Application Performance Profiling on the Cray XD1 using HPCToolkit

John Mellor-Crummey¹, Nathan Tallent¹ Michael Fagan¹, and Jan E. Odegard²

¹Computer Science ²Computer & Information Technology Institute Rice University

Computer and Information Technology

To build a community of scholars that engages in collaborative research and education covering virtually every aspect of information technology and computing

Directors:

Ken Kennedy (1986-1992)

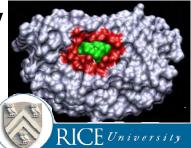
Sidney Burrus (1992-1998)

Willy Zwaenepoel (1998-2001)

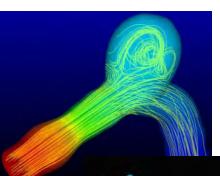
Moshe Vardi (2001-...)

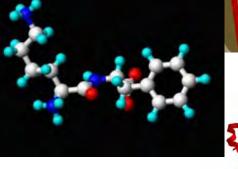
6 schools $\leftarrow \rightarrow$ 20 departments $\leftarrow \rightarrow$ 140 members 7 centers $\leftarrow \rightarrow$ 12+ ad hoc research groups

Research Centers



- Center for High Performance Software (HiPerSoft)
 —Director: TBN
- Center for Multimedia Communication (CMC) —Director: Behnaam Aazhang, ECE
- Center for Computational Geophysics (CCG) —Co-directors: Bill Symes, CAAM / Alan Levander, ES
- Center for Computational Finance & Economic Systems (CoFES) —Director: Kathy Ensor, STAT
- LAboratory for NanoPhotonics (LANP)
 —Director: Naomi Halas, ECE
- Center for Technology in Teaching and Learning (CTTL) — Director: Tony Gorry, CS
- Center for Excellence and Equity in Education (CEEE) — Director: Richard Tapia, CAAM




Research Groups & Labs

- Gaming Group
- Robotics Group
- Sensor Nets Group
- Bioinformatics Group
- Rice Networking Group
- Digital Signal Processing
- Dynamical Systems Group
- Statistical Consulting Lab
- Rice Computer Architecture Group
- Complex Flow of Complex Fluids Group
- Theoretical and Computational Neuroscience
- Connexions: Open content education repository
- Advanced Research Initiative on the Emerging Library
- •

CITI: Building communities since 1986 Rice University, Houston, Texas

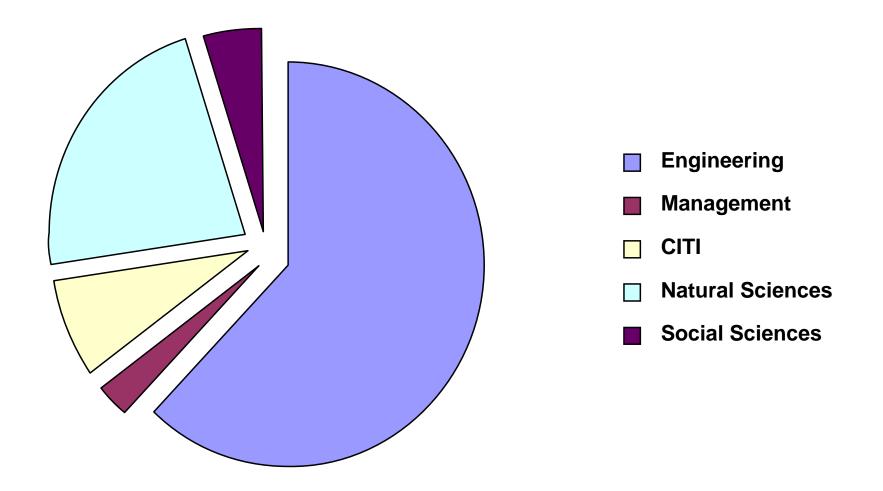
RobotStudio -S4 Lite

Cray XD1 System Dual-Core AMD OpteronTM

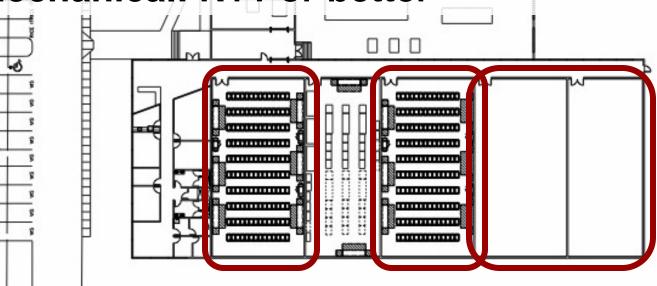


"Rice Computational Research Cluster"

- ~3 TeraFLOP Cray XD1 Linux cluster*
 - -336 Dual-Core AMD Opteron[™] 275
 - 2.2GHz, 1MB / Core
 - 168 dual socket nodes (4 way SMP)
 - 8 GB DDR 400 / compute SMP
 - 16 GB DDR 333 / system SMP
 - -Cray RapidArray (4x Infiniband)
 - -1.4 TB DDR2 400
 - -12 TB Local Disk
 - -6 TB Lustre parallel file system
 - -10 TB NFS file system
 - -One XD1 Chassis with FPGA
 - 6 Xilinx Virtex-4/LX160


NSF MRI, Rice, AMD and Cray

250+ Active Users



New Datacenter (July 2007)

CITIZO

- 20,000 sq.ft. (48" raised floor)
- 6 MWatt inbound power
- Three pod configuration (3-15+ KW/rack)
- Three separate electrical systems (A, B & C)
- Mechanical: N+1 or better

Datacenter (~12-06)

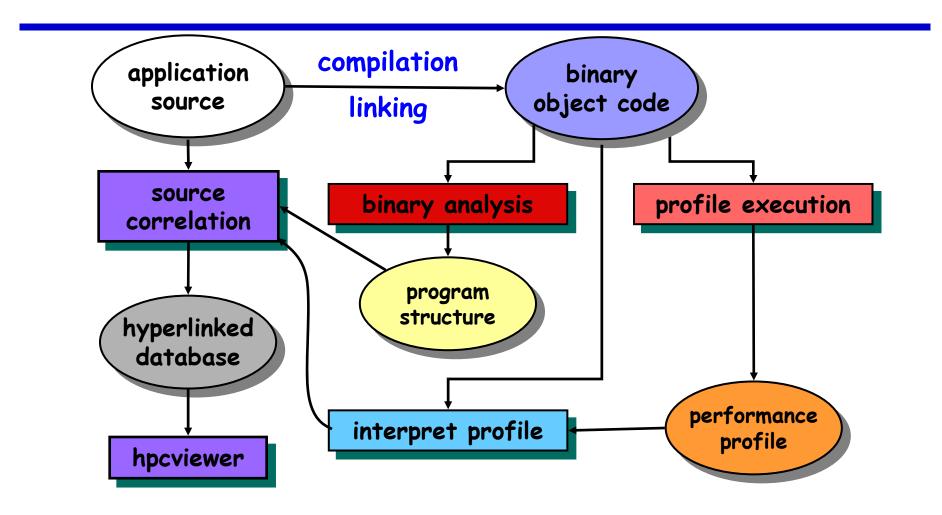
Datacenter (~12-06)

