
Application Performance Profiling on the Cray XD1 using

HPCToolkit∗

John Mellor-Crummey1 Nathan Tallent1 Michael Fagan1 Jan E. Odegard2

1 Department of Computer Science, MS 132
2 Computer and Information Technology Institute, MS 39

Rice University
6100 Main Street, Houston, TX 77005-1892.
{johnmc,tallent,mfagan,odegard}@rice.edu

Abstract

HPCToolkit is an open-source suite of multi-platform tools for profile-based performance analysis of
sequential and parallel applications. The toolkit consists of components for collecting performance mea-
surements of fully-optimized executables without adding instrumentation, analyzing application binaries
to understand the structure of optimized code, correlating measurements with program structure, and a
user interface that supports top-down analysis of performance data. This paper provides an overview of
HPCToolkit and demonstrates its utility for application performance analysis on a Cray XD1.

1 Introduction

Modern microprocessors such as AMD’s Opteron achieve high performance by employing a diverse collection
of strategies. Opterons employ a superscalar design with out-of-order instruction issue, pipelined functional
units, short vector parallelism, a hierarchy of caches, a translation lookaside buffer for fast translation of
virtual to physical addresses, non-blocking memory operations, and hardware support for prefetching data
into cache. As a result, achieving top application performance requires tailoring applications to effectively
exploit the capabilities of this bewildering array of features.

Nearly a decade ago, Rice University began developing a suite of performance tools now know as HPC-

Toolkit. This effort initially began with the objective of building tools that would help guide our research
on compiler technology. As our tools matured, it became clear that they would also be useful for application
developers attempting to harness the power of parallel systems such those available from Cray today. Since
HPCToolkit was developed in large part for our own use, our goals for its design were that it be simple
to use and yet provide fine-grain detail about application performance bottlenecks. We have achieved both
of these goals.

This paper provides an overview of HPCToolkit and its capabilities. HPCToolkit consists of compo-
nents for collecting performance measurements of fully-optimized executables without adding instrumenta-
tion, analyzing application binaries to understand the structure of optimized code, correlating measurements
with program structure, and a user interface that supports top-down analysis of performance data. Section 2
outlines the design principles that shaped HPCToolkit’s development and provides an overview of some
of HPCToolkit’s key components. Section 3 describes HPCToolkit’s components in more detail. Sec-
tion 4 presents some screenshots of HPCToolkit’s user interface to demonstrate the utility of our tools for
analyzing the performance of complex scientific applications running on a Cray XD1. The paper concludes
with a brief status report that outlines our ongoing efforts to enhance the tools.

2 Design Principles

Here we enumerate the design principles that form the basis for HPCToolkit’s approach.

∗Project URL: http://www.hipersoft.rice.edu/hpctoolkit

1



Language independence. Modern scientific programs often have a numerical core written in some mod-
ern dialect of Fortran, while using a combination of frameworks and communication libraries written in C
or C++. For this reason, the ability to analyze multi-lingual programs is essential. To provide language
independence, HPCToolkit works directly with application binaries rather than manipulating source code
written in different languages.

Avoid code instrumentation. Manual instrumentation is unacceptable for large applications. In addi-
tion to the effort it involves, adding instrumentation manually requires users to make a priori assumptions
about where performance bottlenecks might be before they have any information.

Even using automatic tools to add source-level instrumentation can be problematic. For instance, using
the Tau performance analysis tools to add source-level instrumentation to the Chroma code [7] from the US
Lattice Quantum Chromodynamics project [17] required seven hours of recompilation [13] (on a non-Cray
machine).

Binary instrumentation, such as that performed by Dyninst [8] or Pin [9], addresses the aforementioned
problems; however, instrumentation-based measurement itself can be problematic. Adding instrumentation
to every procedure can substantially dilate a program’s execution time. Experiments with gprof [5], a well-
known call graph profiler, and the SPEC integer benchmarks showed that on average gprof dilates execution
time by 82% [4]. Adding instrumentation to loops presents even a greater risk of increasing overhead. Unless
compensation techniques are used, instrumentation can also magnify the cost of small routines.

Context is essential for understanding layered and object-oriented software. In modern, modular
programs, it is important to attribute the costs incurred by each procedure to the different contexts in which
the procedure is called. The cost incurred for calls to communication primitives (e.g., MPI Wait) or code
that results from instantiating C++ templates for data structures can vary widely depending upon their
calling context. Because there are often layered implementations within applications and libraries, it is
insufficient to insert instrumentation at any one level, nor is it sufficient to distinguish costs based only upon
the immediate caller. For this reason, HPCToolkit supports call path profiling to attribute costs to the
full calling contexts in which they are incurred.

Any one performance measure produces a myopic view. Measuring time or only one species of
system event seldom diagnoses a correctable performance problem. One set of metrics may be necessary to
identify a problem, and another set may be necessary to diagnose its causes. For example, measures such
as cache miss count indicate problems only if both the miss rate is high and the latency of the misses is not
hidden. HPCToolkit supports collection, correlation and presentation of multiple metrics.

Derived performance metrics are essential for effective analysis. Derived measures such the differ-
ences between peak and actual performance are far more useful than raw data such as counts of floating point
operations. For maximum effectiveness, a tool should compute user-defined derived metrics automatically
so that they can be used as keys for for ranking and sorting.

