Scalable Collection of Large MPI Traces on Red Storm

Rolf Riesen
Sandia National Laboratories*
Albuquerque, NM 87185-1110
rolf@sandia.gov

Abstract

Gathering large MPI traces and statistics is im-
portant for performance analysis and trouble
shooting of applications. Traces, with detailed
information about each single message an ap-
plication has sent, are crucial to characterize
the message passing behavior of an application.
On massively parallel systems like Red Storm
the amount of data collected impacts the per-
formance and behavior of the application and is
therefore not feasible. We present a new tool to
enable the scalable collection of large amounts
of data on Red Storm class systems!.

Keywords:
traces, virtual time

MPI, simulation,

1 Introduction

Collecting accurate message passing traces of
running applications at the MPI level is neces-
sary for several reasons. MPI traces can help
understand the behavior of applications by us-
ing the traces to visualize the communication
patterns of an application. The traces can also
be used for debugging and as input to system
simulators. These trace driven simulators can
help with learning how an application makes
use of the communication fabric and how an ap-

*Sandia is a multiprogram laboratory operated by San-
dia Corporation, a Lockheed Martin Company, for the
United States Department of Energy under contract DE-
AC04-94AL85000.

I'This paper presents data that was collected after a bug
was fixed that skewed the results presented at CUG 2007.

plication will perform on a next-generation ma-
chine.

Many tools for collecting MPI traces exist,
but all of them have drawbacks. Some tools
generate detailed traces, but the amount of data
collected is large and requires time to send to
storage. This influences the run time, and some-
times the behavior, of the application under
measurement. The timestamps in the trace data
are influenced as well.

Other tools compress the amount of gener-
ated trace data and try to perturb the run time
behavior of the application as little as possible.
Unfortunately, pre-analyzing and compressing
the trace data still takes CPU cycles away from
the application. Furthermore, the compression
is usually not lossless and timing data, event or-
dering information, or message envelope infor-
mation gets lost with these methods.

Some users of trace data are interested in the
message data itself. For example, a trace driven
simulator that simulates one node of a paral-
lel application needs to feed the process on that
node valid data. Otherwise the process might
not behave in the same way as it would outside
the simulator, when it is running as part of a par-
allel application. Collecting the application data
of every MPI message during an application run
generates enormous trace files and greatly influ-
ences the timing of an application.

In this paper we describe a tool named Se-
shat? [1] which we have extended to allow trac-
ing of MPI applications. Seshat is execution
driven and has a feedback channel into the ap-

2Seshat was the Egyptian goddess of measurement and
recording.

plication that it uses to update the virtual time
the application is running in. This makes it pos-
sible to collect and store arbitrary amounts of
data while the application is running. While
the wall-clock time increases, the application or
benchmark is not aware of that and reports the
same run and iteration time whether it runs na-
tively, with the simulator attached, or writing
trace data.

In Section 2 we briefly describe Seshat and
its capabilities. We then describe, in Section.3,
the experiments we conducted to test the tracing
capabilities of Seshat, and analyze the data we
have gathered. We conclude the paper with the
related work Section 4, and our plans for future
work and a summary in Section 5.

2 Seshat

In this section we briefly describe what Se-
shat [1] is and how it can collect trace data.

Seshat is an execution-driven network sim-
ulator. It is written as a library that is linked
with an MPI application. No instrumentation
of the application code is necessary; relinking it
with Seshat is enough. We have tested this with
C and Fortran applications using MPI-1.1 and
MPI-2. Seshat makes use of the profiling in-
terface that is part of the MPI standard (PMPI).
With hooks into most of the MPI calls, Seshat is
able to initialize itself, collect information about
the running application, and adjust the applica-
tion’s virtual time frame through the profiling
interface. For example, during MPI_Init Seshat
reads a configuration file, sets up the a com-
municator for the nodes of the application, and
starts the network simulator.

Figure 1 depicts a conceptual view of Seshat.
The application runs as before, albeit within a
communicator that Seshat has setup for the ap-
plication nodes only. MPI_COMM_WORLD encom-
passes the application and the nodes occupied
by the network simulator. In the example of
Figure 1, the application runs on four nodes,
while the job was started on five nodes; giving
the extra node to the network simulator. When-
ever the application makes use of MPI_COMM_-

\

Network N
Simulator

delay=L +s/B

MPI_COMM_WORLD
/
Se=mlod g
|

2
=
%
b
°
S
*

h
Eh
App App
Node 1 Node 2

app_communicator

Figure 1: Conceptual View of Seshat

WORLD, Seshat, through its hooks at the profiling
interface level, replaces it with the communica-
tor it created for the application only. There-
fore, the application never learns of Seshat’s
presence and assumes it is running on only four
nodes.

