
 - 1 -

This work was supported in part by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United States National Nuclear Security Administration and the Department of
Energy under contract DE-AC04-94AL85000. Cray User Group Meeting; Seattle, WA; May 7-10, 2007

Experiences with the use of CrayPat in Performance

Analysis

Mahesh Rajan

Sandia National Laboratories

P.O. BOX 5800, Albuquerque, NM 87185

Abstract -- Performance analysis, tuning, and, modeling, of applications running on thousands of

processors on the Sandia Red Storm/XT3 is facilitated by the use of CrayPat tool. This investigation

describes the successful use of the tool with a variety of applications and also discuses some of the

challenges encountered in its use. Performance data is compared against other tools and measurements on

other HPC systems to fully understand serial bottlenecks and parallel scaling limitations.

Introduction:

The Red Storm/Cray XT3 at Sandia National Laboratories (SNL) is one of the fastest computers in

the world. It is used to support High-End Computing (HEC) needs at the DOE national labs. HEC systems

like the Red Storm are specifically designed to enable large capability class simulations running on

thousands of processors. Parallel performance of applications is influenced by a number of hardware and

software characteristics. Applications may also vary a great deal in their algorithmic characteristics and in

the nature of their use by the analysts. As large capability simulations on Red Storm evolve to consume

most of the compute cycles, it becomes imperative that we understand the scaling and performance

characteristics of all the applications targeted for this system. Understanding of application performance is

greatly facilitated by tools such as CrayPat [1].

Our need and use of the tool may be broadly classified into three categories; scaling analysis,

performance tuning and performance modeling. In scaling analysis we wish to understand application

scaling data obtained from a weak or strong scaling runs and relate it to fraction of execution time spent in

MPI. Deeper understanding of different MPI call overheads is useful to identify scaling limitations and

opportunities for performance improvement. Applications that have independent parallel computations

followed by some global MPI operations may sometimes exhibit non-linear growth in the fraction of MPI

time with increasing processor counts. This increase in MPI time, attributed by the tool to result from

global MPI operation, may indeed be caused by load imbalance in the preceding compute phase.

Performance tuning consists of improving serial performance and I/O and communication overhead

minimization. For serial performance, CrayPat and Apprentice2 [1], provide a wealth of information,

particularly when used in conjunction with PAPI for obtaining hardware counter data. I/O overheads can

also be obtained from CrayPat by using appropriate switches at the instrumentation step. For performance

modeling, our focus is mostly on understanding the communication time model as this has the biggest

impact on scalability. Communication time model is typically obtained from a thorough understanding of

the communication pattern and message sizes [3]. Often times performance modelers are not necessarily

the same analysts who have developed the application code. While the modelers may have some idea of

the MPI communications from the characteristics of the application and the algorithms, the details needed

for a communication model are often extracted from the use of a tool such as CrayPat that have a tracing

capability.

In the following sections we first provide a short description of four applications, followed by

CrayPat / Apprentice2 usage for our analysis. We provide wall clock run time and parallel efficiency plots

on Red Storm and other HEC systems to facilitate discussion of the application characteristics and the

impact of architectural balance on parallel performance. For each application we have also identified some

of the challenges encountered in use of the CrayPat / Apprentice2 tools. Alternate approaches to overcome

these limitations and to generate useful information, is discussed. We also identify opportunities for

performance improvement that the use of the tool has revealed. Most of this work was accomplished in the

 - 2 -

This work was supported in part by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United States National Nuclear Security Administration and the Department of
Energy under contract DE-AC04-94AL85000. Cray User Group Meeting; Seattle, WA; May 7-10, 2007

last two week of April 2007 following a hands-on tutorial by Cray held on site at Sandia National Labs on

April 16-18, 2007.