Performance analysis should be top down. It is unreasonable to require users to hunt through moun-
tains of printouts or many screens full of data in multiple windows to identify important problems. To make
analysis of large programs tractable, performance tools should organize performance data in a hierarchical
fashion, prioritize what appear to be important problems, and support a top-down analysis methodology that
helps users quickly locate bottlenecks without the need to wade through irrelevant details. HPCToolkit’s
user interface supports hierarchical presentation of performance data according to both static and dynamic
contexts, along with ranking and sorting based on multiple metrics.

Hierarchical aggregation is important in the face of approximate attribution. In modern multi-
issue microprocessors with multiple functional units, out of order execution, and non-blocking caches, the
amount of instruction level parallelism is such that it is very difficult or expensive to associate particular
events with specific instructions. On such systems, line level (or finer) information can be misleading. How-
ever, even in the presence of fine-grain attribution problems, aggregate information for loops or procedures

2



Figure 1: Overview of HPCToolkit tools workflow.

can be very accurate. HPCToolkit’s hierarchical presentation of measurement data deftly addresses this
issue; loop level information available with HPCToolkit is particularly useful.

With instruction-level parallelism, aggregate properties are vital. Even if profiling instrumen-
tation could provide perfect attribution of costs to executable instructions and if compilers could provide
perfect mapping from executable instructions to source code, a program’s performance on machines with ex-
tensive instruction-level parallelism is less a function of the properties of individual source lines, and more a
function of the data dependences and balance among the statements in larger program units such as loops or
loop nests [2]. For example, the balance of floating point operations to memory references within one source
line is irrelevant to performance as long as the innermost loop containing that statement has an appropriate
balance between the two types of operations, a good instruction schedule that keeps the pipelines full, and
memory operations that can be scheduled to hide most of the cache miss latency.

3 HPCToolkit

HPCToolkit supports four principal capabilities:

1. measurement of performance metrics while an application executes,

2. analysis of application binaries to recover program structure,

3. correlation of dynamic performance metrics with source code structure, and

4. presentation of performance metrics and associated source code.

Figure 1 provides an overview of HPCToolkit’s components and the workflow of using them. First,
one compiles and links one’s application. For the most detailed attribution of application performance data
using HPCToolkit, one should ensure that the compiler includes line map information in the object code it
generates. Some compilers always include line map information; for others, one must add a variant of a -g flag
to the compiler’s command line in addition to optimization flags. Second, one launches an application with
either of HPCToolkit’s measurement tools. These tools use statistical sampling to collect a performance
profile. Third, one invokes HPCToolkit’s tool for analyzing the application binary to recover information

3



about files, functions, loops, and inlined code. Fourth, one uses another HPCToolkit component to
combine information about an application’s structure with dynamic performance measurements to produce
a performance database. Finally, one explores a performance database with an interactive viewer. In the
following sections, we describe 1) our measurement approach; 2) gathering program structure with binary
analysis; and 3) our interactive performance data viewer. In section 4, we identify some performance issues
in two leading scientific applications on the Cray XD1 using the capabilities of HPCToolkit.

3.1 Performance Measurement

Performance measurement using HPCToolkit avoids instrumentation because of the overhead and distor-
tion that it typically adds. For this reason, HPCToolkit employs statistical sampling.

Statistical sampling. Statistical sampling uses a recurring event trigger to send signals to the program
being profiled. When the event trigger occurs, a profiling signal is sent to the program. The signal handler
then records the program counter (PC) and possibly other context. The recurring nature of the event trigger
means that the program counter is sampled many times, resulting in a histogram of program counter/context.
As long as the number of samples collected during execution is sufficiently large, their distribution is expected
to approximate the true distribution of the costs that the event triggers are intended to measure.

Sampling triggers. Different kinds of event triggers lead to different measurements of program perfor-
mance. Event triggers can be either asynchronous and synchronous. Asynchronous triggers are not initiated
by direct program action, but may arise from interrupts triggered by the Unix interval timer or hardware
performance counter events. Hardware performance counter events enable HPCToolkit to statistically
profile events such as cache misses and issue stall cycles. Synchronous triggers, on the other hand, are
generated via direct program action. Examples of interesting events for synchronous profiling are memory
allocation, I/O, and inter-process communication. For such events, one might record bytes allocated, written,
or communicated, respectively.

Measuring dynamically-linked executables. To enable measurement of unmodified, dynamically-
linked, optimized application binaries, HPCToolkit uses the library preloading feature of modern dynamic
loaders. HPCToolkit instructs the dynamic loader to preload a profiling library before launching an appli-
cation using the LD PRELOAD environment variable (or equivalent). For asynchronous triggers, the library’s
initialization routine allocates and initializes profiler state, configures the signal handlers and asynchronous
event triggers (timers and/or hardware performance counters), and then initiates profiling. The library’s
finalization routine halts profiling and writes the profile state to disk for post-mortem analysis. Synchronous
triggers do not need signal handlers or asynchronous event triggers; instead, dynamic preloading overrides
the library routines of interest and logs information as appropriate when the routine is called in addition to
performing the requested operation.

Flat profiling. HPCToolkit supplies a lightweight profiler called hpcrun that simply collects program
counter histograms without any information about calling context. This kind of simple profiling is referred
to as flat profiling. Even such lightweight profiling can supply valuable information about a program’s
performance. Flat profiling yields the best results when a program’s call graph is a tree.

Call path profiling. Although flat profiles are often effective, experience has shown that comprehensive
performance analysis of modern modular software requires information about the context in which costs are
incurred. One important kind of context for any performance profile sample is the set of procedure frames
active on the call stack at the time the sample is taken. We refer to the state of the call stack as the calling

context of the sample, and we refer to the process of augmenting simple PC histograms with calling context
as call path profiling. The HPCToolkit component that collects call path profiles is called csprof.