The network simulator that is currently part
of Seshat is very simple. It models the point-to-
point and collective performance characteristics
of MPI on the Cray XT3™ Red Storm com-
puter [2, 3] installed at Sandia National Labora-
tories. It does so using a C function that calcu-
lates the time a message spends in the network
based on the message length. The current simu-
lator is not aware of Red Storm’s topology and
cannot model congestion in the network. We
have plans to turn the network simulator itself
into a parallel program and simulate the actual
network to gain more detailed results in the fu-
ture.

Whenever the application sends a message,
it travels through the network as before and ar-
rives at its destination. In addition, the Seshat
wrappers send an event with the message enve-
lope information to the network simulator. The
simulator calculates a delay time and sends an
event with that information to the node that re-
ceived the MPI message. A receiving node ac-
cepts the MPI message and then waits for the
corresponding event from the network simu-
lator. Based on the information contained in
the event, the receiving node adjusts its vir-
tual time. The adjustment is usually backwards,
since transport and processing of the events

takes longer than the transport of the application
MPI message alone. However, in cases where
Seshat simulates a slower network, the adjust-
ment can be forward.

The application or benchmark uses MPI_-
Wtime to report run time. Seshat controls MPI_-
Wtime and returns the local virtual time instead
of wall-clock time. The local virtual clocks are
synchronized through the messages and events
sent among the application processes as de-
scribed by Lamport in [4]. That means that the
application reports the same run time as it does
without Seshat attached to it. The time stamps
for each MPI message are accurate (within the
virtual time frame) and virtual time progresses
based on application behavior and the parame-
ters of the network Seshat is simulating. Time
spent inside the network simulator extends the
wall-clock run time, but does not influence the
virtual time of the application.

This independence of the time system the ap-
plication runs in, plus the knowledge about ev-
ery single message of the application under test,
allows the network simulator to generate MPI
traces.

2.1 MPI Traces

The trace format for this initial prototype is very
simple. A single ASCII text line is written for
every message event that arrives at the network
simulator. For a start we collect the information
described in Table 1. Each line consists of nine
white-space separated fields. Each line in the
trace file consumes about 90 bytes.

Currently, no buffering or attempt at com-
pression takes place. The data presented in
the next section is from test runs where the
trace file was written to the user’s NFS-mounted
home directory. Obviously writing to a high-
performance storage system, buffering the data,
and maybe compacting it, would reduce the
wall-clock time for the application under test.

Table 1: Seshat Trace File Format

Field Description

o

Event type

Time of event at network simulator
Source (or root) of message (collective)
Destination

Virtual send time

Simulated time in network

MPI tag

Type of collective (or point-to-point)
Length of message in bytes

0NN AW

3 Experiments

In this section we describe the experiments we
have performed to test our assumption that ar-
bitrarily large trace files can be written by Se-
shat’s network simulator without impacting the
the run time the application observes. We do
this by running several benchmarks and com-
pare their reported run times to the times they
report after a large trace file has been written.

3.1 Experimental Setup

All experiments described in this section were
conducted on Sandia’s Cray XT3™ Red Storm
machine. It was running version 1.5.39 of the
Cray system software. The performance char-
acteristics of that software release are also the
ones Seshat simulates.

We use some of the NAS parallel benchmarks
version 3.2.1 to verify our claims. These bench-
marks are simple compared to real applications.
However, we are only interested in a proof of
concept. Any code that sends and receives a
large number of MPI messages will do. In some
tests we write so much information that we slow
down the benchmark so that it takes several
hours of wall-clock time to complete. Yet, it
reports the same few seconds or minutes of (vir-
tual) run time as it would when run natively.