Red Storm Description:

The Red Storm machine at Sandia National Laboratories in Albuquerque, New Mexico currently

consists of 12,960 dual-core nodes with a 2.4GHz Opteron CPU with a minimum 2 GB of main memory

and a Cray SeaStar NIC/router attached via HyperTransport. The network is a 27x20x24 mesh topology,

with 2.0 GB/s bidirectional link bandwidth and 1.5 GB/s bidirectional node bandwidth. The nearest

neighbor NIC to NIC latency is specified to be 2 µsec, with 5.4 µsec measured MPI latency. The compute

nodes run the Catamount lightweight kernel, a follow-on to the Cougar/Puma design used on ASCI Red.

The I/O and administrative nodes run a modified version of SuSE Linux. The Cray-designed SeaStar

communication processor / router is designed to of-load network communication from the main processor.

It provides both send and receive DMA engines, a 500MHz PowerPC 440 processor, and 384 KB of

scratch memory. Combined with the Catamount lightweight kernel, the SeaStar is capable of providing true

OS-bypass communication. The Red Storm platform utilizes the Portals 3.3 communication interface,

developed by Sandia National Laboratory and the University of New Mexico for enabling scalable

communication in a high performance computing environment. The Portals interface provides true one-

sided communication semantics. Unlike traditional one-sided interfaces, the remote memory address for an

operation is determined by the target, not the origin. This allows Portals to act as a building block for high

performance implementations of both one-sided semantics (Cray SHMEM) and two-sided semantics (MPI-

1 send/receive). The Cray XT3 commercial offering was nearly identical to the Red Storm machine

installed at Sandia, before the recent upgrade to dual core nodes and newer SeaStar NIC. The notable

difference is that while the Red Storm communication topology is a 3-D mesh, the XT3 utilizes a 3-D torus

configuration. The difference is to allow a significant portion of the Red Storm machine to switch between

classified and unclassified operation. Key architectural highlights are listed in Table 1.

Table 1. Red Storm architectural highlights
Name Arch Network Network

Topology

Total

P

P/

Nod

e

Clo

ck

(G
Hz)

Peak

(GF/s/P

)

Streams

BW(GB/s/

P)

MPI

Lat

(µsec)

MPI

BW

(GB/s/P
)

Red

Storm

Opteron Custom Mesh / Z-

torus

25,920 2 2.4 4.8 2.5 5.4 2.1

Applications, CrayPat Results and Analysis:

a) ICARUS/DSMC:

The first application we discuss is ICARUS/DSMC. It is frequently used at SNL for neutron

generator design and for MEMS design. The Direct Simulation Monte Carlo (DSMC) method is the only

proven method for simulating noncontinuum gas flows because continuum methods break down where

particles move in ballistic trajectories with mean free path larger than cell dimensions, often because the

device is small (micro- or nano- technology) or the fluid is very low pressure as in plasma or upper

atmosphere. Unlike most flow-simulation methods, DSMC uses computational molecules (“simulators”)

that mimic real molecules by moving through space, reflecting from solid boundaries, and colliding with

one another. By sampling the velocities of large numbers of computational molecules, the gas flow is

determined.

Since DSMC is a Monte Carlo technique using computational molecules, the phases of

computation corresponding to movement, reflection and collision of the molecules parallelizes easily.

However, based on the density distribution and the decomposition of the particle grid, between stages of

computations there could be significant messaging overhead, as particles migrate among the cells. In

addition based on the analyst request to periodically dump particle, surface, and chemistry states at desired

intervals, I/O overheads can impact scalability in large parallel simulations.

 - 3 -

This work was supported in part by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United States National Nuclear Security Administration and the Department of
Energy under contract DE-AC04-94AL85000. Cray User Group Meeting; Seattle, WA; May 7-10, 2007

Unsteady DSMC simulations for a two-dimensional microbeam investigated by Gallis and

Torczynski [4] is used to set up a weak scaling study, fixing the number of simulators per processor. The

major computational stages at each time step are: a) create particles, b) move particles, c) communicate

particles that have moved to cell owned by another processor, d) compute electron / particle chemistry, f)

compute monte-carlo collisions, g) solve EM field, h) output cell, surf data at requested frequency.