When synchronous or asynchronous events occur, csprof records the full calling context for each event.
A calling context collected by csprof is a list of instruction pointers, one for each procedure frame active
at the time the event occurred. The first instruction pointer in the list is the program counter location at

4



which the event occurred. The rest of the list contains the return address for each of the active procedure
frames. We retain stack pointers as well to distinguish between recursive invocations. We have not observed
excessive space requirements when retaining entire call paths; if the storage of samples were to become a
concern, we could collapse calling contexts for recursive calls [1] or record only a suffix of full contexts.

Rather than storing the call path independently for each sample, we represent all of the call paths
observed by samples as a calling context tree (CCT) [1]. In a calling context tree, the path from the root
of the tree to a node corresponds to a distinct call path observed during execution; a count at each node in
the tree indicates the number of times that the path to that node was sampled.

Maintaining control over applications. For HPCToolkit to maintain control over an application,
certain calls to standard C library functions must be intercepted. For instance, HPCToolkit must be aware
of when threads are created or destroyed, or when new dynamic libraries are loaded with dlopen. When
such library calls occur, certain actions must be performed by HPCToolkit. To intercept such function
calls in dynamically-linked executables, the profiler uses library preloading to interpose its own wrapped
versions of library routines.

Handling dynamic loading. Modern operating systems such as Linux also enable programs to load and
unload shared libraries at run time, a process known as dynamic loading. Dynamic loading presents the
possibility that a several different functions may be mapped to any particular address over the execution of
a program. As hpcrun and csprof only collect a sequence of one or more program counter values when a
sample is taken, some provision must be made for mapping these program counters to the functions that
contained them during post-mortem analysis. For this reason, the profiler identifies each sample recorded
with the set of shared libraries loaded at the time. We call the list of shared objects loaded at a particular
time an epoch; every sample collected is associated with a particular epoch. When a shared object is loaded
at run time, a new epoch is constructed.

While the loading of shared objects requires the creation of new epochs, new epochs can also be created
for other reasons. For instance, a program that is aware of the profiler’s existence could ask the profiler
to collect new epochs at phase changes during execution: an epoch associated with initialization, an epoch
associated with each distinct computation phase, and so forth. This mechanism enables the performance
analyst to divide an application profile into distinct phases and also provides a method of temporally ordering
the collected samples at a coarse level, delivering some of the benefits of tracing, but without the space
overhead.

Handling threads. When multiple threads are involved in a program, each thread maintains its own
calling context tree. To initiate profiling for a thread, hpcrun and csprof intercept thread creation and
destruction to initialize and finalize profile state.

3.2 Correlating Measurements with Source Code Structure

Modern scientific codes frequently employ sophisticated object-oriented design. In these codes, deep loop
nests are often spread across multiple routines. To achieve high performance, such codes rely on compilers
to inline routines and optimize loops. Consequently, to effectively interpret performance, transformed loops
must be understood in the calling context of transformed routines.

Figure 2 shows an example of a simple C++ program designed to test the effectiveness of compiler
optimizations in hiding a simple object-oriented abstraction. In this example, the Mp class is derived from
the Standard Template Library’s (STL) map class template and given a virtual member function Mp::add to
wrap the insertion of elements. Far from being purely academic, the code represents a common and useful
way of building C++ classes and of using STL and STL-influenced containers. In particular, STL’s map is
such a useful abstraction, that a developer might easily use it in place of a hash table, even though it is
implemented using balanced trees and therefore does not provide the amortized time bound guarantees that
are typical of a hash table. (This example uses int keys rather than strings to represent the more reasonable
decision of using map with a pointer-valued key.) When executed, loops L1 and L2 insert a combined total
of approximately 20 million items into an instance of Mp.

5



class Mp : public std::map<int, double> {
public:

Mp() { }
virtual ~Mp() { }
virtual void add(int i, double d) { insert(std::make pair(i, d)); }

};

int main() {
Mp m;

L1 for (int i = 1; i < 1000; ++i) {
S1 m.add(i, (double)i);

}

L2 for (int i = 1; i < 10000000; ++i) { // Ten million

S2 m.add(i + 1000, (double)i);

S3 m.add(i + 10000000, (double)i);

}
}

Figure 2: Source code for testing C++’s STL map.

Even though Figure 2 contains only a few lines of code, optimizing compilers often make significant trans-
formations to such code improve performance. GCC 4.1 on a Cray XD1 inlines both add and map<>::insert

into the call sites at S1, S2 and S3. It inlines both the Mp destructor and the corresponding map<> destructor
into main. Several template instantiations internal to the STL implementation are inlined into other tem-
plate instantiations. Other compilers perform different transformations. For instance, the Intel 9.1 (Itanium)
compiler does not inline add in the call site at S3, though it does at S1 and S2. Moreover, it fuses loops
L1 and L2, apparently, noting that each item inserted into the map has a unique key. (We discovered all
of these facts using HPCToolkit.) Consequently, to meaningfully understand the performance of such a
program, it is necessary to correlate performance data with the optimized binary.

