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Abstract -- Performance analysis, tuning, and, modeling, of applications running on thousands of 

processors on the Sandia Red Storm/XT3 is facilitated by the use of CrayPat tool.  This investigation 

describes the successful use of the tool with a variety of applications and also discuses some of the 

challenges encountered in its use.  Performance data is compared against other tools and measurements on 

other HPC systems to fully understand serial bottlenecks and parallel scaling limitations. 

 

Introduction:  

 

The Red Storm/Cray XT3 at Sandia National Laboratories (SNL) is one of the fastest computers in 

the world.  It is used to support High-End Computing (HEC) needs at the DOE national labs.  HEC systems 

like the Red Storm are specifically designed to enable large capability class simulations running on 

thousands of processors.  Parallel performance of applications is influenced by a number of hardware and 

software characteristics.  Applications may also vary a great deal in their algorithmic characteristics and in 

the nature of their use by the analysts.  As large capability simulations on Red Storm evolve to consume 

most of the compute cycles, it becomes imperative that we understand the scaling and performance 

characteristics of all the applications targeted for this system.  Understanding of application performance is 

greatly facilitated by tools such as CrayPat [1].   

Our need and use of the tool may be broadly classified into three categories; scaling analysis, 

performance tuning and performance modeling.  In scaling analysis we wish to understand application 

scaling data obtained from a weak or strong scaling runs and relate it to fraction of execution time spent in 

MPI.  Deeper understanding of different MPI call overheads is useful to identify scaling limitations and 

opportunities for performance improvement.  Applications that have independent parallel computations 

followed by some global MPI operations may sometimes exhibit non-linear growth in the fraction of MPI 

time with increasing processor counts.  This increase in MPI time, attributed by the tool to result from 

global MPI operation, may indeed be caused by load imbalance in the preceding compute phase.  

Performance tuning consists of improving serial performance and I/O and communication overhead 

minimization.  For serial performance, CrayPat and Apprentice2 [1], provide a wealth of information, 

particularly when used in conjunction with PAPI for obtaining hardware counter data.   I/O overheads can 

also be obtained from CrayPat by using appropriate switches at the instrumentation step.  For performance 

modeling, our focus is mostly on understanding the communication time model as this has the biggest 

impact on scalability.  Communication time model is typically obtained from a thorough understanding of 

the communication pattern and message sizes [3].  Often times performance modelers are not necessarily 

the same analysts who have developed the application code.  While the modelers may have some idea of 

the MPI communications from the characteristics of the application and the algorithms, the details needed 

for a communication model are often extracted from the use of a tool such as CrayPat that have a tracing 

capability.     

In the following sections we first provide a short description of four applications, followed by 

CrayPat / Apprentice2 usage for our analysis.  We provide wall clock run time and parallel efficiency plots 

on Red Storm and other HEC systems to facilitate discussion of the application characteristics and the 

impact of architectural balance on parallel performance.  For each application we have also identified some 

of the challenges encountered in use of the CrayPat / Apprentice2 tools.  Alternate approaches to overcome 

these limitations and to generate useful information, is discussed.  We also identify opportunities for 

performance improvement that the use of the tool has revealed.  Most of this work was accomplished in the 
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last two week of April 2007 following a hands-on tutorial by Cray held on site at Sandia National Labs on 

April 16-18, 2007.    

 
Red Storm Description: 

 

The Red Storm machine at Sandia National Laboratories in Albuquerque, New Mexico currently 

consists of 12,960 dual-core nodes with a 2.4GHz Opteron CPU with  a minimum 2 GB of main memory 

and a Cray SeaStar NIC/router attached via HyperTransport.  The network is a 27x20x24 mesh topology, 

with 2.0 GB/s bidirectional link bandwidth and 1.5 GB/s bidirectional node bandwidth. The nearest 

neighbor NIC to NIC latency is specified to be 2 µsec, with 5.4 µsec measured MPI latency. The compute 

nodes run the Catamount lightweight kernel, a follow-on to the Cougar/Puma design used on ASCI Red.  

The I/O and administrative nodes run a modified version of SuSE Linux.  The Cray-designed SeaStar 

communication processor / router is designed to of-load network communication from the main processor. 