Depending on the problem, some of the stages, such as the electromagenetic-field-solve, are not invoked.

Outside the key computational loop are data input and results output, whose computational overhead is

negligible in comparison to the cost of resolving the flow over thousands of time steps.

Figure 1. Parallel Efficiency and MPI Overhead for ICARUS/DSMC

Figure 1 shows use of CrayPat for performance analysis. In this benchmark, execution time for

thousand time steps are recorded, to compute parallel efficiency. One MPI process per dual-core node (1

ppn) was used. Parallel efficiency for this weak scaling run is first calculated directly from the measured

run time. The code has a nice feature in that it reports fraction of time spent in major computational stages

including the time taken for interprocessor communication. However the CrayPat tool was needed to

understand which MPI routines account for the increasing fraction of the communication time as seen in

Figure 1. At first use, CrayPat instrumentation was attempted with “pat_build –u –g mpi”. In terms of the

size of this application characterized by number of functions or procedures ICARUS is very small

compared to many other SNL applications. It has close to 200 subroutines. While instrumenting with

pat_build was successful, the execution of the instrumented code, resulted in very high execution overhead,

leading to run times that were as high as 20 times the un-instrumented code run times. This also

completely distorted the fraction of time spent in major compute stages. In view of this difficulty the initial

use of this tool was targeted for generating the kind of information shown in Figure 1 obtained easily with

“pat_build –g mpi”. Although, the code reported communication time, is seen to be different from the

CrayPat measured percentage of MPI time, the efficiency plot shows that they both capture the efficiency

trend well. Looking through the code showed that, while CrayPat accounts for all MPI time like

initialization and output, the code reports only the sum of the communication time between the compute

time steps.

To overcome the large run time distortion on instrumenting all the functions, selective

instrumentation of key functions was attempted with “pat_build –w –T move_, collide_, communicate_ -g

mpi. This was successful and run times with very little distortion to the normally measured run times

permitted further analysis with this tool. Also observed was a big improvement in the integrity of the .xf

results-file in the version 3.2 compared to earlier versions. However, the environment variable

PAT_RT_FILE_PER_PROCESS=1 was needed to generate uncorrupted .xf files for 512 processors and

above. There are certainly problems with the generation of the results .xf files for large processor counts.

At 2048 and above processor counts, even the above environment setting or even adding the companion

environment setting PAT_RT_RECORD_PE=4 (groups of 4 PES write a file) did not overcome the file

corruption problem. The file corruption is suspected to be related to I/O timing issues in the Lustre file

system. This seems to indicate that for future use with 20,000 cores on Red Storm this file corruption

issue must be resolved, as problems have been seen with order of magnitude smaller processor counts, with

Parallel Efficiency of ICARUS-DSMC MEMS code (1 ppn)

0.4

0.5

0.6

0.7

0.8

0.9

1

0 256 512 768 1024 1280 1536 1792 2048

Number of Processors

P
a
ra
ll
e
l
E
ff
ic
ie
n
c
y

Eff. From Run Time

Eff. From MPI %age from cray_pat

Eff. From Code MPI %age

ICARUS-DSMC Communication time Percentage (1 ppn)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

Number of Processors

%
a
g
e
 o
f
ti
m
e
 i
n
 M

P
I

%MPI time from Cray_pat

%MPI Time from Code output

%MPI time from Cray_pat 25.80% 25.90% 32.00% 35.30% 36.80% 39.20% 41.30%

%MPI Time from Code output 14.57% 16.13% 20.41% 26.52% 29.13% 31.03% 34.15%

32 64 128 256 512 1024 2048

 - 4 -

This work was supported in part by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United States National Nuclear Security Administration and the Department of
Energy under contract DE-AC04-94AL85000. Cray User Group Meeting; Seattle, WA; May 7-10, 2007

relatively simple applications. However the successful runs lead to the generation of .ap2 files with the

pat_report utility and analysis with apprentice2 revealed some important application characteristics that

needs to be further investigated.

