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Presentation Outline

• Use of CrayPat for application performance analysis
– To help with understanding scaling characteristics to thousands 
of processors

– For code tuning

– As a tool for performance modeling

• Successful use of the tool with four applications with 
brief description of the applications

• Lessons learnt and challenges encountered in its use

• A few comparisons to other tools

• Performance comparisons to other High End Computing 
(HEC) systems to understand impact of architectural 
balance on scalability 
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Applications Investigated

• ICARUS DSMC – Low density MC flow 

code

• POP – Ocean Modeling

• LAMMPS – Molecular Dynamics

• ITS – MC Particle Radiation Transport

• Few simple math kernels 

• HPCCG – Sparse Solver/Conjugate 

gradient kernel



5/4/2007 4

M. Rajan

DSMC/ICARUS for MEMS
Oscillating microbeam in low density fluid

Moving Micro devices; Rotating Gear, Comb Drives, 
pop-up mirror, 

Oscillating Microbeams

Oscillating Microbeam: Transient pressure fields: left, 250 ns; right, 750 ns 

Application Characteristics; 

• Monte Carlo (DSMC) method is 

the only proven method for 

simulating non-continuum gas 

flows because continuum 

methods break down where 

particles move in ballistic 

trajectories with mean free path 

larger than cell dimensions, often 

because the device is small ( 

micro-or nano-technology) or the 

fluid is very low pressure as in 

plasma or upper atmosphere

• Particles (simulators) are allowed 

to move, collide and exchange 

energy

• Computation domain 

decomposed into cells and cells 

assigned to processors (scattered 

or geometric)

• Particle information is exchanged 

with the ‘target’ processor after 

each computation step

Acknowledgment: John Torczynski, Michail 

Gallis, Dan Rader, Steve Plimpton
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DSMC Performance
ICARUS DSMC; Execution Time 

Weak Scaling with 8125 simulators/ce ll/PE
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The major computational stages at each time step are:

create particles

move particles

communicate particles that have moved to cell owned by another processor

if (mod(step,stat_out))print stat  

compute electron / particle chemistry

compute Monte Carlo collisions

solve EM field

output cell, surf data at requested frequency

Problem Parameters:

8125 simulators per cell/PE

domain meshed with 52,000, 0.05-mm square cells 

time step is 0.1 ns and benchmark measures run time for1000 time steps
1 m/s Velocity amplitude

1 MHz Oscillation frequency 

2 µm Gap height 

2 µm Beam thickness 

20 µm Beam width 

295 K Temperature

84 kPa Ambient pressure

Nitrogen Gas

Nominal Value Property

Microbeam properties
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“pat_build –g mpi” useful for modeling/analysis 

ICARUS-DSMC MEMS (low density flow) Code 
ICARUS-DSMC Communication time Percentage ( 1 ppn)
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%MPI Time from Code output
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CrayPat successful use to understand major 

computation times up to 2048 PE
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MPI_Reduce_scatter 41% at 2048 PEs

But load imbalance in ‘move’ impacts parallel Efficiency
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CrayPat Trace on 32PEs reveals communication 

patterns and overheads
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Vampir used on Thunderbird for constructing a 

performance model
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ICARUS; CrayPat – Lessons

Training at SNL (Lavesque & DeRose) was instrumental in much progress in the last 3 weeks

• Initial attempt at use with ‘pat_build –u –g mpi’ resulted 
in 17X longer run time

• ‘pat_build –w –T move_, collide_, communicate_ -g mpi’
used to selectively  instrument key functions
– Soon to come ‘profile’ feature will help identify them

• PAT_RT_FILE_PER_PROCESS=1 needed to produce 
uncorrupted .xf file for greater than 1024 PEs

• Even with above and PAT_RT_RECORD_PE=4 results 
in corrupted .xf files for 2048 and above PEs

• PAT_RT_SUMMARY=0 for trace leads to large files and 
difficulties with apprentice2.  Use with small PE count to 
understand time-line characteristics