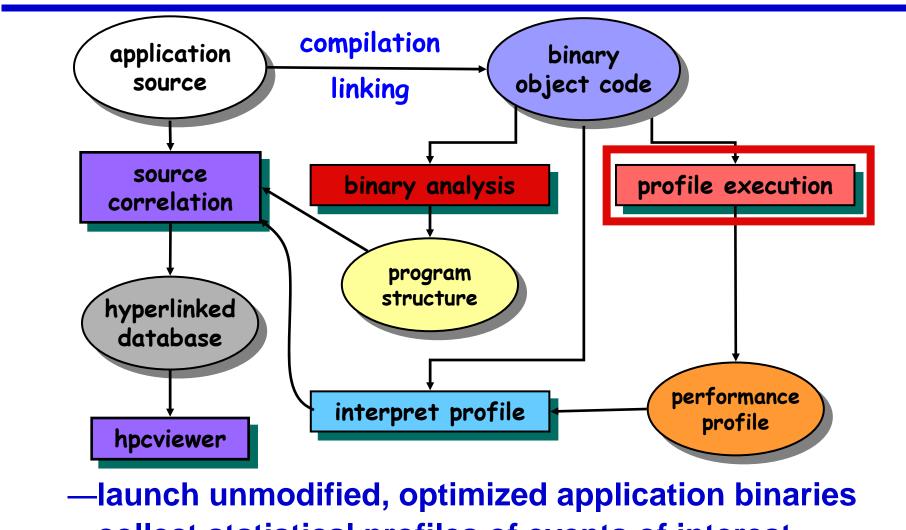
The Challenge

Getting Science Done

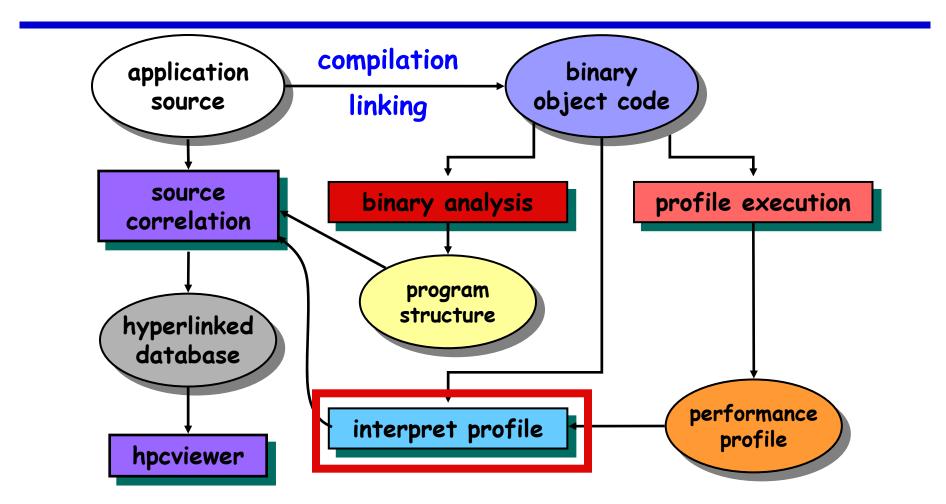
To achieve acceptable (top) application performance scientists and engineers are required to tailor applications to effectively exploit the capabilities of a "bewildering" array of features offered by current and future architectures

Performance Analysis and Tuning

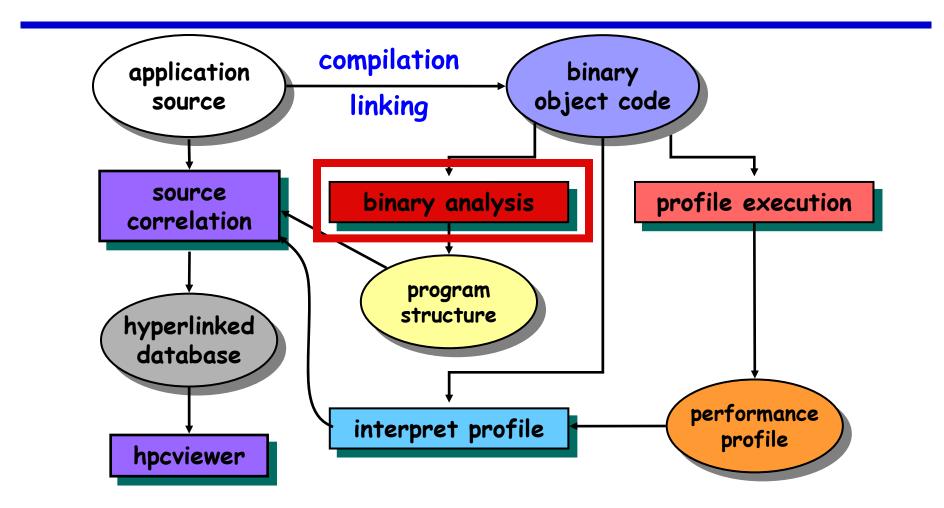

- Increasingly necessary
 - -gap between typical and peak performance is growing
- Increasingly hard
 - -complex architectures are harder to program effectively
 - complex processors
 - deeply pipelined, out of order, superscalar
 - complex memory hierarchy
 - non-blocking, multi-level caches, TLB, hw prefetching
 - -modern scientific applications pose challenges for tools
 - multi-lingual programs
 - many source files
 - complex build process
 - external libraries in binary-only form