Figure 2. Apprentice2 Call Graph and Overall Profile for ICARUS/DSMC

From Figure 2 it is seen that a large fraction of the execution time (25%) is in the call to

MPI_Reduce_scatter. The call graph with its use of color shading to show load imbalance, suggests that

the problem may lie elsewhere. In fact the other major function with poor load balance in the call graph is

the function move_. As described earlier in the stages of computation, following the movement of the

particles, a communication stage updates the particle in each cell before proceeding to the next time step.

This communication is first facilitated by a call to the MPI_Reduce_scatter to setup the point-to-point

communication to transfer all the particle related information from the source processor to the destination

processor. Since MPI_Reduce_scatter is a synchronous call, that follows move_, the large percentage of

time attributed to it is really a consequence of load imbalance in move_. This is seen by diving into the

load imbalance plots from the call graph and it is shown for both these functions in Figure 3.

Figure 3. Apprentice2 plots of the MPI_Reduce_scatter and move_ shows load imbalance

Attempts to use PAT_RT_SUMMARY=0 to generate trace files led to very large trace files and

difficulties with long delays generating the .ap2 files and in loading the files to Apprentice2. However

limiting the number of processors to 32 we were able to generate a trace file that was compared to trace

 - 5 -

This work was supported in part by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United States National Nuclear Security Administration and the Department of
Energy under contract DE-AC04-94AL85000. Cray User Group Meeting; Seattle, WA; May 7-10, 2007

files obtained from using the VAMPIR tool. Figure 4 shows, a VAMPIR trace for the same problem. The

ability with the VAMPIR tool to filter the data and zoom into focus on the communication messages

between compute stages was particularly useful. The message length statistics plot for the zoomed region

in VAMPIR is very useful for developing performance model. To our knowledge no equivalent

functionality is available with CrayPat/Apprentice2. However it should be mentioned that the text report

with message size bins and message counts was very helpful.

Figure 4. VAMPIR trace plots help identify messaging parameters for performance model

b) ITS Monte Carlo radiation transport:

The INTEGRATED TIGER SERIES (ITS) code is an evolving Monte Carlo radiation transport code

that has been used extensively in weapon-effect simulator design and analysis, radiation dosimetry,

radiation effect studies and medical physics research. Many individuals from the DOE labs and NIST have

been involved over the years in the development and enhancement of ITS. The different features/sections

of the code in ITS: TIGER, MITS, CEPXS, XGEN etc., are applied to an analysis under investigation

through the selection of appropriate pre-processor directives when the code is built. Physical rigor for the

analysis is provided by employing accurate cross sections, sampling distributions, and physical models for

describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV.

The ITS code is capable of analyzing particle transport through both combinatorial geometry models and

CAD models. It also has been significantly enhanced to permit adjoint transport calculations.

For the purposes of this paper we have analyzed the performance using as input, data from a real

satellite model. The physical problem solved takes advantage of the MITS mutli-group/continuous energy

electron-photon Monte Carlo transport code’s capability to address realistic three-dimensional adjoint

computations. The adjoint transport method is a powerful technique for simulating applications where the

knowledge of the particle flux is only required for a restricted region of the phase space, but where this

knowledge is required for source parameters spanning a large region of phase space. The run times for

simulations for a complex combinatorial geometry model using conventional, or forward, transport are

prohibitive and hence the adjoint calculations used in our satellite model. Although the code has been

recently updated to improve parallel scaling, we have used the older version of the code as it amplifies the

difference between a commodity cluster and a tightly integrated MPP and the difference in scaling

performance related to a performance model we had developed [5].

