
5/4/2007 1

M. Rajan

Experiences with the use of

CrayPat in Performance Analysis
Mahesh Rajan

Sandia National Laboratories, Albuquerque, NM

Cray User Group

Seattle, WA; May 7-10, 2007

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

5/4/2007 2

M. Rajan

Presentation Outline

• Use of CrayPat for application performance analysis
– To help with understanding scaling characteristics to thousands
of processors

– For code tuning

– As a tool for performance modeling

• Successful use of the tool with four applications with
brief description of the applications

• Lessons learnt and challenges encountered in its use

• A few comparisons to other tools

• Performance comparisons to other High End Computing
(HEC) systems to understand impact of architectural
balance on scalability

5/4/2007 3

M. Rajan

Applications Investigated

• ICARUS DSMC – Low density MC flow

code

• POP – Ocean Modeling

• LAMMPS – Molecular Dynamics

• ITS – MC Particle Radiation Transport

• Few simple math kernels

• HPCCG – Sparse Solver/Conjugate

gradient kernel

5/4/2007 4

M. Rajan

DSMC/ICARUS for MEMS
Oscillating microbeam in low density fluid

Moving Micro devices; Rotating Gear, Comb Drives,
pop-up mirror,

Oscillating Microbeams

Oscillating Microbeam: Transient pressure fields: left, 250 ns; right, 750 ns

Application Characteristics;

• Monte Carlo (DSMC) method is

the only proven method for

simulating non-continuum gas

flows because continuum

methods break down where

particles move in ballistic

trajectories with mean free path

larger than cell dimensions, often

because the device is small (

micro-or nano-technology) or the

fluid is very low pressure as in

plasma or upper atmosphere

• Particles (simulators) are allowed

to move, collide and exchange

energy

• Computation domain

decomposed into cells and cells

assigned to processors (scattered

or geometric)

• Particle information is exchanged

with the ‘target’ processor after

each computation step

Acknowledgment: John Torczynski, Michail

Gallis, Dan Rader, Steve Plimpton

5/4/2007 5

M. Rajan

DSMC Performance
ICARUS DSMC; Execution Time

Weak Scaling with 8125 simulators/ce ll/PE

0

0.005

0.01

0.015

0.02

0.025

0.03

0 256 512 768 1024 1280 1536 1792 2048

Number of Processors

E
x
e
c
u
ti
o
n
 T
im
e
,
h
rs Thunderbird

Red Storm

The major computational stages at each time step are:

create particles

move particles

communicate particles that have moved to cell owned by another processor

if (mod(step,stat_out))print stat

compute electron / particle chemistry

compute Monte Carlo collisions

solve EM field

output cell, surf data at requested frequency

Problem Parameters:

8125 simulators per cell/PE

domain meshed with 52,000, 0.05-mm square cells

time step is 0.1 ns and benchmark measures run time for1000 time steps
1 m/s Velocity amplitude

1 MHz Oscillation frequency

2 µm Gap height

2 µm Beam thickness

20 µm Beam width

295 K Temperature

84 kPa Ambient pressure

Nitrogen Gas

Nominal Value Property

Microbeam properties

5/4/2007 6

M. Rajan

“pat_build –g mpi” useful for modeling/analysis

ICARUS-DSMC MEMS (low density flow) Code
ICARUS-DSMC Communication time Percentage (1 ppn)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

Number of Processors

%
a
g
e
 o
f
ti
m
e
 i
n
 M
P
I

%MPI time from Cray_pat

%MPI Time from Code output

%MPI time from Cray_pat 25.80% 25.90% 32.00% 35.30% 36.80% 39.20% 41.30%

%MPI Time from Code output 14.57% 16.13% 20.41% 26.52% 29.13% 31.03% 34.15%

32 64 128 256 512 1024 2048

Parallel Efficiency of ICARUS-DSMC MEMS code (1 ppn)

0.4

0.5

0.6

0.7

0.8

0.9

1

0 256 512 768 1024 1280 1536 1792 2048

Number of Processors

P
a
ra
ll
e
l
E
ff
ic
ie
n
c
y

Eff. From Run Time

Eff. From MPI %age from cray_pat

Eff. From Code MPI %age

5/4/2007 7

M. Rajan

CrayPat successful use to understand major

computation times up to 2048 PE

5/4/2007 8

M. Rajan

MPI_Reduce_scatter 41% at 2048 PEs

But load imbalance in ‘move’ impacts parallel Efficiency

5/4/2007 9

M. Rajan

CrayPat Trace on 32PEs reveals communication

patterns and overheads

5/4/2007 10

M. Rajan

Vampir used on Thunderbird for constructing a

performance model

5/4/2007 11

M. Rajan

ICARUS; CrayPat – Lessons

Training at SNL (Lavesque & DeRose) was instrumental in much progress in the last 3 weeks

