrion Software Development Kit (SDK) is
used to develop applications for the Mitrion Virtual
Processor. The Mitrion SDK consists of:

• A Mitrion-C compiler for the Mitrion Virtual

Processor,
• A graphical simulator and debugger that allows

Mitrion-C applications to be tested and evaluated
without the need to run them in actual FPGA
hardware

• A processor configuration unit, which adapts a
Mitrion Virtual Processor to the compiled
Mitrion-C code.

2. Mitrion-Accelerated NCBI BLAST
The application that has been accelerated is the

BLASTN nucleotide search algorithm of the NCBI
blastall program. All other functionality of the
blastall program remains untouched, giving the user
an identical interface as well as input and output options.
The blastall program runs on the server, communicat-
ing with and controlling the Mitrion Virtual Processor
running on the attached FPGA accelerator hardware.

Fig. 2, Overview – Mitrion-accelerated BLAST

The FPGA Accelerator Hardware
Typically, FPGA accelerator hardware consists of a

large FPGA connected to high-speed bus interface for
communication with the host system, and a to number of
independent RAM memory banks used to store the data
the FPGA is operating on.

CUG 2007 Proceedings 2 of 5

Fig. 3, A typical FPGA accelerator set-up.

The fact that the attached memory banks can be

accessed independently and simultaneously gives the
FPGA an important performance benefit with a sustained
memory bandwidth of 10-20 Gbytes/s. Communication
with the host system typically has a bandwidth of 3-6
Gbytes/s. Even more memory bandwidth can be obtained
from the large number of internal memory banks in the
FPGA. With the current Xilinx Virtex-4 FPGA
generation, the bandwidth to the internal memory banks is
about 0.5TB/s. The draw-back is that this very high
bandwidth memory is limited to around 750 kB of storage
in total.

Accelerating the BLASTN Algorithm
The BLAST algorithm uses three stages of

processing to filter the contents of the database being
searched against the query. Each processing stage drops
the majority of the data, passing on only the possibly
matching parts of the database to the subsequent stages.
In this sense, the BLAST algorithm can be seen as a
sequence of filters. The output from the final stage are the
BLAST alignments.

According to research done at Washington
University [2], the bulk of the data is being processed by
the first two stages, and these are expected to require
most of the compute time. We have therefore focused our
effort on the acceleration of the first two stages and left
the third stage to run on traditional CPUs. See figure 4.

Fig. 4, Three-stage deployment of BLAST

The FPGA is loaded with a Mitrion Virtual Processor
programmed and adapted for the first two stages of the
NCBI BLASTN algorithm, and the nucleotide database as
it is streamed through. Resulting matches are fed back to
the original BLASTN program, which performs the third
processing stage and presents the results.

Algorithm Details
In stage one, the BLASTN algorithm looks for exact

patterns of a certain length (11 bases by default). It is
divided into two sub-stages (see Figure 4). First a fast
probabilistic filter returns a list of probable exact
matches. Then any false positives are filtered out.

The first sub-stage is implemented using bloom
filters, a space-efficient probabilistic data structure that is
used to test whether an element in the database is a
member of the set of query words. Each bloom filter
consists of a number of hash functions that check whether
a specific bit is set or not in memory. One can think of
bloom filters as a hash-table that does no collision
detection. This filter may produce false positives, but it
will not produce any false negatives.

bloomfilter(wmer_list) {
 /* Create bloom filter buffers */
 ht0_1 = _memcreate(mem bits:1[524288] ht0_back);
 ht1_1 = _memcreate(mem bits:1[524288] ht1_back);
 ht2_1 = _memcreate(mem bits:1[524288] ht2_back);
 ht3_1 = _memcreate(mem bits:1[524288] ht3_back);

 /* Go through all wmers from the input shifter*/
 out = foreach(codeword in wmer_list by address) {
 /* Find addresses in the bloom buffers */

 addr0 = h3hash_22x19_0(codeword);
 addr1 = h3hash_22x19_1(codeword);
 addr2 = h3hash_22x19_2(codeword);
 addr3 = h3hash_22x19_3(codeword);

 t0 = _memread(ht0_1,addr0);
 t1 = _memread(ht1_1,addr1);
 t2 = _memread(ht2_1,addr2);
 t3 = _memread(ht3_1,addr3);
 uint:1 ans = ((t0 & t1) & (t2 & t3));
 out = _tup(codeword,address);
 /* If we found a match, pass it on to the next stage */
 res = if (ans == 1) (. out .) else (.-.);
 } res;

 ht0_back = ht0_1;
 ht1_back = ht1_1;
 ht2_back = ht2_1;
 ht3_back = ht3_1;

 result = reshape(out,(..));
} result;