3.2.1 Correlation for Optimized Programs

To combine performance data with the static structure of fully optimized binaries, we need a mapping
between object code and its associated source code structure. Since the most important elements of the
source code structure are procedures and loop nests — procedures embody the actual executable code while
loops often consume the bulk of the executable time — we focus our efforts recovering them. An example of
what this mapping might look like is shown in Figure 3. In this example, the object to source code structure
map is represented as a tree of scopes, where a load module (the binary) contains source files; files contain
procedures; procedures contain loops; procedures and loops contain statements; and where scopes such as
procedures, loops and statements can be annotated with object code address interval sets. This object to
source code mapping should be contrasted with the binary’s line map, which maps an object address to its
corresponding source file, procedure name and line number to enable stepping by a debugger. In particular,
the line map is fundamentally line based.

As an example of how HPCToolkit’s correlation tool can use the object to source code structure
mapping, consider Figure 4, which shows two possible representations for the call path fragment . . . s1 →

s2 . . . where s1 and s2 are call sites. Assume that s1 represents a call from procedures p → q and s2 a call
from procedures q′ → r. Further assume that both s1 and s2 are located within loops and that q’s source
code contains a call site s′ : q → q′ which has been replaced by an inlined version of q′. In other words,
in contrast to what was actually executed, source code analysis would expect the call path fragment to be
. . . s1 → s′ → s2 . . .. Figure 4 shows s1 and s2 surrounded by two versions of their static program structure.
The left hand side shows how HPCToolkit presents this performance data fragment while the right hand
side shows the best possible presentation using only line map information. HPCToolkit identifies that
both s1 and s2 are located within loops (indicated by <L>). Moreover, even though the optimized code no

6



<LM n=".../hmc" base addr="0x4000000000000000"> load module
<F n=".../hmc.cc"> source file
<P n="doHMC" l="257-449" addr="[0x1eac0-0x21720)"> procedure

...

<S l="309-309" addr="[0x1f1b6-0x1f1c6)..."/> statement
<L l="311-435" addr="[0x1f460-...)"> loop

...

<S l="313-313" addr="[0x1f250-0x1f256)..."/>

...

</L>

...

</P>

</F>

...

</LM>

An object to source code structure mapping represented as a static scope tree expressed in XML. Static scopes

include a load module (LM), file (F), procedure (P), loop (L) and statement (S). Procedures, loops and statements

are annotated with corresponding object address interval sets.

Figure 3: An object to source code structure mapping.

Two possible representations for the call path fragment . . . s1 → s2 . . ., where s1 and s2 are call sites and where s1

represents a call from p to q and s2 a call from q′ to r.

Figure 4: Combining call path profiles with static program structure.

longer contains s′, HPCToolkit infers that the dynamic call path is missing a call through procedure q

and nests s2 within both its original procedure q′ and its new host procedure q.1 In contrast, by using the
line map a tool can at best identify s1’s containing procedure (p) and s2’s original procedure (q′). It should
be noted that this best case is actually serendipitous, because the line map’s information for q is (in general)
fundamentally ambiguous as to whether s2 is located within q′ or q. Moreover, the line map is insufficient
to accurately determine the source line bounds of p, q′ and r. In contrast, HPCToolkit’s object to source
code mapping typically computes the source line bounds of p, q and r exactly, though it only approximates
q′’s; usually the source line bounds of the loops within p, q′ and r are recovered exactly. The most important
benefit of the object to source code structure mapping is that reconstructed procedures, loops and inlined
frames can be treated as ‘first-class’ entities for the purpose of assigning cost metrics.

3.2.2 bloop: Recovering Program Structure from Optimized Binaries

To recover an object to source code structure mapping from binaries for optimized applications, we built
the bloop [10, 13] binary analysis tool. A key goal of bloop is to discover information about inlined proce-
dures and loops. For this purpose, bloop analyzes object code instructions and their associated line map

1Currently HPCToolkit can only identifies one level of inlining. Nested inlining is marked as inlined code, but flattened
with respect to the host procedure or enclosing loop.

7



information along with DWARF [3, 14] debugging information generated Linux compilers. DWARF allows
compilers to generate information describing procedures and data to improve the functionality of a debugger.
Since most compilers do not generate elaborate DWARF, bloop bases its algorithms on a ‘lowest-common-
denominator’ subset of DWARF.

To construct the object to program structure mapping, bloop first reconstructs an ‘outline’ of all the
procedures within the binary, locating them within their source file and within any enclosing procedure (in
the case of procedure nesting). By making inferences from typical DWARF information, bloop is able to
recover accurate bounds for procedures which enables it to identify inlined code.

Having an outline of the procedure hierarchy, bloop recovers the loop nesting structure for each object
code procedure. This task can be broadly divided into two components: 1) analyzing object code to find
loops and 2) inferring a source code representation from them. To find loop nests within the object code,
bloop first decodes the instructions in a procedure to compute the control flow graph (CFG) and then use
Havlak’s algorithm [6] to recover the tree of loop nests. Given this tree of object code loops, bloop then
recovers a source code representation for them. This is a challenging problem because with fundamentally
line-based information (from the line map) — DWARF has no way to represent information about loops —
bloop must distinguish between 1) loops that contain inlined code, 2) loops may themselves be inlined and
3) loops that may be inlined and contain inlined code. Surprisingly, a small set of relatively simple heuristics
allows bloop to distinguish between these three cases and identify accurate loop bounds in the vast majority
of cases, even in the presence of complex loop transformations such as software pipelining.

Although bloop has recovered a source code representation for loops, at this point, it has not yet ac-
counted for loop invariant code motion and loop transformations such as software pipelining. Because of
this, the same line instance may be found both outside of a loop and within it (e.g., partial loop invariant
code motion) or there may be duplicate nests that appear to be siblings (e.g., iteration space splitting). To
account for compiler loop transformations, we have developed normalization passes based on the observation
that a particular source line (statement) appears uniquely in the program’s source code. The combination
of bloop’s heuristics and normalizations enable it to recover very accurate loop nests in practice. However,
because it does base loop recovery on heuristics, it is important to note that the effects of an erroneous
inference are limited to at most one procedure.