It provides both send and receive DMA engines, a 500MHz PowerPC  440 processor, and 384 KB of 

scratch memory. Combined with the Catamount lightweight kernel, the SeaStar is capable of providing true 

OS-bypass communication.  The Red Storm platform utilizes the Portals 3.3 communication interface, 

developed by Sandia National Laboratory and the University of New Mexico for enabling scalable 

communication in a high performance computing environment. The Portals interface provides true one-

sided communication semantics.  Unlike traditional one-sided interfaces, the remote memory address for an 

operation is determined by the target, not the origin. This allows Portals to act as a building block for high 

performance implementations of both one-sided semantics (Cray SHMEM) and two-sided semantics (MPI-

1 send/receive). The Cray XT3 commercial offering was nearly identical to the Red Storm machine 

installed at Sandia, before the recent upgrade to dual core nodes and newer SeaStar NIC. The notable 

difference is that while the Red Storm communication topology is a 3-D mesh, the XT3 utilizes a 3-D torus 

configuration. The difference is to allow a significant portion of the Red Storm machine to switch between 

classified and unclassified operation.  Key architectural highlights are listed in Table 1. 
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Applications, CrayPat Results and Analysis: 

 

a) ICARUS/DSMC: 
 

The first application we discuss is ICARUS/DSMC.  It is frequently used at SNL for neutron 

generator design and for MEMS design. The Direct Simulation Monte Carlo (DSMC) method is the only 

proven method for simulating noncontinuum gas flows because continuum methods break down where 

particles move in ballistic trajectories with mean free path larger than cell dimensions, often because the 

device is small (micro- or nano- technology) or the fluid is very low pressure as in plasma or upper 

atmosphere.  Unlike most flow-simulation methods, DSMC uses computational molecules (“simulators”) 

that mimic real molecules by moving through space, reflecting from solid boundaries, and colliding with 

one another. By sampling the velocities of large numbers of computational molecules, the gas flow is 

determined.  

 

Since DSMC is a Monte Carlo technique using computational molecules, the phases of 

computation corresponding to movement, reflection and collision of the molecules parallelizes easily.  

However, based on the density distribution and the decomposition of the particle grid, between stages of 

computations there could be significant messaging overhead, as particles migrate among the cells.  In 

addition based on the analyst request to periodically dump particle, surface, and chemistry states at desired 

intervals, I/O overheads can impact scalability in large parallel simulations.   
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Unsteady DSMC simulations for a two-dimensional microbeam investigated by Gallis and 

Torczynski [4] is used to set up a weak scaling study, fixing the number of simulators per processor.  The 

major computational stages at each time step are: a) create particles, b) move particles, c) communicate 

particles that have moved to cell owned by another processor, d) compute electron / particle chemistry, f) 

compute monte-carlo collisions, g) solve EM field, h) output cell, surf data at requested frequency. 

Depending on the problem, some of the stages, such as the electromagenetic-field-solve, are not invoked.  

Outside the key computational loop are data input and results output, whose computational overhead is 

negligible in comparison to the cost of resolving the flow over thousands of time steps. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Parallel Efficiency and MPI Overhead for ICARUS/DSMC 

 

Figure 1 shows use of CrayPat for performance analysis.  In this benchmark, execution time for 

thousand time steps are recorded, to compute parallel efficiency. One MPI process per dual-core node (1 

ppn) was used.   Parallel efficiency for this weak scaling run is first calculated directly from the measured 

run time.   The code has a nice feature in that it reports fraction of time spent in major computational stages 

including the time taken for interprocessor communication.  However the CrayPat tool was needed to 

understand which MPI routines account for the increasing fraction of the communication time as seen in 

Figure 1.  At first use, CrayPat  instrumentation was attempted with “pat_build –u –g mpi”.  In terms of the 

size of this application characterized by number of functions or procedures ICARUS is very small 

compared to many other SNL applications.  It has close to 200 subroutines.  While instrumenting with 

pat_build was successful, the execution of the instrumented code, resulted in very high execution overhead, 

leading to run times that were as high as 20 times the un-instrumented code run times.  This also 

completely distorted the fraction of time spent in major compute stages.  In view of this difficulty the initial 

use of this tool was targeted for generating the kind of information shown in Figure 1 obtained easily with 

“pat_build –g mpi”.  Although, the code reported communication time, is seen to be different from the 

CrayPat measured percentage of MPI time, the efficiency plot shows that they both capture the efficiency 

trend well.  Looking through the code showed that, while CrayPat accounts for all MPI time like 

initialization and output, the code reports only the sum of the communication time between the compute 

time steps.   