Listing 1, Bloom filter stage in Mitrion C

CUG 2007 Proceedings 3 of 5

Due to the fact that FPGAs have multiple distributed
internal memories that can be accessed simultaneously by
the Mitrion Virtual Processor, it is possible to run a
number of bloom filters in parallel, depending on the
query size. In this way, we take advantage of the very
high bandwidth to the internal memory banks of the
FPGA. On the SGI® RASC™ RC100, where the
algorithm has first been implemented, the Mitrion Virtual

Processor provides a sustained lookup rate of 16 memory
loads per clock cycle for a 100k query and 64 memory
loads per cycle for a 10k query. The throughput of the
first stage is 400 megabases per second for a 100k query
and 1.6 gigabases per second for a 10k query.

The second sub-stage used to filter out the false
positives generated by the bloom filters uses a traditional
hash table look-up. It also looks up the position of the
word within the query. The hash-table look-up is usually
the first stage of the BLAST algorithm. However, through
the use of the bloom filters, most hits have already been
filtered away at this stage. Thus, the performance
requirement of the hash-table look-up are significantly
reduced. The hash table can sustain one lookup per clock
cycle to one of the SRAM banks directly attached to the
FPGA, while the database is simultaneously being read
from another local SRAM memory bank.

The matches that pass the hash table look-up are
passed on to stage 2.

Fig. 5, Stage 1 processing

The first part of stage two (see Figure 6 and Listing

2) extends the seed within a fixed window, returning
matches that pass the threshold score and discarding the
rest. It is implemented as an unrolled systolic array that is
easily expressed as a Mitrion-C loop, which finds the best
start position, stop position and score of two 64 character
words in a single clock cycle.

ungapped_extension(hit_list) {
 out = foreach(elem in hit_list) {
 (db,query,qidx,dbidx) = _untup(elem);
 (res_score,res_beginning,res_end) = for(de,qe in db,query) {
 s = if (de == qe) MATCH_REWARD else MISMATCH_PENALTY;
 cur_score = score + s;

 (max_score,max_beginning,max_end,beginning,score) =
 if (cur_score > 0) {
 (n_max_score,
 n_max_beginning,
 n_max_end) = if (cur_score > max_score && i >= WMER_END) {
 /* If we have a positive score and we are
 after the wmer ended, set a new best end
 position. */
 n_max_score = cur_score;
 n_max_beginning = beginning;
 n_max_end = i;
 } (n_max_score,n_max_beginning,n_max_end)
 else {
 /* keep the old best end position */
 } (max_score,max_beginning,max_end);
 } (n_max_score,
 n_max_beginning,
 n_max_end,
 beginning,
 cur_score)

 else {
 (n_beginning,n_score) = if (i <= WMER_START) {
 /* score has dropped below zero, so set a new
 starting position at the current position
 and hope it yields better results.*/
 n_beginning = i;
 n_score = 0;
 } (n_beginning,n_score)
 else {
 /* we have passed the start of the wmer, so we
 can't change the beginning any more */
 } (beginning,cur_score);
 }
(max_score,max_beginning,max_end,n_beginning,n_score);
 i = i + 1;
 } (max_score,max_beginning,max_end);

 /* Pass the result on to the next stage if the resulting
 score is larger than the threshold */
 r = if (res_score > ungapped_threshold) {
 e = _tup(res_score,res_beginning,res_end,qidx,dbidx);
 r = (. e .) ;
 } r else {
 r = (.-.);
 } r;
 } r;
 final = reshape(out,(..));
} final;

Listing 2, Un-gapped extension implemented as an unrolled
systolic array.

All alignments that pass the threshold score are

passed to a filter that discards matches that are so close to
each other that they could not be extended without being
joined. In the standard NCBI implementation, this is done
as part of stage 1, but for the Mitrion implementation, we
have found that the performance is improved by doing
this filtering after the un-gapped extension. This is due to
the fact that the MVP implementation of the un-gapped
extension is significantly faster than the implementation
on traditional CPUs.