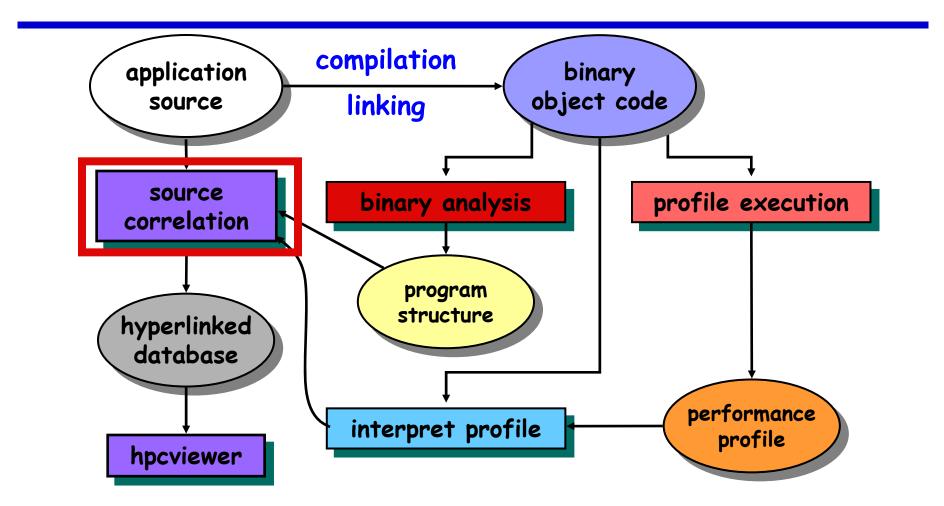

HPCToolkit Goals

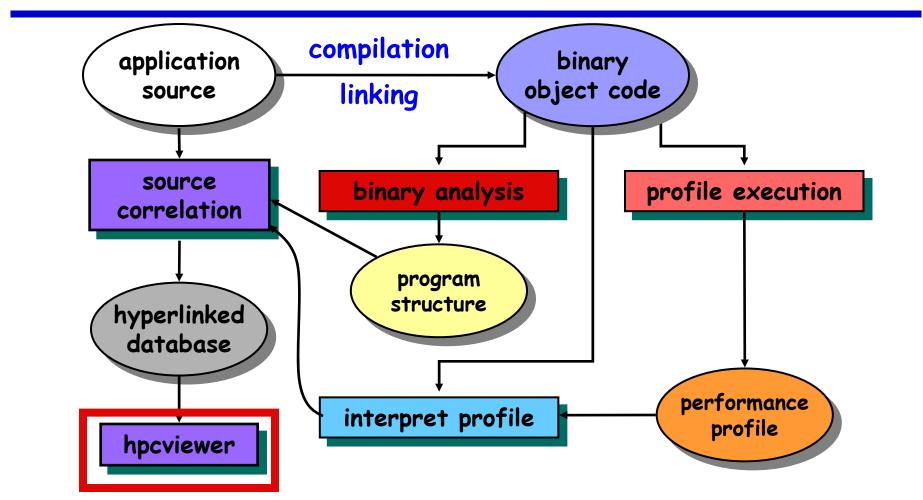
- Support large, multi-lingual applications
 - -a mix of of Fortran, C, C++
 - -multiple programming models (MPI, OpenMP, multi-threading)
 - -external libraries
 - -hundreds of procedures
 - -for ease of use, avoid
 - manual instrumentation
 - significantly altering the build process
 - frequent recompilation
- Analysis of both serial and parallel codes
- Scalable data collection for parallel executions
- Effective presentation of analysis results
 - -intuitive enough for scientists and engineers to use
 - -detailed enough to meet the needs of compiler writers


HPCToolkit Design Principles

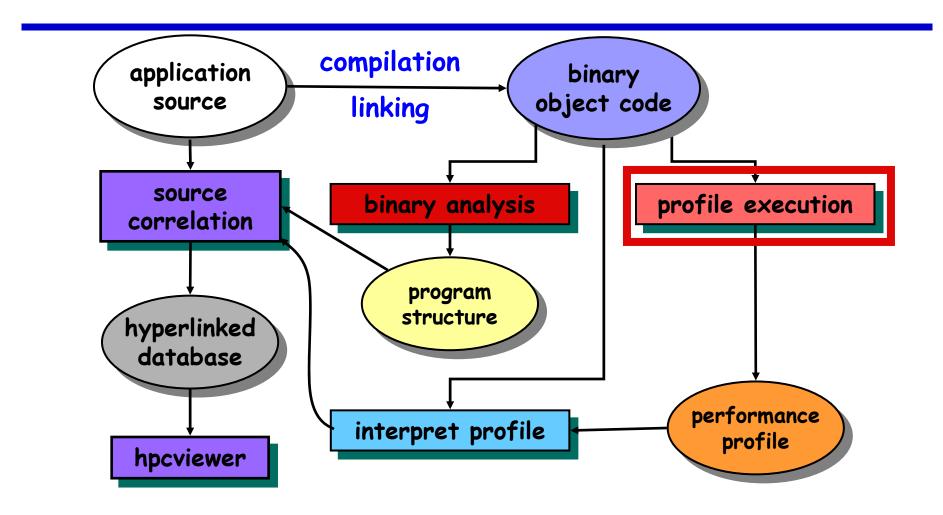
- Language independence: work at the binary level —supports multi-lingual codes with external binary-only libraries
- Avoid code instrumentation in each procedure —instrumentation adds overhead and distorts measurements
- Context is essential for understanding modern software —modular software often depends on layered libraries (e.g. MPI)
- Any one performance measure produces a myopic view
 hard to diagnose a problem with only one species of event
- Derived metrics are essential for effective analysis
- Performance analysis should be top down
- Event aggregation for loops and procedures is important —accurate despite approximate event attribution from counters —loop-level info is more important than line-level info




-collect statistical profiles of events of interest


-decode instructions and combine with profile data

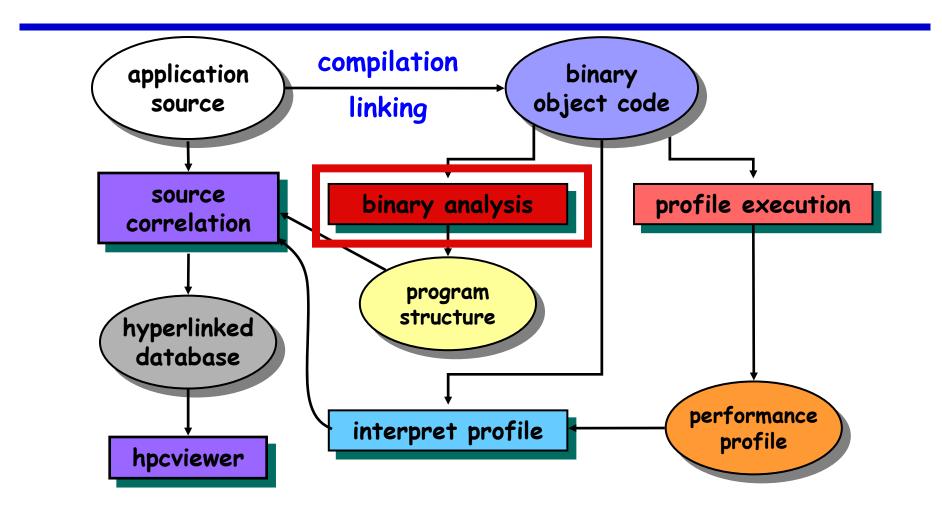
—extract loop nesting & inlining from executables