Although bloop often recovers very accurate program structure even in the presence of complex inlining
and loop transformations, it is dependent on accurate debugging information. One implication of this is
because compilers typically do not record or provide any information about macro expansion, bloop is unable
to identify a macro function as ‘inlined.’ Another implication is that since most debugging information is
line based, bloop can only distinguish between program constructs that are on distinct source lines. Finally,
because compilers do not take advantage of DWARF’s ability to record inlining decisions (except GCC),
identifying alien code and recovering nested inlining is much more difficult than it could be. Currently,
bloop does not attempt to recover the nesting structure of nested inlining.

The primary benefit of using a binary analyzer such as bloop to discover program structure is that it
allows HPCToolkit to expose the structure of what is actually executed. bloop identifies transformations
to procedures such as inlining and accounts for transformations to loops. One particularly noteworthy result
is that bloop’s program structure naturally reveals such transformations as loop fusion and the generation
of scalarization loops to implement Fortran 90 array notation.

3.3 Computed Metrics

Identifying performance problems and opportunities for tuning may require synthetic performance metrics.
For instance, when attempting to tune the performance of a floating-point intensive scientific code, it is
often less useful to know where the majority of the floating-point operations are than where floating-point
performance is low. Instead, knowing where the most cycles are spent doing things other than floating-
point computation hints at opportunities for tuning. Such a metric can be directly computed by taking
the difference between the cycle count and FLOP count divided by a target FLOPs-per-cycle value, and
displaying this measure at loop and procedure level. Our experiences with using multiple computed metrics
such as miss ratios, instruction balance, and “lost cycles” underscore the power of this approach.

Currently, the hpcview tool in HPCToolkit supports synthesis of computed metrics for flat profiles;
ongoing work aims to add support for synthesizing computed metrics for call path profiles.

8



Figure 5: Overview of the hpcviewer user interface.

3.4 The hpcviewer User Interface

HPCToolkit provides the hpcviewer browser for interactive examination of performance databases. Fig-
ure 5 shows a screenshot of a brower window with panes and key controls labeled. The browser supports
three different views of performance data. The browser window is divided into three panes. We first explain
the views of performance data and then the role of the different panes.

Views. hpcviewer supports three principal views of an application’s performance data: a top-down calling
context view, a bottom-up caller’s view, and a flat view. One selects the desired view by clicking on the
corresponding view control tab. We briefly describe the three views and their corresponding purposes.

• Calling context view. This top-down view represents the dynamic calling contexts (call paths) in which
costs were incurred. Using this view, one can explore performance measurements of an application in

9



a top-down fashion to understand the costs2 incurred by calls to a procedure in a particular calling
context. A calling context for a procedure f consists of the stack of procedure frames active when the
call was made to f. Using this view, one can readily see how much of the application’s cost was incurred
by f when called from a particular calling context. If finer detail is of interest, one can explore how
the costs incurred by a call to f in a particular context are divided between f itself and the procedures
it calls. HPCToolkit’s call path profiler csprof and the hpcviewer user interface distinguish calling
context precisely by individual call sites; this means that if a procedure g contains calls to procedure
f in different places, these represent separate calling contexts.

• Callers view. This bottom up view enables one to look upward along call paths. This view is particu-
larly useful for understanding the performance of software components or procedures that are used in
more than one context. For instance, a message-passing program may call MPI Wait in many different
calling contexts. The cost of any particular call will depend upon the structure of the parallelization
in which the call is made. Serialization or load imbalance may cause long waits in some calling con-
texts while other parts of the program may have short waits because computation is balanced and
communication is overlapped with computation.

• Flat view. This view organizes performance measurement data according to the static structure of an
application. All costs incurred in any calling context by a procedure are aggregated together in the flat
view. This complements the calling context view, in which the costs incurred by a particular procedure
are represented separately for each call to the procedure from a different calling context.

Panes. The browser window is divided into three panes: the navigation pane, the source pane, and the
metrics pane. We briefly describe the role of each pane.

• Source pane. The source pane displays the source code associated with the current entity selected
in the navigation pane. When a performance database is first opened with hpcviewer, the source
pane is initially blank because no entity is selected in the navigation pane. Selecting any entity in
the navigation pane will cause the source pane to load the corresponding file, scroll to and highlight
the line corresponding to the selection. Switching the source pane to view to a different source file is
accomplished by making another selection in the navigation pane.

• Navigation pane. The navigation pane presents a hierarchical tree-based structure that is used to
organize the presentation of an application’s performance data. Entities that occur in the navigation
pane’s tree include load modules, files, procedures, procedure activations, inlined code, loops, and
source lines. Selecting any of these entities will cause its corresponding source code (if any) to be
displayed in the source pane. One can reveal or conceal children in this hierarchy by “opening” or
“closing” any non-leaf (i.e., individual source line) entry in this view.

The nature of the entities in the navigation pane’s tree structure depends upon whether one is exploring
the calling context view, the callers view, or the flat view of the performance data.

– In the calling context view, entities in the navigation tree represent procedure activations, inlined
code, loops, and source lines. While most entities link to a single location in source code, procedure
activations link to two: the call site from which a procedure was called and the procedure itself.