Figures 5 presents side-by-side the execution time plot and the parallel efficiency plot for ITS,

comparing Red Storm and a large infini-band commodity cluster, called Thunderbird [6], with Intel EM64T

processor. The weak scaling runs were set up with 1.6 Million histories per processor. The difference in

parallel efficiency for this application can be directly related to the MPI bandwidth, as we have developed a

performance model [5] that easily explains the increased overhead for the master/slave communications at

the end of each batch of history computations. As noted in Ref. [5] the algorithm for gathering the statistics

after each batch has been modified in newer version of ITS to improve parallel scaling even on systems

with lower communication performance. However, for this exercise we chose to use the older algorithm as

exaggerates the difference between Thunderbird and Red Storm, helping us understand the impact of

 - 6 -

This work was supported in part by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United States National Nuclear Security Administration and the Department of
Energy under contract DE-AC04-94AL85000. Cray User Group Meeting; Seattle, WA; May 7-10, 2007

architectural balance on scalability.

ITS; Execution Time With Starsat CG Model

Weak Scaling with 1.6M histories/PE

0

100

200

300

400

500

600

700

800

900

1 10 100 1000 10000

Number of Processors

E
x
e
c
u
ti
o
n
 T
im

e
,
S
e
c
s Thunderbird

Red Storm

ITS; Parallel Efficiency With Starsat CG Model

Weak Scaling with 1.6M histories/PE

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

Number of Processors

P
a
ra
ll
e
l
E
ff
ic
ie
n
c
y

Thunderbird

Red Storm

Figure 5. ITS Performance on Red Storm and Thunderbird

As in the case of the application ICARUS discussed above, this application on instrumentation of

all the functions with “pat_build –u –g mpi” lead to large run time distortions due to very large number of

function calls associated with computing particle distance and velocity. In this application also the

corruption of the .xf file for large processor count was observed. Due to our previous experience with the

use of VAMPIR tool for building a communication performance model, we attempted to use the

PAT_RT_SUMMARY=0 with instrumentation of only the MPI calls. Shown in Figure 6 are the VAMPIR

plots that were very helpful in developing the communication performance model. As of writing this report

the reason for the lack of details in the CrayPat/Apprentice2 trace plot was not understood. Some of the

trace .xf files produced was so large that pat_report was unable to process them in reasonable amount of

time even for 32 processor runs. However, we were able to use CrayPat with hardware counters to obtain

information on instruction mix as shown in Table 2. Table 2 also shows the results of using PAPI on a IA-

64 system and on a IBM Power3 system. The reason for looking at instruction mix on these other systems

is to understand what instructions dominate this application. This table shows that this application has a

high fraction of integer and branch instructions. The lack of counters on Opteron for integer, load, store

instructions is a serious shortcoming. CrayPat facilitated collection of hardware events through simple

modifications to environment variables, as opposed to our earlier time-consuming efforts, using PAPI API.

 Table 2 ITS instruction mix on IA 64, Power3 and Opteron

PAPI DATA

IA-64,

1.4GHz

Power3,

375MHz Opteron, 2.0GHz

TOTAL CYCLES 5,471,391,792 2,524,426,100 3,841,925,011

TOTAL INSTRUCTIONS 8,348,552,835 3,022,782,250 4,627,544,804

% Floating point ins or ops 0.026 0.052 0.040

% Load instructions 0.305 0.312 N/A

% Store Instructions 0.251 0.235 N/A

% Branch Instructions 0.084 0.137 0.199

% Integer Instructions N/A 0.376 N/A

% Unaccounted ins 0.334 -0.112 0.761

c) LAMMPS:

LAMMPS [7] is a classical molecular dynamics code that models an ensemble of particles in a

liquid, solid, or gaseous state. It can model atomic, polymeric, biological, metallic, granular, and coarse-

grained systems using a variety of force fields and boundary conditions. LAMMPS runs efficiently on

single-processor desktop or laptop machines, but is designed for parallel computers. It will run on any

 - 7 -

This work was supported in part by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United States National Nuclear Security Administration and the Department of
Energy under contract DE-AC04-94AL85000. Cray User Group Meeting; Seattle, WA; May 7-10, 2007

parallel machine that compiles C++ and supports the MPI message-passing library. This includes

distributed- or shared-memory parallel machines and Beowulf-style clusters. LAMMPS can model systems

with only a few particles up to millions or billions. See lammps.sandia.gov for information on LAMMPS

performance and scalability, and the Benchmarks.