• Big improvement in CrayPat 3.2 over previous versions 
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POP – Ocean Modeling Code
Standard Benchmark- single block 1-d data structures 3600x2400 

global grid;  Sensitivity to OS noise

LANL's POP ( Parallel Ocean Program) Performance
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POP; CrayPat data120 PEs

Load Imbalance of MPI Global Operations
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POP; CrayPat 120 PEs

Table 1:  Profile by Function Group and Function

Time % |        Time |   Imb. Time |   Imb. |     Calls |Experiment=1

|             |             | Time % |           |Group

|             |             |        |           | Function

|             |             |        |           |  PE='HIDE'

100.0% | 1740.568341 |          -- |     -- | 136827465 |Total

|---------------------------------------------------------------------

|  93.7% | 1630.995416 |          -- |     -- |       240 |USER

||--------------------------------------------------------------------

|| 100.0% | 1630.995381 |   86.958475 |   5.1% |       120 |main

||==============================================================

======

|   6.3% |  109.572875 |          -- |     -- | 136779225 |MPI

||--------------------------------------------------------------------

||  59.6% |   65.329857 | 1453.807844 |  96.5% |    180000 |mpi_barrier_

||  22.3% |   24.383676 |   51.996170 |  68.6% |  45080035 |mpi_waitall_

||  13.9% |   15.284169 |  203.248604 |  93.8% |   7515600 |mpi_allreduce_

||   1.6% |    1.763033 |    0.312892 |  15.2% |  41970960 |mpi_isend_

||   1.6% |    1.712108 |    0.434041 |  20.4% |     58800 |mpi_bcast_

||   1.0% |    1.099047 |    0.654813 |  37.6% |  41971075 |mpi_irecv_

|==============================================================

=======



5/4/2007 15

M. Rajan

POP; CrayPat data; 120 PEs

Table 3:  MPI Sent Message Stats by Caller

Sent Msg | Sent Msg |   256B<= |    4KB<= | 64KB<= |Experiment=1

Total Bytes |    Count |    MsgSz |    MsgSz |  MsgSz |Function

|          |     <4KB |    <64KB |   <1MB | Caller

|          |    Count |    Count |  Count |  PE[mmm]

247605586368 | 41971075 | 21762720 | 20208240 |    115 |Total

||||=================================================================

3||  81892274688 | 13883184 |  7198688 |  6684496 |     -- |solvers_pcg_

4||              |          |          |          |        | solvers_elliptic_solver_

5||              |          |          |          |        |  barotropic_barotropic_driver_

6||              |          |          |          |        |   step_mod_step_

7||              |          |          |          |        |    MAIN_

8||              |          |          |          |        |    main

|||||||||------------------------------------------------------------

9||||||||    771288000 |   128548 |    64274 |    64274 |     -- |pe.33

9||||||||    771288000 |   128548 |    64274 |    64274 |     -- |pe.100

9||||||||            0 |       -- |       -- |       -- |     -- |pe.5

|||||||||============================================================
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POP; CrayPat – Lessons

• Initial attempt at use with ‘pat_build –u –g mpi’ resulted 
in core dumps at execution

• ‘pat_build –w –T baroclinic_, barotropic_, solvers_, solvers_pcg_,solvers_cgr_ -g mpi’ used 
to selectively  instrument key functions
– Knowledge of application prior crayPat use helps 

• PAT_RT_FILE_PER_PROCESS=1 needed to produce 
uncorrupted .xf file for even 120 PE runs

• PAT_RT_SUMMARY=0 for trace leads run time failures 
– needs further investigation

• Want to use CrayPat to understand impact of OS noise 
on applications with frequent short parallel computations 
followed by small-message global operations
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LAMMPS–Molecular Dynamics 

Code
• LAMMPS is a classical molecular dynamics

• models an ensemble of particles in a liquid, 
solid, or gaseous state

• can model atomic, polymeric, biological, 
metallic, granular, and coarse-grained 
systems

• variety of force fields and boundary 
conditions. 