– In the callers view, entities in the navigation tree are procedure activations. Unlike procedure
activations in the calling context tree view in which call sites are paired with the called procedure,
in the caller’s view, call sites are paired with the calling procedure to facilitate attribution of costs
for a called procedure to multiple different call sites and callers.

– In the flat view, entities in the navigation tree correspond to source files, procedure call sites
(which are rendered the same way as procedure activations), loops, and source lines.

The header above the navigation pane contains some controls for the navigation view. In Figure 5,
they are labeled as “flatten/zoom control.” Depressing the up arrow button will zoom in to show

2We use the term cost rather than simply time since hpcviewer can present a multiplicity of measured (e.g. cycles, or cache
misses) or derived metrics (e.g. cache miss rates or bandwidth consumed) that that are other indicators of execution cost.

10



only information for the selected line and its descendants. One can zoom out (reversing a prior zoom
operation) by depressing the down arrow button. The remaining two buttons for enable one to flatten
and unflatten the navigation hierarchy. Clicking on the flatten button (the icon that shows a tree
node with a slash through it) will replace each top-level scope shown with its children. If a scope has
no children (i.e., it is a leaf), the node will remain in the view. This flattening operation is useful
for relaxing the strict hierarchical view so that peers at the same level in the tree can be viewed and
ranked together. For instance, this can be used to hide procedures in the flat view so that outermost
loops can be ranked and compared to one another. The inverse of the flatten operation is the unflatten
operation, which causes an elided node in the tree to be made visible once again.

• Metric pane. The metric pane displays one or more performance metrics associated with entities to the
left in the navigation pane. Entities in the tree view of the navigation pane are sorted at each level of
the hierarchy by the metric in the selected column. When hpcviewer is launched, the leftmost metric
column is the default selection and the navigation pane is sorted according to the values of that metric
in descending order. One can change the selected metric by clicking on a column header. Clicking on
the header of the selected column toggles the sort order between descending and ascending.

During analysis, one often wants to consider the relationship between two metrics. This is easier when
the metrics of interest are in adjacent columns of the metric pane. One can change the order of columns
in the metric pane by selecting the column header for a metric and then dragging it left or right to
its desired position. The metric pane also includes scroll bars for horizontal scrolling (to reveal other
metrics) and vertical scrolling (to reveal other scopes). Vertical scrolling of the metric and navigation
panes is synchronized.

4 Analyzing Applications with HPCToolkit

To demonstrate HPCToolkit’s capabilities for analyzing application performance on the Cray XD1, we
present a few screenshots of the hpcviewer browser displaying performance data collected for two modern
scientific codes under development with funding from the Department of Energy’s Office of Science. The
first application is a C++ application for lattice quantum chromodynamics developed as part of the US
Lattice Quantum Chromodynamics project [17]. The second application we show is S3D, a Fortran code
being developed at Sandia National Laboratory to support high fidelity simulation of turbulent reacting
flows [11].

4.1 Chroma’s hmc

We first demonstrate the detailed attribution of performance data HPCToolkit provides for hmc, a parallel
application for lattice quantum chromodynamics. hmc is built upon the Chroma library [7] for lattice field
theory, which was developed as part of the US Lattice Quantum Chromodynamics project [17]. Chroma is
based upon QDP++ [15], a C++ framework developed to support a data-parallel programming model for
quantum chromodynamics, and QMP [16], a high performance message passing interface for lattice QCD
computing.

The QDP++ package, upon which the Chroma library is based, uses a highly modular design that makes
extensive use of C++ expression templates. Because of its use of expression templates, at compile time
complex templates are instantiated, customized for the many different contexts in which they are used,
and sometimes inlined. Consequently, hmc can take hours to compile and yields very large executables
(approximately 110MB) on a Cray XD1. For our study here, we compiled hmc with GCC, version 4.1.

Figure 6 shows a calling context tree view of a call path profile of hmc. The navigation pane shows a
partial expansion of the calling context tree. The information presented in the navigation pane is a fusion
of both static and dynamic context information. HPCToolkit’s call path profiler measured dynamic call
path information during execution of hmc. This dynamic information was combined with information about
inlining and loops recovered by bloop through static analysis of hmc’s executable. In the navigation pane, one
can see procedure activations along call paths interspersed with loops within the procedures. The selected
line in the navigation pane and the source pane shows the procedure globalSumArray, which has been

11



Figure 6: hpcviewer displaying a calling context tree view of a timer-based call path profile for hmc.

inlined into its caller shown returning type Chroma::SystemSolverResults t3. HPCToolkit is unique in
its use of binary analysis to recover information about loops and inlined code.

In the calling context tree view of hmc shown in Figure 6, two columns of metric data are shown: inclusive
and exclusive time for timer-based sampling, denoted as “samples (I)” and “samples (E).” The inclusive
times show both the absolute time spent in each context shown in the navigation pane. Further detail about
the costs associated with any node in the tree can be obtained by opening the node to look at the costs
attributed to calls, loops or inlined code within. The inclusive time metric in the calling context tree view for
the call to Chroma::SystemSolve shows that 37% of the time was spent in that routine. The exclusive time
metric shows that of that 37%, 1.7% is spent in the routine itself, the rest in routines it calls. Immediately
below, we can see that 0.8% of the total execution time is spent directly within the loop at lines 147–182
of invcg2.cc. This fine level of details shows the power of combining static information from the application

3The full name of the caller comes from an expression template and is too long to reproduce here.

12



Figure 7: hpcviewer displaying a caller’s view of a timer-based call path profile for hmc.

binary with dynamic call path measurements. The overhead of statistical sampling with HPCToolkit’s
call path profiler is typically less than 5%.

