Porting of Vislt Parallel Visualization Tool tothe Cray XT3

Kevin Thomas, Cray Inc.

ABSTRACT: Vislt, the popular visualization tool developed by the U.S. Department of
Energy, was recently ported to run on the Cray XT3. While many applications are easily
ported to the Cray XT3, Vislt, with its extensible and distributed architecture, presented a
unique challenge. The Catamount OS lacks support for critical features used by Vislt,
but the visualization of large datasets requires parallel computation. Through a variety
of drategies, the port was completed without requiring source code changes to the

application.

KEYWORDS: Cray XT3, Catamount, Porting, Visualization

Introduction

Vislt, a visualization tool developed by the U.S.
Department of Energy, is required by the U.K. Atom
Weapons Establishment (AWE) for use on its Cray XT3
system. While visualization is not a well-estaidid
application area for the Cray XT3, it is understavid
that AWE should want to use Vislt, as the ability t
perform simulation processing and visualization @&n
single computer system simplifies the research fhask
Otherwise, two systems are needed, and large datase
need to be migrated between them.

The primary goal for the Vislt porting project wes
meet AWE’s performance goals, measured by a set of
benchmarks developed for the system procurement
process. Full support for all standard Vislt calitéds,
plus minimal source code changes to the applicatiene
to be accommodated. Likewise, it was important tha
Vislt could be easily upgraded to new versions ey t
were released by its development team at Lawrence
Livermore National Laboratory — changes neededéeo b
small and localized so that they could be integratgo
the standard source release.

Vislt version 1.4.1 was used for this port.

Application Architecture

Vislt is composed of several components, each of
which is built as a separate program. These irclud

» the graphical user interfacguf)

e the command-line interfacel{) with Python
scripting

» themetadata server for managing datasets

» theviewer for 3D visualization
« thecompute engine for manipulating datasets

These components intercommunicate via TCP/IP
sockets that allow them to be distributed acrosstavork.
For example, the gui and viewer might run on a
workstation, while the metadata server and compute
engine run on a remote server. The cli is usefubftch
processing, where a large dataset might be pratedsse
generate a set of images, or for scripting repetiti
operations.

Compute Ietadata

Server

Engine

Figure 1: Vislt Components

While these components are available as single
process programs, the compute engine also hasadgbar
version, implemented with MPI. It is functionally
equivalent to the serial version; but it can precesich

CUG 2007Proceedings 1 of 6

larger datasets, and it uses parallel algorithmeetluce
processing time.

End users can extend Vislt in several different svay
Three classes of extensions are implemented through
plugins, which are shared libraries loaded at et

e database pluginsread grid structure and property
value data.

* operator plugins act on this data to create new
results (for example, slice, clip, project).

» plot plugins generate visualization objects (for
example, contour, pseudo-color, scatter).

Vislt comes with a wide range of standard plugihs.
addition to these, AWE uses custom database plugins
read local data file formats.

Porting Strategies Consider ed

The Vislt architecture and operating system
requirements were evaluated to determine the best
approach to port it to the Cray XT3 system. Widigay
XT3 login nodes run a standard Linux distributidhe
Catamount OS that runs on the compute nodes ddes no
support sockets or shared libraries. Becausegfittwas
desirable to use login nodes to run components ditat
not require large-scale compute resources. Ast Viesdl
already been ported to Linux, no additional effads
required for these components.

Porting the Parallel Compute Engine

The parallel compute engine was the only component
that did not fit into the initial porting strategyThree
approaches, described in the following sectionsrewe
considered to port it.

Use Linux-based login nodes

One approach to port the parallel compute engiree wa
to build it for Linux, then run it on login nodesing an
MPI library built to use TCP/IP sockets. This apgech
was rejected early on because it did not meet gioals
performance and scalability: Cray XT3 systems danta
only a few login nodes, and it had been determited
dozens of processors would be required to meeAWE
performance goals.

Use mixed node-type execution

The second approach was to use an untested feature
of the software architecture, developed for thedgaRed
Storm project — the Cray XT3 system prototype -t tha
allows a parallel program to run on a mix of Linamd
Catamount nodes. This feature had the potential to
remove the requirement to support socket commduaitat

on Catamount, because only MPI process rank 0 ef th
parallel compute engine communicates with the other
Vislt components via sockets. A parallel computgiee
runs with process rank 0 on the login node and the
remaining ranks on compute nodes might provide a
solution. Some changes to the engine source woald
required to isolate the heavy computation withire th
parallel engine from the rank 0 process and thezefo
offload the login node.

This approach was eventually abandoned when
further investigation revealed that the Cray XT3teyn
software did not allow parallel jobs with mixed mod
types. It was also incompatible with Catamounttér
Node (CVN), the OS feature that provides support fo
dual-core Opteron processors.

Use Catamount-based compute nodes

The third strategy was to run the full parallel gare
engine on compute nodes. This required resolvimges
missing capabilities within Catamount, discussedhe
next section.