 

To overcome the large run time distortion on instrumenting all the functions, selective 

instrumentation of key functions was attempted with “pat_build –w –T move_, collide_, communicate_ -g 

mpi.  This was successful and run times with very little distortion to the normally measured run times 

permitted further analysis with this tool.  Also observed was a big improvement in the integrity of the .xf 

results-file in the version 3.2 compared to earlier versions.  However, the environment variable 

PAT_RT_FILE_PER_PROCESS=1 was needed to generate uncorrupted .xf files for 512 processors and 

above.  There are certainly problems with the generation of the results .xf files for large processor counts.  

At 2048 and above processor counts, even the above environment setting or even adding the companion 

environment setting PAT_RT_RECORD_PE=4 ( groups of 4 PES write a file) did not overcome the file 

corruption problem.  The file corruption is suspected to be related to I/O timing issues in the Lustre file 

system.   This seems to indicate that for future use with 20,000 cores on Red Storm this file corruption 

issue must be resolved, as problems have been seen with order of magnitude smaller processor counts, with 
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relatively simple applications.  However the successful runs lead to the generation of .ap2 files with the 

pat_report utility and analysis with apprentice2 revealed some important application characteristics that 

needs to be further investigated.  

 

 
 

Figure 2.  Apprentice2 Call Graph and Overall Profile for ICARUS/DSMC 

 

From Figure 2 it is seen that a large fraction of the execution time (25%) is in the call to 

MPI_Reduce_scatter.  The call graph with its use of color shading to show load imbalance, suggests that 

the problem may lie elsewhere.  In fact the other major function with poor load balance in the call graph is 

the function move_.  As described earlier in the stages of computation, following the movement of the 

particles, a communication stage updates the particle in each cell before proceeding to the next time step.  

This communication is first facilitated by a call to the MPI_Reduce_scatter to setup the point-to-point 

communication to transfer all the particle related information from the source processor to the destination 

processor.  Since MPI_Reduce_scatter is a synchronous call, that follows move_, the large percentage of 

time attributed to it is really a consequence of load imbalance in move_.  This is seen by diving into the 

load imbalance plots from the call graph and it is shown for both these functions in Figure 3. 

 

 
 

 

 

Figure 3. Apprentice2 plots of the MPI_Reduce_scatter and move_ shows load imbalance 

 

Attempts to use PAT_RT_SUMMARY=0 to generate trace files led to very large trace files and 

difficulties with long delays generating the .ap2 files and in loading the files to Apprentice2.  However 

limiting the number of processors to 32 we were able to generate a trace file that was compared to trace 
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files obtained from using the VAMPIR tool.   Figure 4 shows, a VAMPIR trace for the same problem.  The 

ability with the VAMPIR tool to filter the data and zoom into focus on the communication messages 

between compute stages was particularly useful.   The message length statistics plot for the zoomed region 

in VAMPIR is very useful for developing performance model.  To our knowledge no equivalent 

functionality is available with CrayPat/Apprentice2.  However it should be mentioned that the text report 

with message size bins and message counts was very helpful.   

 

 
 

 
 

Figure 4. VAMPIR trace plots help identify messaging parameters for performance model 

 

b) ITS Monte Carlo radiation transport:  

 

The INTEGRATED TIGER SERIES (ITS) code is an evolving Monte Carlo radiation transport code 

that has been used extensively in weapon-effect simulator design and analysis, radiation dosimetry, 

radiation effect studies and medical physics research.  Many individuals from the DOE labs and NIST have 

been involved over the years in the development and enhancement of ITS.  The different features/sections 

of the code in ITS: TIGER, MITS, CEPXS, XGEN etc., are applied to an analysis under investigation 

through the selection of appropriate pre-processor directives when the code is built.  Physical rigor for the 

analysis is provided by employing accurate cross sections, sampling distributions, and physical models for 

describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV.  

The ITS code is capable of analyzing particle transport through both combinatorial geometry models and 

CAD models.  It also has been significantly enhanced to permit adjoint transport calculations.    

For the purposes of this paper we have analyzed the performance using as input, data from a real 

satellite model.  The physical problem solved takes advantage of the MITS mutli-group/continuous energy 

electron-photon Monte Carlo transport code’s capability to address realistic three-dimensional adjoint 

computations.  The adjoint transport method is a powerful technique for simulating applications where the 

knowledge of the particle flux is only required for a restricted region of the phase space, but where this 

knowledge is required for source parameters spanning a large region of phase space.  The run times for 

simulations for a complex combinatorial geometry model using conventional, or forward, transport are 

prohibitive and hence the adjoint calculations used in our satellite model.   Although the code has been 

recently updated to improve parallel scaling, we have used the older version of the code as it amplifies the 

difference between a commodity cluster and a tightly integrated MPP and the difference in scaling 

performance related to a performance model we had developed [5].   