Figure 7 shows a bottom up caller’s view of a call path profile of hmc. This figure highlights the most
costly routine in the execution mvv recons plus. The caller’s view shows that the all of the cost attributed
to this routine were incurred in calls from sse su3dslash wilson, which was called from an expression
template for Chroma::SSEWilsonDslash::apply. This template instantiation is invoked from several dis-
tinct instantiations of the expression template for Chroma::EvenOddPrecWilsonLinOp::operator(). We
can see that of the 9.2% total time spent in mvv recons plus, 5.9% of the total time was incurred on behalf
of the first instantiation of the Chroma::EvenOddPrecWilsonLinOp::operator(). In the navigation pane,
selecting the icon next to the name of the caller navigates the source display to the call site of the callee;
selecting the name of the caller navigates to the start of the caller’s routine. This example shows the power
of HPCToolkit for attributing costs incurred in a routine to the multiple contexts in which it was called.

4.2 S3D

As described in SciDAC Review [11], the S3D code being developed at Sandia National Laboratories is a
massively parallel solver for turbulent reacting flows. The code includes multiple physical and chemical
aspects, such as detailed chemistry and molecular transport. S3D uses Direct Numerical Simulation (DNS)
for understanding the physics of turbulence. S3D is primarily written in Fortran 90, with some supporting
routines written in Fortran 77. This code is a focus of current analysis and optimization to prepare it for
large-scale simulation runs on a large-scale Cray XT3/XT4 at Oak Ridge National Laboratory. For this
study, we compiled this application on our Cray XD1 using the Portland Group’s pgf90 compiler, version
6.1.2, using the -fast option.

Figure 8 shows part of a flat view of a timer-based call path profile of a single-processor execution of

13



Figure 8: hpcviewer displaying a flat view of a timer-based call path profile for S3D.

S3D on a Cray XD1. The source code pane shows a loop over a 5-dimensional data structure. Two loops
over the direction and the number of species appear explicitly in the source code. Other 3-dimensional loops
are implicit in the Fortran 90 array notation. The navigation pane shows the attribution of costs among
the loops in the loop nest in the enclosing computespeciesdiffflux routine. Notice that HPCToolkit

provides a high level of detail about the application performance. The navigation pane explicitly shows loops
representing the Fortran 90 vector statements; the presence of these loops was recovered by HPCToolkit’s
bloop in its analysis of the S3D executable. In this view, one can readily see that the vector statement on
line 745 ran more than twice as long as the vector statement on line 758.

Figure 9 shows part of a loop-level flat view of a timer-based call path profile of a single-processor
execution of S3D on a Cray XD1. This view was obtained by flattening away the procedures normally shown
at the outermost level of the flat view to show outer-level loops. This enables us to view the performance of
all loop nests in the application as peers. The top line in the flat view shows that 13.6% of execution time
is spent in an unknown file in S3D. Unflattening one level would show that this cost represents time spent
in the PGI’s implementation of the Fortran exp operation. The second loop at lines 735-760 was shown in
Figure 8. Here, we focus on the third loop on lines 209-210 of file rhsf.90. We notice that this loop contains
a loop at line 210 that doesn’t appear explicitly in the code. We can see that this loop consumes 5.4%

14



Figure 9: hpcviewer displaying a flat loop-level view of a timer-based call path profile for S3D.

of the total execution time, more than the 5.2% of the time spent in computescalargradient! This loop
represents the time spent repeatedly copying a non-contiguous 4-dimensional slice of array grad Ys into a
contiguous array temporary before passing it to computescalargradient. The ability to explicitly discover
and attribute costs to such compiler-generated loops is a unique strength of HPCToolkit.

In the views presented thus far about S3D, one can see how much time is spent in certain contexts, but
with only time costs, it is impossible to tell if the computation is efficient or not. Only examining multiple
metrics can show if the computation is efficient. Figure 10 shows a view of loops in the S3D application
correlated with various measured metrics and sorted by a user-defined waste metric. Our waste metric
represents the total number of floating point issue slots that were unused in each context. We compute
waste for each context as 2 × cycles − FLOPS, which corresponds to the maximum number of FLOPS that
could have been performed in the context (based on the number of cycles spent there and the maximum rate
floating point operations could have been executed) minus the actual number of floating point operations
performed. Sorting by this waste metric shows us where we have underutilized the floating point unit the
most. In contrast, computing ratios of FLOPS per cycle for various contexts (e.g. loops, routine, and
program) can show how efficiently the application is performing; however, these ratios do not tell us whether
the time spent in a particular computation is significant with respect to the overall performance of the
execution. Our waste metric does; sorting by high waste scores pinpoints opportunities for tuning. This
example highlights HPCToolkit’s ability to compute derived metrics.

15



Figure 10: hpcviewer displaying a loop-level view of a flat hardware performance counter profile for S3D.

5 Status

While we use HPCToolkit on a day-to-day basis on a Cray XD1, HPCToolkit it is not currently
supported on the Cray XT3 and XT4 platforms. Until spring 2007, the Catamount microkernel lacked
kernel support for asynchronous sampling based on hardware performance counters. Development versions
of both Catamount and Cray’s forthcoming Compute Node Linux operating systems include support for
asynchronous sampling. Work will soon begin to port HPCToolkit to these operating systems.