The current version of LAMMPS is written in C++. Earlier versions were written in F77 and F90.

In the most general sense, LAMMPS integrates Newton's equations of motion for collections of atoms,

molecules, or macroscopic particles that interact via short- or long-range forces with a variety of initial

and/or boundary conditions. For computational efficiency LAMMPS uses neighbor lists to keep track of

nearby particles. The lists are optimized for systems with particles that are repulsive at short distances, so

that the local density of particles never becomes too large. On parallel machines, LAMMPS uses spatial-

decomposition techniques to partition the simulation domain into small 3d sub-domains, one of which is

assigned to each processor. Processors communicate and store "ghost" atom information for atoms that

border their sub-domain. LAMMPS is most efficient (in a parallel sense) for systems whose particles fill a

3d rectangular box with roughly uniform density.

lj.inp used in this study is a weak scaling analysis with the Lennard-Jones liquid benchmark. The

dynamics of the atomic fluid with 864,000 atoms per processor for 100 time steps is timed. Other

parameters used are: reduced density = 0.8442 (liquid), force cutoff = 2.5 sigma, neighbor skin = 0.3 sigma,

neighbors/atom = 55 (within force cutoff), with NVE time integration. The execution time and parallel

efficiency is shown in Figure 6 comparing the performance of Red Storm with Thunderbird, an infini-band

Intel cluster.

LAMMPS; Execution Time With Lennard Jones Input

Weak Scaling with 864,000 atoms/PE

0

50

100

150

200

250

300

1 10 100 1000 10000

Number of Processors

E
x
e
c
u
ti
o
n
 T
im

e
,
S
e
c
s

Thunderbird

Red Storm

LAMMPS; Parallel Efficiency With Lennard Jones Input

Weak Scaling with 864,000 atoms/PE

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000

Number of Processors

P
a
ra
ll
e
l
E
ff
ic
ie
n
c
y

Thunderbird

Red Storm

Figure 6. LAMMPS Performance on Red Storm and Thunderbird

The reason that two systems show similar performance in Figure 6 is because this application

spends very little time in communication. This was confirmed with CrayPat instrumented runs on Red

Storm, which showed that even at 2048 processor the fraction of time in MPI was less than 3%. LAMMPS

was successfully instrumented with “pat_build –u –g mpi -D trace-max=2000” after using the switch to

increase the default number of functions to be traced. The resulting instrumented code was run

successfully to generate a .xf and .ap2 files. Figure 7 shows the Apprentice2 call-graph and overall profile.

The large fraction of time spent in the function Pair_LjCut, should help with a focus for deeper analysis for

optimization. The use of small pages resulted in a 2X improvement in the run time. Further investigations

on code tuning are yet to be undertaken. The successful instrumentation of this application with over 1500

function was very encouraging and promises to meet our need for performance analysis with CaryPat for

large applications.

http://www-unix.mcs.anl.gov/mpi
http://lammps.sandia.gov/doc/Section_perf.html

 - 8 -

This work was supported in part by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United States National Nuclear Security Administration and the Department of
Energy under contract DE-AC04-94AL85000. Cray User Group Meeting; Seattle, WA; May 7-10, 2007

Figure 7. LAMMPS CrayPat/Apprentice2 plots with Call Graph and Overall Profile

d) POP:

The LANL Parallel Ocean Program, POP, is a widely used code to investigate ocean circulation models. It

has been studied extensively from a performance point of view, with the recent paper by Kerbyson and

Jones [8] providing a detailed performance model. The interest in POP at Sandia comes from a group

working on atmospheric modeling and also from our use of the code recently to compare HEC systems.

Recent scaling studies comparing performance of POP between the two large ASC capability systems, Red

Storm and Purple, revealed that POP is sensitive to operating system jitter/noise for large processor counts.