We ran all of our benchmarks several times
for this study; either in native mode (Seshat

300.0 ms

250.0 ms

200.0 ms

150.0 ms

Time

100.0 ms

50.0 ms

/
/" wi/o tracing
w/ tracing

0.0 s

16k 32k 64k 96 k 128k 160 k 192k
Number of ints exchanged

Figure 2: All-to-all Benchmark on 128 Nodes
with, and without Tracing

not linked to the application) or trace-enabled
mode. We ran each series of tests from within
the same PBS script to guarantee that all tests
run on the same set of nodes. For each series
we interleaved traced and non-traced runs. Red
Storm was in production use during these tests,
but through its design, the machine dedicates
sets of nodes to a single application.

For our experiments we make no attempt to
reduce the wall-clock run time of our bench-
marks. We write data to the user’s NFS-
mounted home directory and our trace files are
simple ASCII text; one line per event as de-
scribed in Section 2.1.

3.2 Time Perceived by the Application

We conducted our first test with a benchmark
that performs all-to-all operations in a tight loop
and reports the average time of an MPI_Alltoall
for increasing message sizes. This is the bench-
mark we use to calibrate Seshat’s simulation of
collective operations. Therefore, we expect to
see a very close match between native and trace-
enabled reported run time. Figure 2 shows the
measured results.

The graph represents ten interleaved runs;
five native and five traced. The reported run
times match each other so well that the ten plot
lines almost completely overlap each other.

For our next test we ran the NAS LU class A
benchmark. Figure 3 shows the results on four
nodes, and Figure 4 on 64 nodes. We ran each
one five times in native mode and fives times

with tracing enabled. The runs are labeled “Run
A” through “Run E”, and the y-axis shows the
runtime as reported by the benchmark.

30 st

25 s r

20 s

15 s

Reported Time

10 s

Simulated with tracing
Native —&—

RunA RunB RunC RunD RunE
Five Test Runs

Figure 3: Five Runs of the Class A LU Bench-
mark on 4 Nodes

25 s r

2sr

15 s

Reported Time

Simulated with tracing
_Native —A—

RunA RunB RunC RunD RunE
Five Test Runs

Figure 4: Five Runs of the Class A LU Bench-
mark on 64 Nodes

These initial results are encouraging, since
the reported native run times and with tracing
turned on are nearly identical, despite the fact
that the traced versions spend use much more
wall-clock time.

3.3 Trace File Size and Wall-clock
Time

Table 2 lists the wall-clock times for each in-
dividual run The first time is the wall-clock
time of one run without tracing (Seshat is not
attached to the application), while the second
time shown includes writing the trace file. The
table also lists the number of events in each

Table 2: Trace File Collection Statistics

Code Nodes Events | Wall-clock time | Trace size | Simulation | Proportional

native | w/ trace error error
All-to-all 128 | 4,826,000 | 1,300s | 15,671s 397 MB -1.2% -0.099%
CG, A 16 47,149 2s 145s 4 MB -20% -0.138%
CG, A 64 269,501 2s 839s 22 MB -15% -0.036%
CG, B 64 | 1,279,421 8s | 3,874s 102 MB -29% -0.060%
CG, C 64 | 1,279,421 15s | 3,874s 103 MB -13% -0.050%
LU, A 4 126,635 30s 391s 11 MB -1.5% -0.115%
LU, A 16 759,699 10s | 2,288s 61 MB -6.3% -0.028%
LU, A 64 | 3,545,003 4s | 10,581s 285 MB 1.6% 0.001%
SP, A 16 154,260 12s 467s 13 MB -6.5% -0.167%
SP, A 64 | 1,233,012 Ss | 3,734s 101 MB -18% -0.024%

trace file (there is one file per run) and the size
of the file.

The second last column of the table shows
the increase or decrease in reported run time
when tracing is enabled compared to the re-
ported run time of the native run. Some of the
reported times with tracing enabled are further
away from the native run times than we had an-
ticipated. In proportion to the wall-clock time
ratio between native and traced runs, these er-
rors are minimal, as the last column of Table 2
shows. We divide the traced wall-clock time by
the native wall-clock time and use the result to
divide the simulation error rate to arrive at the
numbers in the last column.

Nevertheless, it seems there is a timing prob-
lem with the current version of the network sim-
ulator. Investigating further, we ran CG on 64
nodes using the class A, B, and C versions. We
ran each class seven times in native mode in-
terleaved with seven runs under the simulator.
This time however, we left tracing turned off.
Table 3 shows the results.