Figures 5 presents side-by-side the execution time plot and the parallel efficiency plot for ITS, 

comparing Red Storm and a large infini-band commodity cluster, called Thunderbird [6], with Intel EM64T 

processor.  The weak scaling runs were set up with 1.6 Million histories per processor.  The difference in 

parallel efficiency for this application can be directly related to the MPI bandwidth, as we have developed a 

performance model [5] that easily explains the increased overhead for the master/slave communications at 

the end of each batch of history computations.  As noted in Ref. [5] the algorithm for gathering the statistics 

after each batch has been modified in newer version of ITS to improve parallel scaling even on systems 

with lower communication performance.   However, for this exercise we chose to use the older algorithm as 

exaggerates the difference between Thunderbird and Red Storm, helping us understand the impact of 
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architectural balance on scalability.   

ITS; Execution Time With Starsat CG Model
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ITS; Parallel Efficiency With Starsat CG Model
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Figure 5. ITS Performance on Red Storm and Thunderbird  

 

As in the case of the application ICARUS discussed above, this application on instrumentation of 

all the functions with “pat_build –u –g mpi” lead to large run time distortions due to very large number of 

function calls associated with computing particle distance and velocity.  In this application also the 

corruption of the .xf file for large processor count was observed.  Due to our previous experience with the 

use of VAMPIR tool for building a communication performance model, we attempted to use the 

PAT_RT_SUMMARY=0 with instrumentation of only the MPI calls.   Shown in Figure 6 are the VAMPIR 

plots that were very helpful in developing the communication performance model.  As of writing this report 

the reason for the lack of details in the CrayPat/Apprentice2 trace plot was not understood.  Some of the 

trace .xf files produced was so large that pat_report was unable to process them in reasonable amount of 

time even for 32 processor runs.  However, we were able to use CrayPat with hardware counters to obtain 

information on instruction mix as shown in Table 2.  Table 2 also shows the results of using PAPI on a IA-

64 system and on a IBM Power3 system.  The reason for looking at instruction mix on these other systems 

is to understand what instructions dominate this application.  This table shows that this application has a 

high fraction of integer and branch instructions.  The lack of counters on Opteron for integer, load, store 

instructions is a serious shortcoming.  CrayPat facilitated collection of hardware events through simple 

modifications to environment variables, as opposed to our earlier time-consuming efforts, using PAPI API.    

 

  Table 2 ITS instruction mix on IA 64, Power3 and Opteron    

        

PAPI DATA 

IA-64, 

1.4GHz 

Power3, 

375MHz Opteron, 2.0GHz 

TOTAL CYCLES 5,471,391,792 2,524,426,100 3,841,925,011 

TOTAL INSTRUCTIONS 8,348,552,835 3,022,782,250 4,627,544,804 

% Floating point ins or ops 0.026 0.052 0.040 

% Load instructions 0.305 0.312 N/A 

% Store Instructions 0.251 0.235 N/A 

% Branch Instructions 0.084 0.137 0.199 

% Integer Instructions N/A 0.376 N/A 

% Unaccounted ins 0.334 -0.112 0.761 

 

 

c) LAMMPS: 

 

LAMMPS [7] is a classical molecular dynamics code that models an ensemble of particles in a 

liquid, solid, or gaseous state. It can model atomic, polymeric, biological, metallic, granular, and coarse-

grained systems using a variety of force fields and boundary conditions.  LAMMPS runs efficiently on 

single-processor desktop or laptop machines, but is designed for parallel computers. It will run on any 
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parallel machine that compiles C++ and supports the MPI message-passing library. This includes 

distributed- or shared-memory parallel machines and Beowulf-style clusters. LAMMPS can model systems 

with only a few particles up to millions or billions. See lammps.sandia.gov for information on LAMMPS 

performance and scalability, and the Benchmarks.   

The current version of LAMMPS is written in C++. Earlier versions were written in F77 and F90. 