• Initial attempt at use with ‘pat_build –u –g mpi’ resulted
in 17X longer run time

• ‘pat_build –w –T move_, collide_, communicate_ -g mpi’
used to selectively instrument key functions
– Soon to come ‘profile’ feature will help identify them

• PAT_RT_FILE_PER_PROCESS=1 needed to produce
uncorrupted .xf file for greater than 1024 PEs

• Even with above and PAT_RT_RECORD_PE=4 results
in corrupted .xf files for 2048 and above PEs

• PAT_RT_SUMMARY=0 for trace leads to large files and
difficulties with apprentice2. Use with small PE count to
understand time-line characteristics

• Big improvement in CrayPat 3.2 over previous versions

5/4/2007 12

M. Rajan

POP – Ocean Modeling Code
Standard Benchmark- single block 1-d data structures 3600x2400

global grid; Sensitivity to OS noise

LANL's POP (Parallel Ocean Program) Performance

0

1

2

3

4

5

6

7

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Processors

S
im
u
la
te
d
 Y
e
a
rs
 p
e
r
W
a
ll
c
lo
c
k

D
a
y

Red Storm

Purple - Original

Purple-Special ENV settings

5/4/2007 13

M. Rajan

POP; CrayPat data120 PEs

Load Imbalance of MPI Global Operations

5/4/2007 14

M. Rajan

POP; CrayPat 120 PEs

Table 1: Profile by Function Group and Function

Time % | Time | Imb. Time | Imb. | Calls |Experiment=1

| | | Time % | |Group

| | | | | Function

| | | | | PE='HIDE'

100.0% | 1740.568341 | -- | -- | 136827465 |Total

|---

| 93.7% | 1630.995416 | -- | -- | 240 |USER

||--

|| 100.0% | 1630.995381 | 86.958475 | 5.1% | 120 |main

||==

======

| 6.3% | 109.572875 | -- | -- | 136779225 |MPI

||--

|| 59.6% | 65.329857 | 1453.807844 | 96.5% | 180000 |mpi_barrier_

|| 22.3% | 24.383676 | 51.996170 | 68.6% | 45080035 |mpi_waitall_

|| 13.9% | 15.284169 | 203.248604 | 93.8% | 7515600 |mpi_allreduce_

|| 1.6% | 1.763033 | 0.312892 | 15.2% | 41970960 |mpi_isend_

|| 1.6% | 1.712108 | 0.434041 | 20.4% | 58800 |mpi_bcast_

|| 1.0% | 1.099047 | 0.654813 | 37.6% | 41971075 |mpi_irecv_

|==

=======

5/4/2007 15

M. Rajan

POP; CrayPat data; 120 PEs

Table 3: MPI Sent Message Stats by Caller

Sent Msg | Sent Msg | 256B<= | 4KB<= | 64KB<= |Experiment=1

Total Bytes | Count | MsgSz | MsgSz | MsgSz |Function

| | <4KB | <64KB | <1MB | Caller

| | Count | Count | Count | PE[mmm]

247605586368 | 41971075 | 21762720 | 20208240 | 115 |Total

||||===

3|| 81892274688 | 13883184 | 7198688 | 6684496 | -- |solvers_pcg_

4|| | | | | | solvers_elliptic_solver_

5|| | | | | | barotropic_barotropic_driver_

6|| | | | | | step_mod_step_

7|| | | | | | MAIN_

8|| | | | | | main

|||||||||--

9|||||||| 771288000 | 128548 | 64274 | 64274 | -- |pe.33

9|||||||| 771288000 | 128548 | 64274 | 64274 | -- |pe.100

9|||||||| 0 | -- | -- | -- | -- |pe.5

|||||||||==

5/4/2007 16

M. Rajan

POP; CrayPat – Lessons

• Initial attempt at use with ‘pat_build –u –g mpi’ resulted
in core dumps at execution