Fig. 6, Stage 2 processing

Matches that pass the final filer are returned from the

MVP to the host. Here, the un-accelerated parts of NCBI
BLAST may extend them even further through gapped
extension. The final alignments and scores are then
generated and the results formatted and printed.

3. Results
Presently the Mitrion-accelerated NCBI BLAST

application runs on SGI® RASC™ RC100 hardware,
which has been used to develop and evaluate the
application. The acceleration that has been obtained with

CUG 2007 Proceedings 4 of 5

the Mitrion Virtual Processor on this system provides an
order of magnitude leap in performance over a traditional
CPU-only solution.

We have found that the speedup varies with the
queries used as well as the databases being searched. An
important factor is the impact of Amdahl’s Law from the
amount of data being forwarded to the un-accelerated
gapped extension stage. Though it is usually very low, it
becomes significant in some queries. Speedups of 10x –
20x are observed on the current implementation.

Fig. 7, Speedup searching the EST Mouse database.

4. Future Directions
The Mitrion-accelerated NCBI BLAST application

has been released as open source under the GNU general
public license as part of the Mitrion-C Open Bio Project
at SourceForge (http://mitc-openbio.sourceforge.net). The
purpose of the Mitrion-C Open Bio Project is to support
the public in accelerating key bioinformatics applications
by porting them to the Mitrion Virtual Processor.

For the BLASTN algorithm, work is being done to
further optimize the use of the available hardware. A
possible future enhancement would be to use the Mitrion
Virtual Processor to accelerate the gapped extension parts
of the algorithm, which typically consumes half of the
remaining execution time in the accelerated BLAST.
Also, as new CRAY FPGA computing platforms become
available, the porting of the accelerated application to
these is a priority.

Within the Mitrion-C Open Bio Project, progress is
being made to enhance the usefulness of the accelerated
version of NCBI BLAST by accelerating the BLASTP
protein search algorithm. Possible future developments
being discussed are the translated BLAST versions, the
Smith-Waterman algorithm and Hidden Markov Models.

5. Conclusion
The use of the Mitrion Virtual Processor to run

software in an FPGA makes it possible to accelerate real
applications, without resorting to circuit design such as
done by earlier proof-of-concept accelerated algorithms.

With Mitrion-accelerated NCBI BLAST, users can
continue using their familiar BLAST application, while at
the same time getting their BLASTN searches completed
10 to 20 times faster.

Since the source code is released as open source,
users who own Mitrion Virtual Processor licenses can run
the code for free, as well as tweak and adapt the code for
their own purposes.

Acknowledgments
The authors would like to thank colleagues and SGI’s

RASC team for their valuable input.

About the Authors
Henrik Abelsson is senior software engineer at

Mitrionics AB and the lead developer of the accelerated
BLAST, E-Mail: henrik.abelsson@mitrionics.com, Göran
Sandberg is VP of Product Management, Mitrionics AB,
E-Mail: goran.sandberg@mitrionics.com, Stefan Möhl is
CTO and co-founder of Mitrionics AB and, along with
Pontus Borg, inventor of the Mitrion Virtual Processor
architecture. E-Mail: stefan.mohl@mitrionics.com. All
can be reached at Mitrionics AB, Ideon Science Park, SE-
223 70 Lund, Sweden.

References
1. Altschul, S. F., Gish, W., Miller, W., Myers, E.

W. & Lipman, D. J. Basic local alignment search tool. J
Mol Biol 215, 403-410 (1990).

2. Krishnamurthy, P. et al. Biosequence Similarity
Search on the Mercury System. Proc. of the IEEE 15th
International Conference on Application-specific
Systems, Architectures and Processors 365-375 (2004).

CUG 2007 Proceedings 5 of 5

http://mitc-openbio.sourceforge.net
mailto:henrik.abelsson@mitrionics.com
mailto:goran.sandberg@mitrionics.com
mailto:Sstefan.mohl@mitrionics.com

	1. Introduction
	Beyond proof-of-concept
	About the Mitrion Platform

	2. Mitrion-Accelerated NCBI BLAST
	The FPGA Accelerator Hardware
	Accelerating the BLASTN Algorithm
	Algorithm Details

	3. Results
	4. Future Directions
	5. Conclusion
	Acknowledgments
	About the Authors
	References