In the most general sense, LAMMPS integrates Newton's equations of motion for collections of atoms, 

molecules, or macroscopic particles that interact via short- or long-range forces with a variety of initial 

and/or boundary conditions. For computational efficiency LAMMPS uses neighbor lists to keep track of 

nearby particles. The lists are optimized for systems with particles that are repulsive at short distances, so 

that the local density of particles never becomes too large. On parallel machines, LAMMPS uses spatial-

decomposition techniques to partition the simulation domain into small 3d sub-domains, one of which is 

assigned to each processor. Processors communicate and store "ghost" atom information for atoms that 

border their sub-domain. LAMMPS is most efficient (in a parallel sense) for systems whose particles fill a 

3d rectangular box with roughly uniform density.  

lj.inp used in this study is a weak scaling analysis with the Lennard-Jones liquid benchmark.  The 

dynamics of the atomic fluid with 864,000 atoms per processor for 100 time steps is timed.  Other 

parameters used are: reduced density = 0.8442 (liquid), force cutoff = 2.5 sigma, neighbor skin = 0.3 sigma, 

neighbors/atom = 55 (within force cutoff), with NVE time integration.   The execution time and parallel 

efficiency is shown in Figure 6 comparing the performance of Red Storm with Thunderbird, an infini-band 

Intel cluster.  

LAMMPS; Execution Time With Lennard Jones Input
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LAMMPS; Parallel Efficiency With Lennard Jones Input
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Figure 6. LAMMPS Performance on Red Storm and Thunderbird  

The reason that two systems show similar performance in Figure 6 is because this application 

spends very little time in communication.  This was confirmed with CrayPat instrumented runs on Red 

Storm, which showed that even at 2048 processor the fraction of time in MPI was less than 3%.  LAMMPS 

was successfully instrumented with “pat_build –u –g mpi -D trace-max=2000” after using the switch to 

increase the default number of functions to be traced.  The resulting instrumented code was run 

successfully to generate a .xf and .ap2 files.   Figure 7 shows the Apprentice2 call-graph and overall profile.  

The large fraction of time spent in the function Pair_LjCut, should help with a focus for deeper analysis for 

optimization.  The use of small pages resulted in a 2X improvement in the run time.  Further investigations 

on code tuning are yet to be undertaken.  The successful instrumentation of this application with over 1500 

function was very encouraging and promises to meet our need for performance analysis with CaryPat for 

large applications.  

http://www-unix.mcs.anl.gov/mpi
http://lammps.sandia.gov/doc/Section_perf.html
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Figure 7.  LAMMPS CrayPat/Apprentice2 plots with Call Graph and Overall Profile 

d) POP: 

The LANL Parallel Ocean Program, POP, is a widely used code to investigate ocean circulation models.  It 

has been studied extensively from a performance point of view, with the recent paper by Kerbyson and 

Jones [8] providing a detailed performance model.  The interest in POP at Sandia comes from a group 

working on atmospheric modeling and also from our use of the code recently to compare HEC systems.  

Recent scaling studies comparing performance of POP between the two large ASC capability systems, Red 

Storm and Purple, revealed that POP is sensitive to operating system jitter/noise for large processor counts.  

Figure 8 illustrates this observation. An environment variable MP_POLLING_INTERVAL was modified 

on recommendation of IBM and LANL staff to obtain the better scaling plot for Purple shown in the Figure 

8.  A large polling interval was used to remedy the high cost of interrupts.  These interrupts nominally 

ensure the progress of the MPI communicators.  It is well known among the POP research community that 

in the Barotropic solve portion of the compute cycle, the pre-conditioned conjugate gradient solver used 

invokes many MPI_Allreduce global operations.  Our interest in the use of CrayPat was to quantify the 
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effect of noise on such global operations.  We were able to successfully instrument and run POP using 

selective instrumentation of the key routines with, “pat_build –w –T baroclinic_, barotropic_, solvers_ -g 

mpi” .  Initial attempts at simply instrumenting all the functions with the –u switch led to core dumps upon 

trying to run the instrumented code.   

 

 

 

 

 

Figure 8. POP performance on RedStorm and Purple 

Figure 9 shows the Apprentice 2 plot showing the large load imbalance in MPI_Allreduce under the 

barotropic solve branch in the call graph.  While this has helped us understand the application better, 

further investigations on how operating system noise impacts this application significantly is yet to be 

undertaken.  Red Storm has inherently very low OS noise because of its use of Light Weight Kernel, 

Catamount, on the compute nodes.  By artificially injecting noise and using CrayPat to analyze its impact 

we hope to better understand this application. 

 

  

Figure 9. POP Apprentice2 plots showing load imbalance on MPI_allreduce in Baratropic solve  
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Conclusions:   

CrayPat and Apprentice2 have been very helpful in performance analysis, tuning and modeling.  