Table 3 shows that even without possible
tracing interference, the network simulator does
not match the reported wall-clock time of a na-
tive CG run. This is a problem that needs to
be investigated and fixed. However, it shows
that tracing itself is not the culprit and the ob-
served variance with tracing enabled is due to a

problem in the simulator itself, not the tracing
capability.

3.4 Updated Results

The results presented at CUG 2007 were early
and based on a version of Seshat that had a seri-
ous bug in it. In This section we show updated
results after the bug has been fixed.

Figures 5 and 6 show SP, class A on 16 and
64 nodes. With the virtual time bug present,
these results were much worse originally.

12 s

10 s

8 s

Reported Time
(o))
172}

Simulated with tracing
_ Native

RunA RunB RunC RunD RunE
Five Test Runs

Figure 5: NAS SP Class A on 16 Nodes

Figures 7 and 8 show CG, class A on 16 and
256 nodes. Originally the reported times under
tracing were 48% and 385% higher than native.

Table 3: Native CG and Simulated but no Tracing Runs

Code | Nodes | Wall-clock time | Simulation | Proportional
native | simulated error error
CGA 64 1s 32s 75% 2.344%
CGB 64 7s 44s -22% 3.460%
CGC 64 14s 49s -12% 3.429%
12 s 1s
sy 0.8ms
é) o é 0.6ms
08)- % 04ms
44 4 s : K
A A 4, a
2s 0.2ms : 1
Simulated with tracing ‘/mmrﬁm‘
0s _Native —A— 0s _Native —A—

RunA RunB RunC RunD RunE
Five Test Runs

Figure 6: NAS SP Class A on 64 Nodes

RunA RunB RunC RunD RunE
Five Test Runs

Figure 8: NAS CG Class A on 256 Nodes

1s
1s
0.8ms r
0.8ms g
iz 06ms
2 3
£ 0.6ms t T 5
Ee) = 0.4ms r
e A A A A —A e
5 oams) PR G
x 0.2ms r
Simulated with tracing
0.2ms r 0s | ‘ ‘ _Native —&—
Simulated with t’(‘acti.ng RunA RunB RunC RunD RunE
ative)
0s - - Five Test Runs

RunA RunB RunC RunD RunE
Five Test Runs

Figure 7: NAS CG Class A on 16 Nodes

To see whether the original problem was re-
lated to the class of benchmark, we ran CG on
64 nodes as a Class A (Figure 9), Class B (Fig-
ure 10),and Class C (Figure 11). With the error
present before, the errors were 110% for class
A, 25% for class B, and 3,557% for class C.

Finally we looked at CG runs without tracing
to evaluate the impact of simulation alone.

Figure 9: NAS CG Class A on 64 Nodes

4 Related Work

Many tools to collect MPI message information
exist. The difficulty of collecting large, accurate
traces has been well documented; e.g., in [5].
The MPI profiling interface provides an easy
way to link into an existing application. Most
of the existing tools fall into one of two cate-
gories. In the first category are tools that col-
lect detailed information, but by doing so, in-
fluence the timing behavior of the application

10 s
8 s
g B Y G
= 6's
°
2L
o
2 4's
14
2s
Simulated with tracing
0s _Native —A—

RunA RunB RunC RunD RunE
Five Test Runs

Figure 10: NAS CG Class B on 64 Nodes

14 s ¢

12 s A A A

10 s +

Reported Time

Simulated with tracing
Native —&—

RunA RunB RunC RunD RunE
Five Test Runs

Figure 11: NAS CG Class C on 64 Nodes

st Class C
12 s | A—A A A A A A
(] L
£ 10 s
=
B 8s Class B
E’? 6| A—A A A A A A
4s | simulatec, no tr..cing
s native —&—
2s Class A
A A A A A A A
0s

Run ARun BRun CRun DRun ERun FRun G
Seven Test Runs

Figure 12: Simulated NAS CG on 64 Nodes, no
tracing

under test.

Tools in the second category only collect gen-
eral information about the message passing be-
havior of an application. Examples include
how many message are sent, the average mes-
sage size, the ratio of collectives versus point-
to-point messages and so on. These tools do

not alter the behavior of an application, but at
the same time, often do not provide enough
detailed information for debugging and traced-
based simulation. Examples in this category in-
clude pMPI [6].