—synthesize new metrics by combining metrics —relate metrics and structure to program source

—support top-down analysis with interactive viewer —analyze results anytime, anywhere

HPCToolkit System Overview

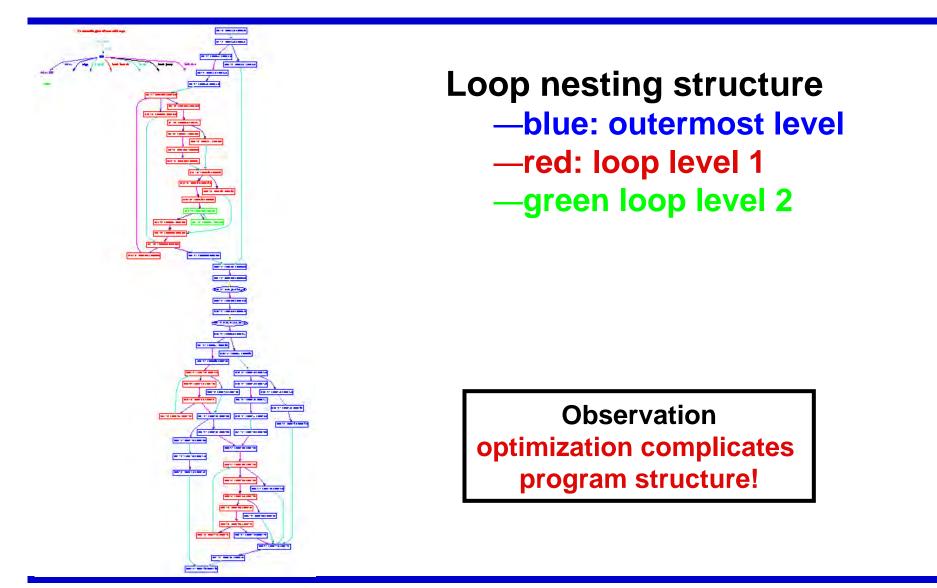

Data Collection

Support analysis of unmodified, optimized binaries

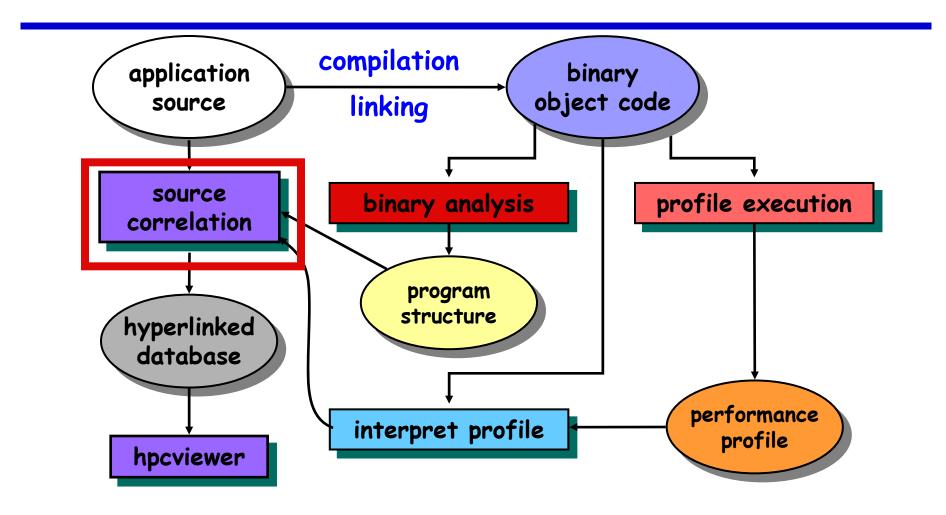
- Use statistical sampling to profile events

 hardware performance counter overflows
 interval timer events
- Tools
 - hpcrun: flat sampling yields PC histograms
 - csprof: attributes samples to calling context

HPCToolkit System Overview



Program Structure Recovery with bloop


Analyze an application binary

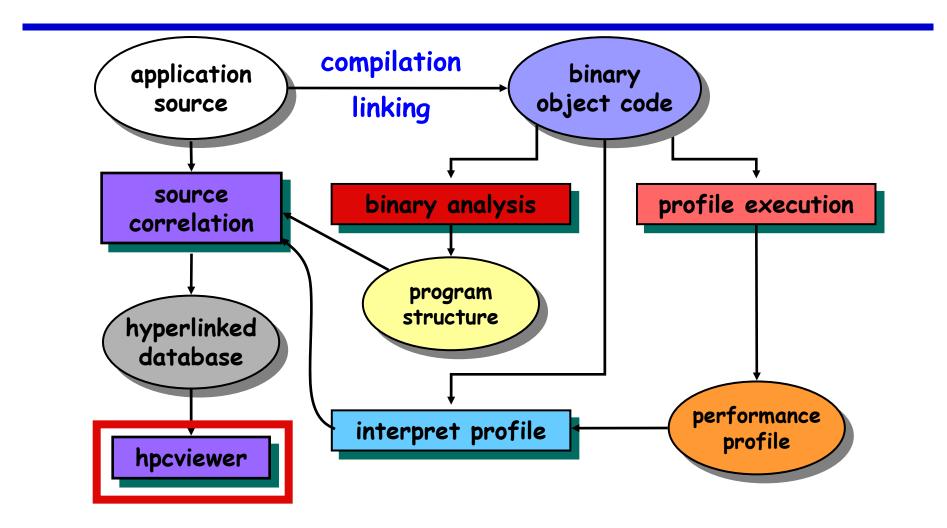
- Construct control flow graph from branches
- Identify natural <u>loop nests</u> using interval analysis
- Map instructions to source lines, procedures —leverage line map + DWARF debugging information
- Discover <u>inlined code</u>
- Normalize output to recover source-level view