Much of the results generated for this paper were obtained in a short two week period following an on-site 

training by Cray experts.  This hands-on training in conjunction with the use of CrayPat and Apprentice 

version 3.2 helped overcome most of the difficulties encountered previously.  Earlier efforts with older 

version of these products were frustrated because of large distortions in run time, albeit because of the 

naive use of the pat_build with the –u option.  Additional difficulties with the .xf file corruption with 512 or 

above MPI processes limited its usability for our use with large capability class simulations.  While the file 

corruption process is still observed for 2048 and above processor count, writing one file per processor in a 

directory as opposed to a single file, improves the situation.  Another important lesson learnt is to 

selectively instrument only the key functions to avoid explosive increase in the run time.  We understand 

that ‘sampling’ feature to be available with CrayPat in a future release will help with picking the functions 

that should be selectively included for profiling, as it promises to preserve the true run time percentages of 

the functions in the application.  The CrayPat hardware counter use with a simple setting of an environment 

variable greatly facilitates performance tuning.  This saves much time compared to our previous use of 

counters with PAPI API.  Sandia applications, such as ITS, dominated by non-floating point operations 

could benefit from, future AMD Opteron support for load, store, integer operation counters.  Our 

preliminary experiments with generating  and using trace files was not very successful, especially when 

compared to our experiences with VAMPIR.  Some mechanism for filtering the data so as to reduce the 

size of the trace files and filters to restrict processors and compute iterations for repeated operations may be 

very helpful.  However we as users need to further experiment with trace to see how best we could use it to 

improve our understanding of the application behavior. One addition to the trace plots that would be very 

helpful for us is a VAMPIR like message statistics plot.   This plot should show data for only zoomed 

region in the trace plot.  In summary the feature rich and easy to use CrayPat and Apprentice2 are 

invaluable in our efforts to extract the optimal performance from Red Storm.  Improvements in CrayPat to 

ensure uncorrupted .xf files for large processor count runs, up to the available 26000 cores on Red Storm, is 

our most pressing need in view of targeted capability computing jobs. A question that is often asked of 

applications running on the Red Storm is, “what is the percentage of peak performance observed”.  To 

answer that question we used CrayPat with three applications and the results are shown in Table 3.   

Table 3.  CrayPat hardware counter data with three applications 

  LAMMPS – 1PE ICARUS – 32 PE SAGE – 1PE 

Total Cycles 438334149027 23022223454 146844868231  

Total Instructions 322843999218 855901630778 70445132839 

Floating point ins. 159193963401 154415317565 12306664167 

Branch Instructions 18035055818 76266692411 6753460052 

Run time 182.63 secs 9.592 secs 61.18 secs 

MFLOPS 871 (18.2%of peak) 16097 (10.5%of 

peak) 

201.13 (4.2% of 

peak) 

%Floating point Ins. 49% 18.04% 17.47% 

%branch Ins. 5.6% 8.9% 9.58% 

Computational 

intensity 

0.92 ops/ref 0.51 ops/ref 0.42 ops/ref 
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     Often times quantities such as computational intensity, cache usage are difficult to interpret in an 

absolute sense.  Frequently these are used as measures to improve performance comparing them before and 

after code modifications.  It is also useful for an analyst to have at hand measures of these quantities for 

most common computational kernels such at matrix multiply, FFT, etc.  Table 4 is our attempt to have at 

our disposal common measures such as computation intensity, ops per cycle, floating point operations per 

TLB or cache misses, using matmul, FFT, QR factorization, and, a simple Sparse Matrix-vector operation.  

These will be useful in understanding similar data obtained from applications. 

Table 4.  CrayPat hardware counter data with simple math kernels 

Single CPU reference measures with 

PAT_RT_HWPC=1,2,3,4     

          

          

code 

3dFFT; 

256x256x256 

matmul 

500x500 

QR Fact. 

N=2350 

HPCCG; 

sparseMV;100x100x100 

Comp. 

Inten;ops/ref 1.33 1.71 1.68 0.64 

MFLOPS/pat 952 4159 3738 352 

MFLOPS code 1370 4187 4000 276 

percent peak 19.8 86.7 77.9 7.3 

fpOps/TLB miss 841.6515146 9040759.488 697703.9649 14.05636016 

fpOps/D1 cache 

miss 25.5290058 167.9364898 144.9081716 10.24364227 

fpOps/DC_MISS 29.42427018 170.5178224 149.9578195 11.1702481 

ops/cycle 0.4 1.75 1.56 0.15 
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