• can model systems with only a few particles 
up to millions or billions

• lammps.sandia.gov for information on 
LAMMPS

• Benchmark: 
– lj.inp used in this study

– weak scaling analysis with the Lennard-Jones liquid 
benchmark.  

– The dynamics of the atomic fluid with 864,000 atoms 
per processor for 100 time steps is measured

– Other parameters used are: reduced density = 0.8442 
(liquid), force cutoff = 2.5 sigma, neighbor skin = 0.3 
sigma, neighbors/atom = 55 (within force cutoff), with 
NVE time integration

LAMMPS; Execution Time With Lennard Jones Input

Weak Scaling with 864,000 atoms/PE
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Good scaling because of good load balance 

and flat MPI overhead

2.42048

21024

1.8512

2.1256

1.5128

2.164

1.532

%MPI time 

(CrayPat)

Num. PEs
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“pat_build –u –g mpi” successful 

with close to 1500 functions
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LAMMPS – CrayPat Analysis

2X performance improvement with small pages
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LAMMPS – CrayPat Analysis
Table 1:  Profile by Function Group and Function

Time % |       Time |Imb. Time |   Imb. |     Calls |Group

|            |          | Time % |           | Function

|            |          |        |           |  PE='HIDE'

100.0% | 194.741639 |       -- |     -- | 651228062 |Total

|----------------------------------------------------------------

|  97.9% | 190.744605 |       -- |     -- | 651073918 |USER

||---------------------------------------------------------------

||  77.6% | 148.112593 | 3.001152 |   2.1% |      3232 |PairLJCut:compute(int, int)

||   8.7% |  16.511221 | 0.157160 |   1.0% |       192 |Neighbor:pair_bin_newton()

||===============================================================

|   2.1% |   3.996901 |       -- |     -- |    141344 |MPI

||---------------------------------------------------------------

||  75.3% |   3.009888 | 2.180590 |  43.4% |     39744 |MPI_Send

||  18.1% |   0.725386 | 2.562926 |  80.5% |     39744 |MPI_Wait

||   5.1% |   0.202229 | 0.062096 |  24.3% |      1216 |MPI_Allreduce

||   0.6% |   0.022056 | 0.000839 |   3.8% |      1792 |MPI_Bcast

Table 3:  MPI Sent Message Stats by Caller

Sent Msg |  Sent | MsgSz | 4KB<= | 64KB<= | 1MB<= |Function

Total Bytes |   Msg |  <16B | MsgSz |  MsgSz | MsgSz | Caller

| Count | Count | <64KB |   <1MB | <16MB |  PE[mmm]

|       |       | Count |  Count | Count |

25619726416 | 41856 |  2272 |     2 |  38462 |  1120 |Total

|---------------------------------------------------------------

| 25619717968 | 39744 |   160 |     2 |  38462 |  1120 |MPI_Send

||--------------------------------------------------------------

|| 12379279464 | 19392 |    -- |    -- |  19392 |    -- |Comm:reverse_communicate()

3|             |       |       |       |        |       | Comm:__wrap_reverse_communicate()

||||------------------------------------------------------------

4||| 12256252776 | 19200 |    -- |    -- |  19200 |    -- |Verlet:iterate(int)

Small fraction of time in 

MPI 

MPI_send msg sizes are fairly large 
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ITS-Particle Radiation Transport 

Problem Investigated
• Satellite combinatorial geometry 

model; 600 CG bodies 

• Calculations performed for this 

work were adjoint point estimation 

of KERMA (Kinetic Energy 

Released per unit Mass 

• Asses energy deposition at a point 

inside of an electronics box in the 

satellite

• Figure illustrates the dosage 

computations where the pixels are 

angular bins of the source 

directions and the levels are dose 

values at the same point on the 

object.