• ‘pat_build –w –T baroclinic_, barotropic_, solvers_, solvers_pcg_,solvers_cgr_ -g mpi’ used
to selectively instrument key functions
– Knowledge of application prior crayPat use helps

• PAT_RT_FILE_PER_PROCESS=1 needed to produce
uncorrupted .xf file for even 120 PE runs

• PAT_RT_SUMMARY=0 for trace leads run time failures
– needs further investigation

• Want to use CrayPat to understand impact of OS noise
on applications with frequent short parallel computations
followed by small-message global operations

5/4/2007 17

M. Rajan

LAMMPS–Molecular Dynamics

Code
• LAMMPS is a classical molecular dynamics

• models an ensemble of particles in a liquid,
solid, or gaseous state

• can model atomic, polymeric, biological,
metallic, granular, and coarse-grained
systems

• variety of force fields and boundary
conditions.

• can model systems with only a few particles
up to millions or billions

• lammps.sandia.gov for information on
LAMMPS

• Benchmark:
– lj.inp used in this study

– weak scaling analysis with the Lennard-Jones liquid
benchmark.

– The dynamics of the atomic fluid with 864,000 atoms
per processor for 100 time steps is measured

– Other parameters used are: reduced density = 0.8442
(liquid), force cutoff = 2.5 sigma, neighbor skin = 0.3
sigma, neighbors/atom = 55 (within force cutoff), with
NVE time integration

LAMMPS; Execution Time With Lennard Jones Input

Weak Scaling with 864,000 atoms/PE

0

50

100

150

200

250

300

1 10 100 1000 10000

Number of Processors

E
x
e
c
u
ti
o
n
 T
im

e
,
S
e
c
s

Thunderbird

Red Storm

5/4/2007 18

M. Rajan

Good scaling because of good load balance

and flat MPI overhead

2.42048

21024

1.8512

2.1256

1.5128

2.164

1.532

%MPI time

(CrayPat)

Num. PEs

5/4/2007 19

M. Rajan

“pat_build –u –g mpi” successful

with close to 1500 functions

5/4/2007 20

M. Rajan

LAMMPS – CrayPat Analysis

2X performance improvement with small pages

5/4/2007 21

M. Rajan

LAMMPS – CrayPat Analysis
Table 1: Profile by Function Group and Function

Time % | Time |Imb. Time | Imb. | Calls |Group

| | | Time % | | Function

| | | | | PE='HIDE'

100.0% | 194.741639 | -- | -- | 651228062 |Total

|--

| 97.9% | 190.744605 | -- | -- | 651073918 |USER

||---

|| 77.6% | 148.112593 | 3.001152 | 2.1% | 3232 |PairLJCut:compute(int, int)

|| 8.7% | 16.511221 | 0.157160 | 1.0% | 192 |Neighbor:pair_bin_newton()

||===

| 2.1% | 3.996901 | -- | -- | 141344 |MPI

||---

|| 75.3% | 3.009888 | 2.180590 | 43.4% | 39744 |MPI_Send

|| 18.1% | 0.725386 | 2.562926 | 80.5% | 39744 |MPI_Wait

|| 5.1% | 0.202229 | 0.062096 | 24.3% | 1216 |MPI_Allreduce

|| 0.6% | 0.022056 | 0.000839 | 3.8% | 1792 |MPI_Bcast

Table 3: MPI Sent Message Stats by Caller

Sent Msg | Sent | MsgSz | 4KB<= | 64KB<= | 1MB<= |Function

Total Bytes | Msg | <16B | MsgSz | MsgSz | MsgSz | Caller

| Count | Count | <64KB | <1MB | <16MB | PE[mmm]

| | | Count | Count | Count |

25619726416 | 41856 | 2272 | 2 | 38462 | 1120 |Total

|---

| 25619717968 | 39744 | 160 | 2 | 38462 | 1120 |MPI_Send

||--

|| 12379279464 | 19392 | -- | -- | 19392 | -- |Comm:reverse_communicate()

3| | | | | | | Comm:__wrap_reverse_communicate()

||||--

4||| 12256252776 | 19200 | -- | -- | 19200 | -- |Verlet:iterate(int)

Small fraction of time in

MPI

MPI_send msg sizes are fairly large

5/4/2007 22

M. Rajan

ITS-Particle Radiation Transport

Problem Investigated
• Satellite combinatorial geometry

model; 600 CG bodies

• Calculations performed for this

work were adjoint point estimation

of KERMA (Kinetic Energy

Released per unit Mass

• Asses energy deposition at a point

inside of an electronics box in the

satellite

• Figure illustrates the dosage

computations where the pixels are

angular bins of the source

directions and the levels are dose

values at the same point on the

object.