Sample Flowgraph from an Executable

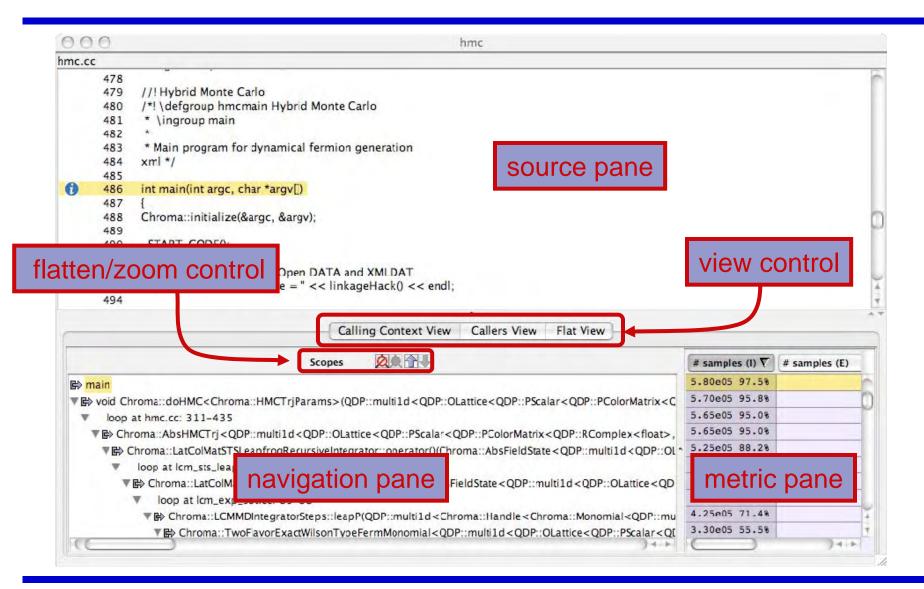
HPCToolkit System Overview

Data Correlation

Problem


-any one performance measure provides a myopic view

- some measure potential *causes* (e.g. cache misses)
- some measure effects (e.g. cycles)
- cache misses not always a problem
- -event counter attribution is often inaccurate


Approaches

- -multiple metrics for each program line
- —computed metrics (e.g. waste = peak FLOPs actual FLOPS)
 - eliminates mental arithmetic
 - serves as a key for sorting
- -hierarchical structure
 - errors with line level attribution still yield good loop-level information

HPCToolkit System Overview

hpcviewer User Interface

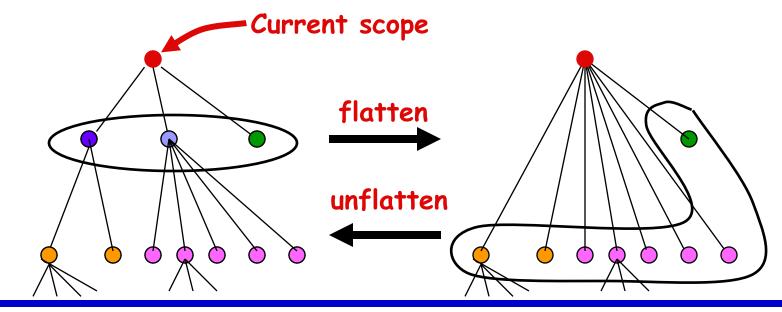
Principal hpcviewer Views

• Calling context tree view

—top-down view shows dynamic *calling contexts* in which costs were incurred

Caller's view

—bottom-up view apportions costs incurred in a routine to the routine's dynamic calling contexts


• Flat view

—aggregates all costs incurred by a routine in any context and shows the details of where they were incurred within the routine

Flattening Static Hierarchies

- Problem
 - -hierarchical view of a program is too rigid
 - -sometimes want to compare children of different parents
 - e.g. compare all loops, regardless of the routine they are inside
- Solution