HIGH DOSE

LOW DOSE

infinite-extent

planar sources
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Scaling Study and Model
• Geometry replicated on all the processors

• Master/Worker computations

– Statistical tally data collected by Master after 

each batch of computations

• 3.2 million histories per processor, weak 

scaling analysis

tallysetupioncommunicat TTT +=

PTNT histphcompute /∗≡
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Compute time is proportional to number 

of histories and Measured on each 

platform
Execution Time, secs
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VAMPIR trace permitted construction of 

communication model 
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Communication Model

• Master-Worker; Many to one; tally data sent to master

• Tcomm.= {2 * T48 + T48000 + T432 + T16M + T368 } * 

num_batches * (p-1)

• Input: Latency, Bandwidth(Pt-to-Pt), num_procs(p), 

num_batches

• Dominant Message size is a function of (maximum 

Azimuthal, Polar angle, energy bins for escape photon, 

maximum surface source distributions, num materials, 

num fluorescence lines) 
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Model Evaluated on ASC Red, Cplant, 

Vplant and ICC cluster

ITS Parallel Efficiency, Model vs. Measured
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ITS on Red Storm, Parallel Efficiency

Measured and Modeled

ITS Redstorm Parallel Efficiency
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ITS Model Study – Explains efficiency as

related to balance factor (serial overhead = f) (at 512 cpus)

0.078, 

0.927

19.44246.9261156Red Storm ( 

Apr. 06)

0.70, 0.582373344076CPLANT

0.53, 0.65831567.9209VPLANT

0.63, 0.61691086.8245ICC

0.03, 0.9753.20167318330Janus

Overhead, 

Parallel 

Efficiency, f 

& (1/1+f)

Communication 

time, secs

Computation 

time, secs

Pt-to-pt 

Latency, usec

Pt-to-pt 

BW MB/s

System



5/4/2007 30

M. Rajan

ITS – Monte Carlo Particle transport
function ‘dista_’ used to track particle in the zone/object geometry; has nested 

condition blocks; ‘ran_’ psuedo-random number generator; 
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ITS – Monte Carlo Particle transport

Need further RT_HWPC investigations to improve serial performance
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Single CPU Performance Tuning 

and PAPI analysis

3.916.511.69Exec. time, secs

ItaniumPower3OpteronProcessor
•Comparison of single processor execution 

time:
• Opteron 2GHz: L1=64KB, L2=1MB 

• Power3, 375 MHz, L1=64KB (Data); 32KB (Ins), L2=8MB 

• Itanium-2, 1.4GHz, L1=32KB, L2=256KB, L3=3MB 

•Compute time does not significantly reduce with cache size

•GPROF shows On Itanium dista_ children:

•gg(56%), loczon(10%), and locbod(7%)

•GPROF shows on Opteron dista_ children :

•gg(70%), loczon(9%), and locbod(6%). 

•Subroutine gg mainly consists of branches for different geometries such a 

polyhedron, sphere, cone, cylinder, etc.   Further within the computations for each 

geometrical body there are branches to compute intersection of particle trajectory 

lines with geometry component surfaces and for different directions of travel. 
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PAPI data shows load/store and branch 

instructions constitute large percentage of 

total instructions

0.761-0.1120.334% Unaccounted ins

N/A0.376N/A% Integer Instructions

0.1990.1370.084% Branch Instructions

N/A0.2350.251% Store Instructions

N/A0.3120.305% Load instructions

0.0400.0520.026% Floating point ins or ops

4,627,544,8043,022,782,2508,348,552,835TOTAL INSTRUCTIONS

3,841,925,0112,524,426,1005,471,391,792TOTAL CYCLES

Opteron, 2.0GHzPower3, 375MHzIA-64, 1.4GHzPAPI DATA

•Cycles-per-instruction for both the Power 3 and Opteron is close to 0.83, 

while it is 0.65 for the Itanium 

•Small percentage of floating point instructions
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Single Processor Performance 

improvement
• No easy choice of code modifications to improve 
performance

• Need to improve cache temporal locality, but the 
structure of the code containing major loop over 
the histories, suggests that dista_ computations 
would invoke bringing different geometry data 
into cache

• Compiler optimization on Power3 using inter-
procedural analysis (ipa) yielded 47% 
improvement.