HIGH DOSE

LOW DOSE

infinite-extent

planar sources

5/4/2007 23

M. Rajan

Scaling Study and Model
• Geometry replicated on all the processors

• Master/Worker computations

– Statistical tally data collected by Master after

each batch of computations

• 3.2 million histories per processor, weak

scaling analysis

tallysetupioncommunicat TTT +=

PTNT histphcompute /∗≡

5/4/2007 24

M. Rajan

Compute time is proportional to number

of histories and Measured on each

platform
Execution Time, secs

1

10

100

1000

0 20 40 80 160 320 640 1280

Number of Histories x 10**4

E
x
e
c
u
ti
o
n
 T
im
e
,
s
e
c
s

5/4/2007 25

M. Rajan

VAMPIR trace permitted construction of

communication model

Us

er

co

de

User codeMPI_

wait_

all

MPI_

Irecv

Us

er

co

de

MPI_recv Us

er

co

de

Us

er

co

de

MPIIs

end

MPI_

Isend

MPI_

wait_

all

Us

er

co

de

Us

er

co

de

MPI_

Isend

48

byte

s

48

byte

s
16.6M

bytes

48000

bytes
368

byte

s

432

byte

s

5/4/2007 26

M. Rajan

Communication Model

• Master-Worker; Many to one; tally data sent to master

• Tcomm.= {2 * T48 + T48000 + T432 + T16M + T368 } *

num_batches * (p-1)

• Input: Latency, Bandwidth(Pt-to-Pt), num_procs(p),

num_batches

• Dominant Message size is a function of (maximum

Azimuthal, Polar angle, energy bins for escape photon,

maximum surface source distributions, num materials,

num fluorescence lines)

5/4/2007 27

M. Rajan

Model Evaluated on ASC Red, Cplant,

Vplant and ICC cluster

ITS Parallel Efficiency, Model vs. Measured

VPLANT

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64 12
8
25
6
51
2

Number of Processors

P
a
ra
ll
e
l
E
ff
ic
ie
n
c
y

Model, Parallel

Efficiency

Measured, Parallel

Efficiency

Efficiency

Rabenseifners

algorithm

ITS Parallel Efficiency, Model vs. Measured

JANUS

0.8
0.82
0.84
0.86
0.88
0.9
0.92
0.94
0.96
0.98
1

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

Number of Processors

P
a
ra
ll
e
l
E
ff
ic
ie
n
c
y

Model, Parallel

Efficiency

Measured, Parallel

Efficiency

ITS Parallel Efficiency, Model vs. Measured

ICC-LIBERTY

0.6
0.64
0.68
0.72
0.76
0.8
0.84
0.88
0.92
0.96
1

1 2 4 8 16 32 64 128 256

Number of Processors

P
a
ra
ll
e
l
E
ff
ic
ie
n
c
y

Model, Parallel

Efficiency

Measured, Parallel

Efficiency

ITS Parallel Efficiency, Model vs. Measured

CPLANT

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

Number of Processors

P
a
ra
ll
e
l
E
ff
ic
ie
n
c
y

Model, Parallel

Efficiency

Measured, Parallel

Efficiency

5/4/2007 28

M. Rajan

ITS on Red Storm, Parallel Efficiency

Measured and Modeled

ITS Redstorm Parallel Efficiency

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 10 100 1000 10000

Number of Processes

Old Code Measured Apr. 05

Old Code Perf. Model

New Code Measured-Global Reduce

Rabenseifner's Algorithm Model

5/4/2007 29

M. Rajan

ITS Model Study – Explains efficiency as

related to balance factor (serial overhead = f) (at 512 cpus)

0.078,

0.927

19.44246.9261156Red Storm (

Apr. 06)

0.70, 0.582373344076CPLANT

0.53, 0.65831567.9209VPLANT

0.63, 0.61691086.8245ICC

0.03, 0.9753.20167318330Janus

Overhead,

Parallel

Efficiency, f

& (1/1+f)

Communication

time, secs

Computation

time, secs

Pt-to-pt

Latency, usec

Pt-to-pt

BW MB/s

System

5/4/2007 30

M. Rajan

ITS – Monte Carlo Particle transport
function ‘dista_’ used to track particle in the zone/object geometry; has nested

condition blocks; ‘ran_’ psuedo-random number generator;