Figure 8 illustrates this observation. An environment variable MP_POLLING_INTERVAL was modified

on recommendation of IBM and LANL staff to obtain the better scaling plot for Purple shown in the Figure

8. A large polling interval was used to remedy the high cost of interrupts. These interrupts nominally

ensure the progress of the MPI communicators. It is well known among the POP research community that

in the Barotropic solve portion of the compute cycle, the pre-conditioned conjugate gradient solver used

invokes many MPI_Allreduce global operations. Our interest in the use of CrayPat was to quantify the

 - 9 -

This work was supported in part by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United States National Nuclear Security Administration and the Department of
Energy under contract DE-AC04-94AL85000. Cray User Group Meeting; Seattle, WA; May 7-10, 2007

effect of noise on such global operations. We were able to successfully instrument and run POP using

selective instrumentation of the key routines with, “pat_build –w –T baroclinic_, barotropic_, solvers_ -g

mpi” . Initial attempts at simply instrumenting all the functions with the –u switch led to core dumps upon

trying to run the instrumented code.

Figure 8. POP performance on RedStorm and Purple

Figure 9 shows the Apprentice 2 plot showing the large load imbalance in MPI_Allreduce under the

barotropic solve branch in the call graph. While this has helped us understand the application better,

further investigations on how operating system noise impacts this application significantly is yet to be

undertaken. Red Storm has inherently very low OS noise because of its use of Light Weight Kernel,

Catamount, on the compute nodes. By artificially injecting noise and using CrayPat to analyze its impact

we hope to better understand this application.

Figure 9. POP Apprentice2 plots showing load imbalance on MPI_allreduce in Baratropic solve

LANL's POP (Parallel Ocean Program) Performance

0

1

2

3

4

5

6

7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Processors

S
im
u
la
te
d
 Y
e
a
rs
 p
e
r
W
a
ll
c
lo
c
k

D
a
y

Red Storm

Purple - Original

Purple-Special ENV settings

 - 10 -

This work was supported in part by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United States National Nuclear Security Administration and the Department of
Energy under contract DE-AC04-94AL85000. Cray User Group Meeting; Seattle, WA; May 7-10, 2007

Conclusions:

CrayPat and Apprentice2 have been very helpful in performance analysis, tuning and modeling.

Much of the results generated for this paper were obtained in a short two week period following an on-site

training by Cray experts. This hands-on training in conjunction with the use of CrayPat and Apprentice

version 3.2 helped overcome most of the difficulties encountered previously. Earlier efforts with older

version of these products were frustrated because of large distortions in run time, albeit because of the

naive use of the pat_build with the –u option. Additional difficulties with the .xf file corruption with 512 or

above MPI processes limited its usability for our use with large capability class simulations. While the file

corruption process is still observed for 2048 and above processor count, writing one file per processor in a

directory as opposed to a single file, improves the situation. Another important lesson learnt is to

selectively instrument only the key functions to avoid explosive increase in the run time. We understand

that ‘sampling’ feature to be available with CrayPat in a future release will help with picking the functions

that should be selectively included for profiling, as it promises to preserve the true run time percentages of

the functions in the application. The CrayPat hardware counter use with a simple setting of an environment

variable greatly facilitates performance tuning. This saves much time compared to our previous use of

counters with PAPI API. Sandia applications, such as ITS, dominated by non-floating point operations

could benefit from, future AMD Opteron support for load, store, integer operation counters. Our

preliminary experiments with generating and using trace files was not very successful, especially when

compared to our experiences with VAMPIR. Some mechanism for filtering the data so as to reduce the

size of the trace files and filters to restrict processors and compute iterations for repeated operations may be

very helpful. However we as users need to further experiment with trace to see how best we could use it to

improve our understanding of the application behavior. One addition to the trace plots that would be very

helpful for us is a VAMPIR like message statistics plot. This plot should show data for only zoomed

region in the trace plot. In summary the feature rich and easy to use CrayPat and Apprentice2 are

invaluable in our efforts to extract the optimal performance from Red Storm. Improvements in CrayPat to

ensure uncorrupted .xf files for large processor count runs, up to the available 26000 cores on Red Storm, is

our most pressing need in view of targeted capability computing jobs. A question that is often asked of

applications running on the Red Storm is, “what is the percentage of peak performance observed”. To

answer that question we used CrayPat with three applications and the results are shown in Table 3.