HPCToolkit is currently undergoing major changes to transform it from a research prototype into a
tool suitable for production use. Below, we list some of the topics of ongoing work:

• HPCToolkit’s profilers currently only support measurement of dynamically-linked binaries. To sup-
port Catamount, we are preparing a version of the measurement tools for use with statically-linked
applications.

• HPCToolkit’s call path profiler currently only collects samples using an interval timer. Its flat
profiler supports sampling based on arbitrary hardware performance counter events. The call path
profiler will be augmented to support sampling based on hardware performance counters.

• In the absence of compiler information to support call stack unwinding, HPCToolkit’s call path
profiler may be unable to unwind the call stack if an asynchronous event occurs while a procedure is
executing instructions in its epilogue as it prepares to return to its caller. At present, when the call
path profiler attempts an unwind and if it fails, it drops the asynchronous sample and notes that it
has done so. We are independently pursuing several approaches to avoid loss of samples that occur
within code that lacks adequate information to permit asynchronous unwinding (e.g., in epilogues as
well as hand-coded math library routines). First, we are coordinating with PGI and PathScale, who
have agreed to consider augmenting the unwind information generated by their compilers. Second, we
are beginning to explore approaches based on binary analysis and/or emulation that will enable us
to recover sufficient information to support fully-precise asynchronous unwinding even for hand-coded
assembler routines (common in math libraries) that use custom calling conventions.

16



• Previously, we developed a technique for associating counts with edges in the calling context tree in a
call path profile [4]. That capability works in a research prototype of a call path profiler that relies on
having compiler information to support unwinding in procedure epilogues. We are working to support
this capability in HPCToolkit’s call path profiler in the absence of compiler support.

• Presently, bloop, our binary analyzer, assumes incomplete but correct information. Recent experiments
with compilers on the Cray XD1 have shown that they sometimes misattribute procedure calls to lines.
Such misattribution can erroneously cause call sites to be reported inside loops. We plan to augment
the analyzer to be more defensive against misattribution.

• Currently, hpcviewer focuses on presentation of performance data for a single process. We are extend-
ing it to perform comparative analysis between processes within and across executions.

Acknowledgments

Development of HPCToolkit is currently being supported by the Department of Energy’s Office of Sci-
ence as part of the SciDAC Performance Engineering Research Institute under Cooperative Agreement No.
DE-FC02-06ER25762 and as part of the Center for Scalable Application Development Software under Coop-
erative Agreement No. DE-FC02-07ER25800. Experiments described in this paper were performed on a Cray
XD1 that was purchased with support from the National Science Foundation under Grant CNS-0421109,
and a partnership between Rice University, Advanced Micro Devices, and Cray.

References

[1] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware performance counters with flow and
context sensitive profiling. In SIGPLAN Conference on Programming Language Design and Implementation,
pages 85–96, New York, NY, USA, 1997. ACM Press.

[2] Kirk W. Cameron, Yong Luo, and Janes Scharmeier. Instruction-levle microprocessor modeling of scientific
applications. In ISHPC 1999, pages 29 – 40, Japan, May 1999.

[3] Free Standards Group. DWARF debugging information format, version 3. http://dwarf.freestandards.org.
20 December 2005.

[4] Nathan Froyd, Nathan Tallent, John Mellor-Crummey, and Rob Fowler. Call path profiling for unmodified,
optimized binaries. In GCC Summit ’06: Proceedings of the GCC Developers’ Summit, 2006, pages 21–36, 2006.

[5] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. Gprof: A call graph execution profiler. In
SIGPLAN ’82: Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction, pages 120–126, New
York, NY, USA, 1982. ACM Press.

[6] Paul Havlak. Nesting of reducible and irreducible loops. ACM Trans. Program. Lang. Syst., 19(4):557–567, 1997.

[7] Jefferson Lab. The Chroma library for lattice field theory. http://usqcd.jlab.org/usqcd-docs/chroma.

[8] Jon Cargille Jeffrey K. Hollingsworth, Barton P. Miller. Dynamic program instrumentation for scalable perfor-
mance tools. In Scalable High Performance Computing Conference (SHPCC), pages 841–850, 1994.

[9] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: building customized program analysis tools with dynamic instru-
mentation. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on programming language design
and implementation, pages 190–200, New York, NY, USA, 2005. ACM Press.

[10] John Mellor-Crummey, Robert Fowler, Gabriel Marin, and Nathan Tallent. HPCView: A tool for top-down
analysis of node performance. The Journal of Supercomputing, 23:81–101, 2002.

[11] Don Monroe. ENERGY Science with DIGITAL Combustors. http://www.scidacreview.org/0602/html/

combustion.html.

[12] Michelle Mills Strout, John Mellor-Crummey, and Paul Hovland. Representation-independent program analy-
sis. In PASTE ’05: The 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and
engineering, pages 67–74, New York, NY, USA, 2005. ACM Press.

17



[13] Nathan Tallent. Binary analysis for attribution and interpretation of performance measurements on fully-
optimized code. M.S. thesis, Department of Computer Science, Rice University, May 2007.

[14] UNIX International. DWARF debugging information format. http://dwarf.freestandards.org. 27 July, 1993.

[15] U.S. Lattice Quantum Chromodynamics Project. QDP++: A data-parallel programming environment suitable
for Lattice QCD. http://usqcd.jlab.org/usqcd-docs/qdp++.

[16] U.S. Lattice Quantum Chromodynamics Project. QMP: A message passing library for lattice QCD. http:

//usqcd.jlab.org/usqcd-docs/qmp.

[17] USQCD. U.S. lattice quantum chromodynamics. http://www.usqcd.org.

18