-flattening elides a scope and shows its children instead

Chroma Lattice QCD Library

	0	calling	context view				
dp_p		specific.h					
	77 78 79 80	{ QMP_sum_float_array(cest, len); }					
	 81 //! Low level hook to QMP_glcbal_sum 82 inline void globalSumArray(double *dest, int len) 83 { 84 QMP_sum_double_array(dest, len); 85 } 86 		 costs for loops in CCT 				
0			 costs for inline 	 costs for inlined procedure 			
	87 88 89 90	//! Global sum on a multi1d template <class t=""> inline void globalSumArray(multi1d<t>& dest) {</t></class>	 inclusive and e 	exclusive	e cos	ts	
		Calling Context V	/iew Callers View Flat View				
_		<u> </u>					
_		Scopes 🖄		# samples (I) V	# samples	: (F)	
1.17	v 🖙 Chron ▼ loo	Scopes 2014 a::TwoFlavorExactWilsonTypeFermMonomial < QDP::multi1d < ma::MdagMSysSolverCG < QDP::OLattice < QDP::PSpinVector < p at syssolver_mdagm_cg.h: 66-70	<qdp::olattice <="" qdp::pcolormatrix<br="" qdp::pscalar="">< QDP::FColorVector < QDP::RComplex < float > , 3 ></qdp::olattice>	# samples (1) ▼ 2.30e05 38.7% 2.20e05 37.0% 2.20e05 37.0% 2.20e05 37.0%	# samples	: (F)	
1.17	is Chron Ioo Ioo Ioo	Scopes Sco	<qdp::olattice <="" qdp::pcolormatrix<br="" qdp::pscalar="">< QDP::FColorVector < QDP::RComplex < float > , 3 > tice < QDP::PSpinVector < QDP::PColorVector < QDP</qdp::olattice>	2.30e05 38.7% 2.20e05 37.0% 2.20e05 37.0% 2.20e05 37.0% 2.20e05 37.0%		:(F) 1.7% 0.8%	
1.17	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Scopes Sco	<qdp::olattice <="" qdp::pcolormatrix<br="" qdp::pscalar="">< QDP::FColorVector < QDP::RComplex < float > , 3 > tice < QDP::PSpinVector < QDP::PColorVector < QDP OLattice < QDP::PSpinVector < QDP::PColorVector < QDP DLattice < QDP::PSpinVector < QDP::PColorVector < QDP</qdp::olattice>	2.30e05 38.7% 2.20e05 37.0% 2.20e05 37.0% 2.20e05 37.0% 2.20e05 37.0% 1.85e05 31.1% 1.05e05 17.6%	1.00e04 5.00e03 1.00e04	1.7% 0.8% 1.7%	
1.17	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Scopes Sco	<qdp::olattice <="" qdp::pcolormatrix<br="" qdp::pscalar="">< QDP::FColorVector < QDP::RComplex < float > , 3 > tice < QDP::PSpinVector < QDP::PColorVector < QDP OLattice < QDP::PSpinVector < QDP::PColorVector < QDP DLattice < QDP::PSpinVector < QDP::PColorVector < QDP</qdp::olattice>	2.30e05 38.7% 2.20e05 37.0% 2.20e05 37.0% 2.20e05 37.0% 2.20e05 37.0% 1.85e05 31.1% 1.05e05 17.6% 7.00e04 11.8% 5.00e03 C.8%	1.00e04 5.00e03 1.00e04 1.50e04	1.7% 0.8% 1.7% 2.5%	
1.17	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Scopes Sco	<qdp::olattice <="" qdp::pcolormatrix<br="" qdp::pscalar="">< QDP::FColorVector < QDP::RComplex < float > , 3 > tice < QDP::PSpinVector < QDP::PColorVector < QDP OLattice < QDP::PSpinVector < QDP::PColorVector < QDP DLattice < QDP::PSpinVector < QDP::PColorVector < QDP</qdp::olattice>	2.30e05 38.7% 2.20e05 37.0% 2.20e05 37.0% 2.20e05 37.0% 2.20e05 37.0% 1.85e05 31.1% 1.05e05 17.6% 7.00e04 11.8% 5.00e03 C.8%	1.00e04 5.00e03 1.00e04	1.7% 0.8% 1.7%	
1.17	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Scopes Scopes A::TwoFlavorExactWilsonTypeFermMonomial < QDP::multi1d ma::MdagMSysSolverCG < QDP::OLattice < QDP::PSpinVector p at syssolver_mdagm_cg.h: 66–70 Chroma::SystemSolverResults_t Chroma::InvCG2 < QDP::OLattice Chroma::SystemSolverResults_t Chroma::InvCG2_a < QDP::OLattice 	<pre><qdp::olattice <="" qdp::pcolormatrix<br="" qdp::pscalar=""><qdp::pcolorvector <="" <float="" qdp::rcomplex="">, 3> tice < QDP::PSpinVector < QDP::PColorVector < QDP OLattice < QDP::PSpinVector < QDP::PColorVector < C OLattice < QDP::PSpinVector < QDP::PColorVector < QD OLattice < QDP::PSpinVector < QDP::PColorVector < QD</qdp::pcolorvector></qdp::olattice></pre>	2.30e05 38.7% 2.20e05 37.0% 2.20e05 37.0% 2.20e05 37.0% 2.20e05 37.0% 1.85e05 31.1% 1.05e05 17.6% 7.00e04 11.8% 5.00e03 C.8%	1.00e04 5.00e03 1.00e04 1.50e04	1.7% 0.8% 1.7% 2.5%	

Chroma Lattice QCD Library

000	caller's view			
e_su3dslas	h_w.c			
686 687 688 689 690 691 693 693 694 695 694 695 697 698 699 700	<pre>/* the basic operations in this routine include loading the halfspinor * from memory, multiplying it by the appropriate gauge field, doing the * spin reconstruction, and summing over directions, and saving the partial * sum over directions */ void mvv_recons_plus(size_t lo,size_t hi, int id, const void *ptr) t DECL_COMMON_ALIASES_TEMPS; const Arg_s *a =(Arg_s *)ptr; int low = (int)lo; int high = (int)hi; MY_SPINOR* spinor_field = a->spinfun;</pre>			Ð
701	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */			
701	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */)
701	MY_SSE_VECTOR* chia = a->chifun; /* a 1-d map of a 2-d array */ Calling Context View Callers View Flat View			3400
701		# samples (I)	V # sample	