Recent work presented in [7] uses a clever
scheme to collect summary information about
collections of messages, for example the ones
sent repeatedly from an inner loop. The
bundling of that information allows for very
high compression ratios. Some loss in detailed
message timing information has to be expected,
though. Another idea for trace data compres-
sion is presented in [8].

Another approach is to estimate the overhead
introduced by the debugging/tracing tool, and
subtract it from the reported run times. An ex-
ample of such work was presented in [9].

Work similar to what we have presented in
this paper is documented in [10]. However, that
work concentrates on performance prediction of
MPI programs.

5 Future Work and Summary

The work presented here is in an early proto-
type stage. More work is needed to make the
basic simulator accurate enough for use. How-
ever, the method presented here to gather arbi-
trarily large trace files without unduly perturb-
ing the virtual run time of an application works.
Even with runs that last for hours of wall-clock
time the reported virtual run time of an applica-
tion is not made worse than the current, buggy,
simulator allows.

Once the above problem is solved several
avenues for improvements present themselves.
The Seshat configuration file should allow the
trace format to be adapted to specific needs, and
it should allow the filtering of trace events. In
many situations only a subset of events are of
interest.

To reduce the wall-clock time of collecting
large traces, they should be written to a high-
performance storage system instead of the NFS-
mounted home directory as we did for this
study. Buffering events on the simulator node

would also be easy and allow larger writes to
the trace file, which will further improve per-
formance. As a matter of fact, buffering on the
simulator node and additional nodes allocated
to the simulator can be used to compress the
trace data and write it to a parallel file system.

For tracing application that require the con-
tents of each message, it would be simple to
add the capability for collecting them to Seshat.
Compression, buffering, and efficient file writes
will be a must under these circumstances.

Finally, Seshat should be made compliant
with other libraries that make use to the MPI
profiling interface so they can be stacked on top
of each other.

References

[1] Riesen, R.: A hybrid MPI simulator. In:
IEEE International Conference on Cluster
Computing (CLUSTER’06). (2006)

[2] Brightwell, R., Camp, W., Cole, B.,
DeBenedictis, E., Leland, R., Tomkins,
J., Maccabe, A.B.: Architectural speci-
fication for massively parallel computers:
an experience and measurement-based ap-
proach. Concurrency and Computation:
Practice and Experience 17(10) (March
2005) 1271-1316

[3] Camp, W.J., Tomkins, J.L.: The red storm
computer architecture and its implementa-
tion. In: The Conference on High-Speed
Computing: LANL/LLNL/SNL, Salishan
Lodge, Glenedon Beach, Oregon (April
2003)

[4] Lamport, L.: Time, clocks, and the or-
dering of events in a distributed system.
Commun. ACM 21(7) (1978) 558-565

[5] Chung, 1.H., Walkup, R.E., Wen, H.E,
You, H.: MPI performance analysis tool
on Blue Gene/L. In: Proc. IEEE/ACM
SuperComputing, Tampa, FL. (November
2006)

[6]

[7]

(8]

[9]

[10]

Vetter, J.S., Yoo, A.: An empirical perfor-
mance evaluation of scalable scientific ap-
plications. In: Supercomputing *02: Pro-
ceedings of the 2002 ACM/IEEE confer-
ence on Supercomputing, Los Alamitos,
CA, USA, IEEE Computer Society Press
(2002)

Noeth, M., Mueller, F., Schulz, M.,
de Supinski, B.R.: Scalable compres-
sion and replay of communication traces
in massively parallel environments. In:
Proceedings of the International Parallel
and Distributed Processing Symposium
(IPDPS). (2007)

Kniipfer, A., Nagel, W.E.: Compressible
memory data structures for event-based

trace analysis. Future Generation Com-
puter System 22(3) (2006) 359-368

Shende, S., Malony, A.D., Morris, A.,
Wolf, F.: Performance profiling overhead
compensation for MPI programs. In: 9th
European PVM/MPI Users’ Group Meet-
ing Proceedings. Volume 3666 of Lec-
ture Notes in Computer Science., Springer
Verlag (September 2005) 359-367

Prakash, S., Bagrodia, R.L.: MPI-SIM:
using parallel simulation to evaluate MPI
programs. In: WSC *98: Proceedings of
the 30th conference on Winter simulation,
Los Alamitos, CA, USA, IEEE Computer
Society Press (1998) 467-474