5/4/2007 31

M. Rajan

ITS – Monte Carlo Particle transport

Need further RT_HWPC investigations to improve serial performance

5/4/2007 32

M. Rajan

Single CPU Performance Tuning

and PAPI analysis

3.916.511.69Exec. time, secs

ItaniumPower3OpteronProcessor
•Comparison of single processor execution

time:
• Opteron 2GHz: L1=64KB, L2=1MB

• Power3, 375 MHz, L1=64KB (Data); 32KB (Ins), L2=8MB

• Itanium-2, 1.4GHz, L1=32KB, L2=256KB, L3=3MB

•Compute time does not significantly reduce with cache size

•GPROF shows On Itanium dista_ children:

•gg(56%), loczon(10%), and locbod(7%)

•GPROF shows on Opteron dista_ children :

•gg(70%), loczon(9%), and locbod(6%).

•Subroutine gg mainly consists of branches for different geometries such a

polyhedron, sphere, cone, cylinder, etc. Further within the computations for each

geometrical body there are branches to compute intersection of particle trajectory

lines with geometry component surfaces and for different directions of travel.

5/4/2007 33

M. Rajan

PAPI data shows load/store and branch

instructions constitute large percentage of

total instructions

0.761-0.1120.334% Unaccounted ins

N/A0.376N/A% Integer Instructions

0.1990.1370.084% Branch Instructions

N/A0.2350.251% Store Instructions

N/A0.3120.305% Load instructions

0.0400.0520.026% Floating point ins or ops

4,627,544,8043,022,782,2508,348,552,835TOTAL INSTRUCTIONS

3,841,925,0112,524,426,1005,471,391,792TOTAL CYCLES

Opteron, 2.0GHzPower3, 375MHzIA-64, 1.4GHzPAPI DATA

•Cycles-per-instruction for both the Power 3 and Opteron is close to 0.83,

while it is 0.65 for the Itanium

•Small percentage of floating point instructions

5/4/2007 34

M. Rajan

Single Processor Performance

improvement
• No easy choice of code modifications to improve
performance

• Need to improve cache temporal locality, but the
structure of the code containing major loop over
the histories, suggests that dista_ computations
would invoke bringing different geometry data
into cache

• Compiler optimization on Power3 using inter-
procedural analysis (ipa) yielded 47%
improvement.

• Similar ipa options on Opteron and IA-64 yielded
negligible performance improvement

5/4/2007 35

M. Rajan

ITS; CrayPat – Lessons

• CrayPat/HWPC much easier to use than prior
use approaches with PAPI-API
– Code dominated by non-floating point ops; AMD
needs to provide load, store, integer counters

• Need further experimentation with trace
– One 32 PE trace file was 100 GB; .ap2 took a very
long time to load into apprentice

• Vampir like message statistics plot will be useful;
also ability to click and look at message
characteristics in zoomed trace plots helpful for
performance modeling

5/4/2007 36

M. Rajan

Use of CrayPat/PAPI to understand performance
LAMMPS; ICARUS; SAGE

0.42 ops/ref0.51 ops/ref0.92 ops/refComputational intensity

9.58%8.9%5.6%%branch Ins.

17.47%18.04%49%%Floating point Ins.

201.13 (4.2% of

peak)

16097 (10.5%of

peak)

871 (18.2%of peak)MFLOPS

61.18 secs9.592 secs182.63 secsRun time

67534600527626669241118035055818Branch Instructions

12306664167154415317565159193963401Floating point ins.

70445132839855901630778322843999218Total Instructions

146844868231
23022223454438334149027Total Cycles

SAGE – 1PEICARUS – 32 PELAMMPS – 1PE

5/4/2007 37

M. Rajan

Single cpu simple code hardware

counter data with CrayPat

0.151.561.750.4ops/cycle

11.1702481149.9578195170.517822429.42427018fpOps/DC_MISS

10.24364227144.9081716167.936489825.5290058fpOps/D1 cache miss

14.05636016697703.96499040759.488841.6515146fpOps/TLB miss

7.377.986.719.8percent peak

276400041871370MFLOPS code

35237384159952MFLOPS/pat

0.641.681.711.33Comp. Inten;ops/ref

HPCCG; sparseMV;100x100x100QR Fact. N=2350matmul 500x5003dFFT; 256x256x256code

Single CPU reference measures with PAT_RT_HWPC=1,2,3,4

5/4/2007 38

M. Rajan

Use of Cray_pat to understand performance;

Mike Heroux's’ Sparse Matrix CG solver to

compare GFLOPS

45019798.849.824.813.4PAPI

Measure:

GFLOPS

472224111.856.328.015.3Code Inst.