S3D Solver for Turbulent, Reacting Flows

nixav	0	flat view	
		ort_m.f90 flat view	
8	/34	aittFlux(:,:,:,n_spec,:) = 0.0	
Q	735	DIRECTION: do m=1,3	
0	736	SPECIES: do n=1,n_spec-1	
	737		
	738	if (baro_switch) then	
4	739	! driving force includes gradient in mole fraction and ba	
0	740	diffFlux(:,:,:,n,m) = - Ds_mixavg(:,:,:,n) * (grad_Ys(:,:,:,r	n,m) &
	741	+ Ys(:,:,:,n) * (grad_mixMW(:,:,:,m) &	
	742	+ (1 - molwt(n)*avmolwt) * grad_P(:,:,:,m)	/Pre:
	743	else	attributes costs to loops
	744	! driving force is just the gradient in mole fraction:	allinules cosis lo 100ps
6	745	diffFlux(:,:,:,n,m) = - Ds_mixavg(:,:,:,n) * (grad_Ys(:,:,:,r	(m) implicit with $\Gamma(0)$ vector events
~	746	+ Ys(:,:,:,n) * grad_mixMW(:,:,:,m))	implicit with F90 vector synta
	747	endif	· · · · · · · · · · · · · · · · · · ·
	748		
	749	Add thermal diffusion:	
	750	if (thermDiff_switch) then	
0	751	diffFlux(:,:,:,n,m) = diffFlux(:,:,:,n,m) &	fine grain attribution to loops
	1 3 1		
0	757	De mixava(:n) * De thorm diff(:n) * molut(n	1.8
0	752	- Ds_mixavg(:,.:,n) * Rs_therm_diff(:,:,:,n) * molwt(n * aumolust * arad_T(:::m) / Tamp	18
U	753	* avmolwt * grad_T(:,:,:,m) / Temp	within a loop nest
U	753 754		18
U	753	* avmolwt * grad_T(:,:,:,m) / Temp	within a loop nest
	753 754	* avmolwt * grad_T(:,:,:,m) / Temp	18
	753 754	* avmolwt * grad_T(:,:,:,m) / Temp endif	within a loop nest
	753 754	* avmolwt * grad_T(:,:,:,m) / Temp endif Calling Context View Callers View	Within a loop nest
	753 754 755	* avmolwt * grad_T(:,;,:,m) / Temp endif Calling Context View Callers View Scopes	Flat View # samples (I) # samples (E) 1
•	753 754 755	* avmolwt * grad_T(:,:,:,m) / Temp endif Calling Context View Callers View Scopes	Image: Within a loop nest Flat View # samples (I) # samples (I) 2.17e07 11.3% 2.17e07 11.3%
•	753 754 755	* avmolwt * grad_T(:,;,:,m) / Temp endif Calling Context View Callers View Scopes	Flat View # samples (I) # samples (E) 1
v v	753 754 755 loop at r	* avmolwt * grad_T(:,:,:,m) / Temp endif Calling Context View Callers View Scopes QQ TU hixavg_transport_m.f90: 735-760 : mixavg_transport_m.f90: 736-758	Image: Within a loop nest Flat View # samples (I) # samples (I) 2.17e07 11.3% 2.17e07 11.3%
•	753 754 755 loop at r loop a	* avmolwt * grad_T(:,:,:,m) / Temp endif Calling Context View Callers View Scopes Callers View nixavg_transport_m.f90: 735-760 : mixavg_transport_m.f90: 736-758 at mixavg_transport_m.f90: 745	Within a loop nest Flat View # samples (I) # samples (E) 1 2.17e07 11.3% 2.17e07 11.3 2.17e07 11.3% 2.17e07 11.3
•	753 754 755 loop at r loop a loop	* avmolwt * grad_T(:,;,:,m) / Temp endif Calling Context View Callers View Scopes Callers View nixavg_transport_m.f90: 735-760 : mixavg_transport_m.f90: 736-758 at mixavg_transport_m.f90: 745 at mixavg_transport_m.f90: 758	# samples (I) # samples (E) 2.17e07 11.3% 2.17e07 11.3 2.17e07 11.3% 2.17e07 11.3 1.54e07 8.0% 1.54e07 8.0
v v	753 754 755 loop at r loop a loop loop	* avmolwt * grad_T(:,:,:,m) / Temp endif Calling Context View Callers View Scopes Callers View nixavg_transport_m.f90: 735-760 : mixavg_transport_m.f90: 736-758 at mixavg_transport_m.f90: 745 at mixavg_transport_m.f90: 758 at mixavg_transport_m.f90: 740	# samples (I) # samples (E) 2.17e07 11.3% 2.17e07 11.3 2.17e07 11.3% 2.17e07 11.3 1.54e07 8.0% 1.54e07 8.0
v v	753 754 755 loop at r loop a loop loop	* avmolwt * grad_T(:,;,:,m) / Temp endif Calling Context View Callers View Scopes Callers View nixavg_transport_m.f90: 735-760 : mixavg_transport_m.f90: 736-758 at mixavg_transport_m.f90: 745 at mixavg_transport_m.f90: 758	# samples (I) # samples (E) 2.17e07 11.3% 2.17e07 11.3 2.17e07 11.3% 2.17e07 11.3 1.54e07 8.0% 1.54e07 8.0

S3D Solver for Turbulent, Reacting Flows

hsf.f	90	flat view	
	199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220	<pre>! grad_Y - Species mass fraction gradients may be required in trar evaluation as well as for boundary conditions. ! !notes by ramanan - 01/05/05 !The array dimensioning can be misleading !For grad_u, 4th dimension is the direction and 5th dimension is !For grad_Ys, 4th dimension is the species and 5th dimension is call computeVectorGradient(u, grad_u) call computeScalarGradient(temp, grad_T) do n=1,n_spec call computeScalarGradient(yspecies(:,:,:,n), grad_Ys(:,:,:,n,:)) enddo !Added by Ramanan - 01/05/05 !Store the boundary grad values if(vary_in_x==1)then if (xid==0) then grad_u_x0 = grad_u(1,:,:,1,:) grad_Ys_x0 = grad_Ys(1,:,:,1) h_spec_x0 = h_spec(1,:,:) end if</pre>	s the velocity component s the direction
_		Calling Context View Callers View F	Flat View
		Scopes	# samples (I) # samples (E) V
A = A	~~~s3i loop at loop at loop	ent Aggregate Metrics d_f90.x: <unknown-fle>~~~: 0 mixavg_transport_m.f90: 735-760 rhsf.f90: 209-210 at rhsf.f90: 210 mixavg_transport_m.f90: 1004-1011</unknown-fle>	1.91e08 100.0 1.91e08 100.0 2.60e07 13.6% 2.60e07 13.6% 2.17e07 11.3% 2.17e07 11.3% 2.03e07 10.6% 1.01e07 5.4% 8.94e06 4.7% 8.94e08 4.7%