• Similar ipa options on Opteron and IA-64 yielded 
negligible performance improvement
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ITS; CrayPat – Lessons

• CrayPat/HWPC much easier to use than prior 
use approaches with PAPI-API
– Code dominated by non-floating point ops; AMD 
needs to provide load, store, integer counters

• Need further experimentation with trace
– One 32 PE trace file was 100 GB;  .ap2 took a very 
long time to load into apprentice

• Vampir like message statistics plot will be useful; 
also ability to click and look at message 
characteristics in zoomed trace plots helpful for 
performance modeling
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Use of CrayPat/PAPI to understand performance
LAMMPS; ICARUS; SAGE

0.42 ops/ref0.51 ops/ref0.92 ops/refComputational intensity

9.58%8.9%5.6%%branch Ins.

17.47%18.04%49%%Floating point Ins.

201.13 (4.2% of 

peak)

16097 (10.5%of 

peak)

871 (18.2%of peak)MFLOPS

61.18 secs9.592 secs182.63 secsRun time

67534600527626669241118035055818Branch Instructions

12306664167154415317565159193963401Floating point ins.

70445132839855901630778322843999218Total Instructions

146844868231
23022223454438334149027Total Cycles

SAGE – 1PEICARUS – 32 PELAMMPS – 1PE
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Single cpu simple code hardware 

counter data with CrayPat 

0.151.561.750.4ops/cycle

11.1702481149.9578195170.517822429.42427018fpOps/DC_MISS

10.24364227144.9081716167.936489825.5290058fpOps/D1 cache miss

14.05636016697703.96499040759.488841.6515146fpOps/TLB miss

7.377.986.719.8percent peak

276400041871370MFLOPS code

35237384159952MFLOPS/pat

0.641.681.711.33Comp. Inten;ops/ref

HPCCG; sparseMV;100x100x100QR Fact. N=2350matmul 500x5003dFFT; 256x256x256code

Single CPU reference measures with PAT_RT_HWPC=1,2,3,4
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Use of Cray_pat to understand performance; 

Mike Heroux's’ Sparse Matrix CG solver to 

compare GFLOPS

45019798.849.824.813.4PAPI 

Measure: 

GFLOPS

472224111.856.328.015.3Code Inst.

GFLOPS

2048102451225612864Num. Of 

PEs

PAT_RT_HWPC=1 used in tests

Comparison gives confidence in use of Cray pat for GFLOPS count

pat_report version 3.0  fails at > 2048 PEs   

Release 3.2 much more robust for > 2048 PEs

yod -VN used ( both core used in test) 

~11% difference; cray_pat measure includes other setup times not accounted in code instrumentation
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Conclusions 
• Ease of use is very nice!

• CrayPat and Apprentice are both feature rich! 

• Helping with developing performance model for DSMC-
ICARUS

• Helped to validate ITS performance model

• ‘profile’ feature in future release will help improve 
productivity

• Limited experience with trace, but nice to see features 
like in VAMPIR – robustness needs improvement?

• Large PE experiments showed lustre/file corruption 
problems

• Early experiments have been successful with a number 
of applications, but anticipate the tool will be stressed 
with SNL’s SIERRA codes 
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Planned use of CrayPat 

• Try to quantify the gap between peak 
performance and sustained; It is widening 
– Multi-core archichitecture racing ahead of 
concurrency

– Memory bottlenecks

• Performance modeling

• Tool for capability computing, to identify scaling 
limitations and remedies

• Next generation architecture research; Impact of 
architectural balance
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