GFLOPS

2048102451225612864Num. Of

PEs

PAT_RT_HWPC=1 used in tests

Comparison gives confidence in use of Cray pat for GFLOPS count

pat_report version 3.0 fails at > 2048 PEs

Release 3.2 much more robust for > 2048 PEs

yod -VN used (both core used in test)

~11% difference; cray_pat measure includes other setup times not accounted in code instrumentation

5/4/2007 39

M. Rajan

Conclusions
• Ease of use is very nice!

• CrayPat and Apprentice are both feature rich!

• Helping with developing performance model for DSMC-
ICARUS

• Helped to validate ITS performance model

• ‘profile’ feature in future release will help improve
productivity

• Limited experience with trace, but nice to see features
like in VAMPIR – robustness needs improvement?

• Large PE experiments showed lustre/file corruption
problems

• Early experiments have been successful with a number
of applications, but anticipate the tool will be stressed
with SNL’s SIERRA codes

5/4/2007 40

M. Rajan

Planned use of CrayPat

• Try to quantify the gap between peak
performance and sustained; It is widening
– Multi-core archichitecture racing ahead of
concurrency

– Memory bottlenecks

• Performance modeling

• Tool for capability computing, to identify scaling
limitations and remedies

• Next generation architecture research; Impact of
architectural balance

	�Experiences with the use of CrayPat in Performance Analysis
	Presentation Outline
	Applications Investigated
	DSMC/ICARUS for MEMS�Oscillating microbeam in low density fluid
	DSMC Performance
	“pat_build –g mpi” useful for modeling/analysis �ICARUS-DSMC MEMS (low density flow) Code
	CrayPat successful use to understand major computation times up to 2048 PE
	MPI_Reduce_scatter 41% at 2048 PEs�But load imbalance in ‘move’ impacts parallel Efficiency
	CrayPat Trace on 32PEs reveals communication patterns and overheads
	Vampir used on Thunderbird for constructing a performance model
	ICARUS; CrayPat – Lessons�Training at SNL (Lavesque & DeRose) was instrumental in much progress in the last 3 weeks
	POP – Ocean Modeling Code�Standard Benchmark- single block 1-d data structures 3600x2400 global grid; Sensitivity to OS noise
	POP; CrayPat data120 PEs�Load Imbalance of MPI Global Operations
	POP; CrayPat 120 PEs
	POP; CrayPat data; 120 PEs
	POP; CrayPat – Lessons
	LAMMPS–Molecular Dynamics Code
	Good scaling because of good load balance �and flat MPI overhead
	“pat_build –u –g mpi” successful with close to 1500 functions
	LAMMPS – CrayPat Analysis�2X performance improvement with small pages
	LAMMPS – CrayPat Analysis
	ITS-Particle Radiation Transport Problem Investigated
	Scaling Study and Model
	Compute time is proportional to number of histories and Measured on each platform
	VAMPIR trace permitted construction of communication model
	Communication Model
	Model Evaluated on ASC Red, Cplant, Vplant and ICC cluster
	ITS on Red Storm, Parallel Efficiency�Measured and Modeled
	ITS Model Study – Explains efficiency as�related to balance factor (serial overhead = f) (at 512 cpus)
	ITS – Monte Carlo Particle transport�function ‘dista_’ used to track particle in the zone/object geometry; has nested condition blocks; ‘ran_’ psuedo-random number generator;
	ITS – Monte Carlo Particle transport�Need further RT_HWPC investigations to improve serial performance
	Single CPU Performance Tuning and PAPI analysis
	PAPI data shows load/store and branch instructions constitute large percentage of total instructions
	Single Processor Performance improvement
	ITS; CrayPat – Lessons
	Use of CrayPat/PAPI to understand performance �LAMMPS; ICARUS; SAGE
	Single cpu simple code hardware counter data with CrayPat
	Use of Cray_pat to understand performance; �Mike Heroux's’ Sparse Matrix CG solver to compare GFLOPS
	Conclusions
	Planned use of CrayPat