S3D Solver for Turbulent, Reacting Flows

xav	g_transpor	rt_m.f90	flat v							
	737									
	738	if (baro_switch) then								
	739	! driving force includes gradient in mole fraction and baro-diffusion:				waste metric				
	740		ixavg(:,:,:,n) * (grad_Ys(:,:,:,n,m) &							
	741		+ Ys(:,:,:,n) * (grad_mixMW(:,:,:,m) &				peak FLOPs -			
1 743 else			(n)*avmolwt) * grad_P(:,:,:,m)/Press))			actual FLOPS				
0	744	! driving force is just the g				aotaan		U		
0	745 746	$diffFlux(:,:,:,n,m) = -Ds_m$								
8	746	+ Ys(:,:,:,n) * endif	grad_mixMW(:,:,:,m))						
0	748	enun			h	ighlights	mem	orv	,	
	749	Add thermal diffusion:								
	750	if (thermDiff_switch) then			hier	archy nro	hlem	ne h	F	
		if (thermDiff_switch) then diffFlux(:,:,:,n,m) = diffFlux(:,:,:,n,m) & hierarchy problems her								
	751	$- Ds_mixavg(:,:,:,n) * Rs_therm_diff(:,:,:,n) * molwt(n) &$								
	752			molwt(n) &						
				' molwt(n) &) 4	+	
				molwt(n) &)) 4	+	
			s_therm_diff(:,:,:,n) *	nolwt(n) &))4	+	
	752		s_therm_diff(:,:,:,n) *	*	PAPI_FP_INS	PAPI_TOT_INS	PAPI_STL.) 4 .ICY	+	
	752	- Ds_mixavg(:,:,:,n) * Rs	s_therm_diff(:,:,:,n) *	at View	PAPI_FP_INS 2.05e11 100.0	PAPI_TOT_INS 4.56e11 100.0	PAPI_STL		1	
-	752 Sco Experiment	- Ds_mixavg(:,:,:,n) * Rs opes 200 Aggregate Metrics	Fla	ut View WASTE T					-	
*	752 Sco Experiment loop at mi	- Ds_mixavg(:,:,:,n) * Rs opes QQ TH Aggregate Metrics ixavg_transport_m.f90: 735-760	E_therm_diff(:,:,:,n) *	• • • • • • • • • • • • • • • • • • • •	2.05e11 100.0	4.56e11 100.0	1.59e10	100.0	-	
*	752 Sco Experiment loop at mi v loop at	- Ds_mixavg(:,:,:,n) * Rs opes QQ TT Aggregate Metrics ixavg_transport_m.f90: 735-760 mixavg_transport_m.f90: 736-758	E_therm_diff(:,:,:,n) *	x waste 1.14e12 100.0 1.30e11 11.4%	2.05e11 100.0 9.00e09 4.4% 9.00e09 4.4%	4.56e11 100.0 4.06e10 8.9%	1.59e10 1.32e09	100.0 8.3%	-	
*	752 Sco Experiment loop at mi loop at	- Ds_mixavg(:,:,:,n) * Rs opes QQ ATT Aggregate Metrics ixavg_transport_m.f90: 735-760 mixavg_transport_m.f90: 736-758 at mixavg_transport_m.f90: 745	Fla PAPI_TOT_CYC 6.73e11 100.0 6.96e10 10.3% 4.85e10 7.2%	x View WASTE ▼ 1.14e12 100.0 1.30e11 11.4% 1.30e11 11.4% 9.08e10 8.0%	2.05e11 100.0 9.00e09 4.4% 9.00e09 4.4% 6.27e09 3.1%	4.56e11 100.0 4.06e10 8.9% 4.06e10 8.9% 2.40e10 5.3%	1.59e10 1.32e09 1.32e09 1.14e09	100.0 8.3% 8.3% 7.2%	-	
*	752 Score Experiment loop at mi loop at loop at loop at	- Ds_mixavg(:,:,:,n) * Rs opes QQ ALL Aggregate Metrics ixavg_transport_m.f90: 735-760 mixavg_transport_m.f90: 736-758 at mixavg_transport_m.f90: 745 at mixavg_transport_m.f90: 758	Fla PAPI_TOT_CYC 6.73e11 100.0 6.96e10 10.3% 6.96e10 10.3% 4.85e10 7.2% 2.11e10 3.1%	x tt View WASTE ▼ 1.14e12 100.0 1.30e11 11.4% 1.30e11 11.4% 9.08e10 8.0% 3.94e10 3.4%	2.05e11 100.0 9.00e09 4.4% 9.00e09 4.4%	4.56ell 100.0 4.06el0 8.9% 4.06el0 8.9%	1.59e10 1.32e09 1.32e09	100.0 8.3% 8.3%	-	
*	752 Sco Experiment loop at mi loop at loop at loop a loop a mixav	- Ds_mixavg(:,:,:,n) * Rs opes QQ The Aggregate Metrics ixavg_transport_m.f90: 735-760 mixavg_transport_m.f90: 736-758 at mixavg_transport_m.f90: 745 at mixavg_transport_m.f90: 758 rg_transport_m.f90: 736	Fla PAPI_TOT_CYC 6.73e11 100.0 6.96e10 10.3% 6.96e10 10.3% 4.85e10 7.2% 2.11e10 3.1% 4.00e06 0.0%	x x x x x x x x x x x x x x	2.05e11 100.0 9.00e09 4.4% 9.00e09 4.4% 6.27e09 3.1%	4.56e11 100.0 4.06e10 8.9% 4.06e10 8.9% 2.40e10 5.3%	1.59e10 1.32e09 1.32e09 1.14e09 1.72e08	100.0 8.3% 8.3% 7.2% 1.1%	1	
*	752 Score Experiment loop at mi loop at loop at loop at mixav mixav	- Ds_mixavg(:,:,:,n) * Rs opes QQ QA Aggregate Metrics ixavg_transport_m.f90: 735-760 mixavg_transport_m.f90: 736-758 at mixavg_transport_m.f90: 745 at mixavg_transport_m.f90: 736 rg_transport_m.f90: 743	Fla PAPI_TOT_CYC 6.73e11 100.0 6.96e10 10.38 6.96e10 10.38 4.85e10 7.28 2.11e10 3.18 4.00e06 0.08 3.00e06 0.08	x View WASTE 1.14e12 100.0 1.30e11 11.4% 1.30e11 11.4% 9.08e10 8.0% 3.94e10 3.4% 8.00e06 0.0% 6.00e06 0.0%	2.05e11 100.0 9.00e09 4.4% 9.00e09 4.4% 6.27e09 3.1%	4.56e11 100.0 4.06e10 8.9% 4.06e10 8.9% 2.40e10 5.3% 1.66e10 3.6%	1.59e10 1.32e09 1.32e09 1.14e09 1.72e08	100.0 8.3% 8.3% 7.2%		
*	752 Score Experiment loop at mi loop at loop at loop at mixav mixav	- Ds_mixavg(:,:,:,n) * Rs opes QQ The Aggregate Metrics ixavg_transport_m.f90: 735-760 mixavg_transport_m.f90: 736-758 at mixavg_transport_m.f90: 745 at mixavg_transport_m.f90: 758 rg_transport_m.f90: 736	Fla PAPI_TOT_CYC 6.73e11 100.0 6.96e10 10.3% 6.96e10 10.3% 4.85e10 7.2% 2.11e10 3.1% 4.00e06 0.0%	x x x x x x x x x x x x x x	2.05e11 100.0 9.00e09 4.4% 9.00e09 4.4% 6.27e09 3.1%	4.56e11 100.0 4.06e10 8.9% 4.06e10 8.9% 2.40e10 5.3%	1.59e10 1.32e09 1.32e09 1.14e09 1.72e08	100.0 8.3% 8.3% 7.2% 1.1%		

- Research prototype available only on Cray XD1 —being refined for broader use
- Porting to Catamount and CNL for Cray XT3 & XT4 —support for statically-linked binaries
- Adding support for HW counter call path profiling
- Adding support for comparative analysis
 - -viewer currently analyzes node programs
 - -enhance to analyze processes
 - within executions
 - across executions

Acknowledgments

- HPCToolkit development is currently being supported by the Department of Energy's Office of Science as part of the SciDAC
 - --Performance Engineering Research Institute (PERI) under Cooperative Agreement No. DE-FC02-06ER25762
 - -Center for Scalable Application Development Software (CScADS) under Cooperative Agreement No. DE-FC02-07ER25800
 - -Experiments performed on Cray XD1 funded by the National Science Foundation under Grant CNS-0421109, and a partnership between Rice University, Advanced Micro Devices, and Cray