Table 3. CrayPat hardware counter data with three applications

 LAMMPS – 1PE ICARUS – 32 PE SAGE – 1PE

Total Cycles 438334149027 23022223454 146844868231

Total Instructions 322843999218 855901630778 70445132839

Floating point ins. 159193963401 154415317565 12306664167

Branch Instructions 18035055818 76266692411 6753460052

Run time 182.63 secs 9.592 secs 61.18 secs

MFLOPS 871 (18.2%of peak) 16097 (10.5%of

peak)

201.13 (4.2% of

peak)

%Floating point Ins. 49% 18.04% 17.47%

%branch Ins. 5.6% 8.9% 9.58%

Computational

intensity

0.92 ops/ref 0.51 ops/ref 0.42 ops/ref

 - 11 -

This work was supported in part by the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia

Corporation, a Lockheed Martin Company, for the United States National Nuclear Security Administration and the Department of
Energy under contract DE-AC04-94AL85000. Cray User Group Meeting; Seattle, WA; May 7-10, 2007

 Often times quantities such as computational intensity, cache usage are difficult to interpret in an

absolute sense. Frequently these are used as measures to improve performance comparing them before and

after code modifications. It is also useful for an analyst to have at hand measures of these quantities for

most common computational kernels such at matrix multiply, FFT, etc. Table 4 is our attempt to have at

our disposal common measures such as computation intensity, ops per cycle, floating point operations per

TLB or cache misses, using matmul, FFT, QR factorization, and, a simple Sparse Matrix-vector operation.

These will be useful in understanding similar data obtained from applications.

Table 4. CrayPat hardware counter data with simple math kernels

Single CPU reference measures with

PAT_RT_HWPC=1,2,3,4

code

3dFFT;

256x256x256

matmul

500x500

QR Fact.

N=2350

HPCCG;

sparseMV;100x100x100

Comp.

Inten;ops/ref 1.33 1.71 1.68 0.64

MFLOPS/pat 952 4159 3738 352

MFLOPS code 1370 4187 4000 276

percent peak 19.8 86.7 77.9 7.3

fpOps/TLB miss 841.6515146 9040759.488 697703.9649 14.05636016

fpOps/D1 cache

miss 25.5290058 167.9364898 144.9081716 10.24364227

fpOps/DC_MISS 29.42427018 170.5178224 149.9578195 11.1702481

ops/cycle 0.4 1.75 1.56 0.15

References:

1) http://docs.cray.com/books/S-2396-15/S-2396-15.pdf

2) http://icl.cs.utk.edu/projects/papi/files/html_man/papi.html

3) “Predictive Performance and Scalability Modeling of a Large-Scale Application”, Kerbyson, D.J.,

et.al., SC 2001, November 2001, Denver, CO; ACM 1-58113-293-X/01/0011

4) “ An improved Reynolds-Equation Model for Gas Damping of Microbeam Motion,” Gallis, M.A.,

and Torczynski, J.R., Journal of Microelectromechanical Systems, Vol. 13, No. 4, August 2004

5) “Performance Analysis, Modeling, and Enhancement of Sandia’s Integrated TIGER series (ITS)

Coupled Electron/Photon Monte Carlo Transport Code,” Rajan, M., et.al., LACSI Symposium,

Santa Fe, NM Oct. 11-13, 2005

6) http://www.sandia.gov/news/resources/releases/2006/thunderbird.html

7) http://lammps.sandia.gov/docs

8) “A Performance Model for the Parallel Ocean Program,” Kerbyson, D.J., Jones, P.W., The

International Journal of High Performance Computing Applications, Vol. 19, No.3., Summer

2005, pp. 261-276

http://www.sandia.gov/news/resources/releases/2006/thunderbird.html
http://lammps.sandia.gov/docs