Porting I ssues and Solutions

Since Cray XT3 compute nodes running the
Catamount OS do not support sockets or sharedibista
the porting effort concentrated on developing s$ohg to
compensate for these missing features. There tware
additional, more subtle issues to be resolved,ribest in
the following sections.

Building statically-linked executables

The default build procedure for Vislt and its sugpo
libraries generates a large number of shared léwar
Linking with these libraries creates dynamicaliykieéd
executables — but the Catamount OS requires that
executables be statically linked. So, with theegition of
the plugin shared libraries, the build procedurald¢de
adjusted to generate all static libraries, prinyattirough
changes to settings for the GN&lit oconf configure
scripts that are used to set up the Makefiles letbe
software is compiled. This change is not desirdble
Linux-based components, so separate software baikls
required for Linux and Catamount respectively, even
though each component targets one OS or the other.

X Windows libraries not available on Catamount

The second issue arose because all Vislt components
share a set of common libraries. This is partuned to
avoid redundant implementation and partly a coremee
of software organization. The result is that each
component executable has a large static call tlee o
routines, many of which are never called. Thitargely

CUG 2007Proceedings 2 of 6

innocuous, especially when shared libraries ard usa
demand-paged, virtual memory environment like Linux
In the case of the parallel compute engine for @atant,
this led to the requirement that X Windows librarige
available.

Because the X Windows libraries are standard on
Linux, it is allowed to link these libraries into a
Catamount program as long as the routines areailgtdc
during run time. This is possible because Catatnand
Linux share the same base programming environnsent,
the libraries are passively compatible, and waming
printed by the linker for these libraries can bdelya
ignored. Of course any attempt to call these nastifrom
a Catamount program would fail.

Plugin Support

The Vislt plugin infrastructure accesses pluging vi
the dl open, dl sym anddl cl ose system calls. With
these calls, it is possible to access external signb
(routines or data structures) within a shared tipthat is
not specified at program link time — a form of dyma
linking. The plugin can be developed after thegpam is
developed so long as it adheres to the interface
requirements of the program. In Vislt, plugins &éaa
general interface plus component-specific integace
These interfaces are implemented as external
structures in the shared libraries, and have fixeell-
known names.

First Approach

The first approach to support plugins was to
implement dl open, dl sym and dl cl ose as utility
library calls. Heredl open allocates a region of memory
on the heap and reads the shared library intordgn.

dl sym uses the ELF library primitives to access the
symbol table of the shared library, just as theukitinker
does. While this approach works fine for leaf noes,
more extensive support for dynamic linking proved t
ambitious for this project.

Second Approach

A second approach to support plugins was to
statically link the required plugins into the péehl
compute engine. Some flexibility was lost with sthi
approach, since all plugins must be available wten
parallel compute engine is linked. This limitatiwas not

too burdensome because new plugins are not created

frequently. Code size grew with this approach, tha
overall application size only increased moderately.

! ELF (Executable and Linking Format) object filemdbe
manipulated using a standard system library libelf.

data

Building the plugin libraries

The first step was to build static plugin librari€Bhis
was accomplished in the same way as with otheariies,
by using specially-crafted configure parametersomé&
minor hand-editing of the generated Makefiles was
required to avoid warning messages.

Renaming the plugin interface symbols

Since the plugin libraries have the same external
symbol names (in conformance with the Vislt plugin
requirements), the libraries cannot be directligdithinto a
single program. Also, the components do not cantai
explicit references to the libraries or their syisho
because these are determined at run time. Thregtlgti
linking plugin libraries into a component is notsgible.

To work around this problem, two utilities were
created. The firsthl dpl ug, uses features of the system
linker, GNUI d, to convert the static plugin libraries into
object files, and at the same time adds a uniqedixpr
onto each external symbol. With these plugin abfjiées
it is possible to link all plugins into a singleogram
without conflict.

For example, there are database plugins for PLOT3D
and Silo. Both shared libraries contain the
Get General | nfo external symbol used to access the
plugin data structurebl dpl ug renames these as follows
to make them unique.

Plugin Original Symbal New Symbol
PLOT3D | Get General I nfo | PLOT3DGet General I nfo
Silo Cet General Info | Sil oGet General I nfo

Adding the standard interface wrapper

The second utilitygendl , takes a set of plugin object
files and adds special-purpose versions of thedatan
dl open, dlsym and dl cl ose routines. The new
dl open examines a table of available plugins statically
linked into the program, and returns status to daker
indicating whether the requested plugin is avadaiy not.
The dl symreturns the requested plugin external symbol
via a similar table lookup, or it returns an erifano such
symbol exists. Theaicl ose routine frees up the table
memory allocated indl open. The lookup table for
dl open is created bgend! .

To extend the Silo plugin example, a calldicopen
to access the Silo plugin causes thepen routine to
check its internal table to determine if the Siktabase
plugin was available. If it is, a later call is deatod! sym
to access theet Gener al | nf o symbol from this library.
The replacement dl sym looks wup the name

CUG 2007Proceedings 3 of 6

Si | oDat abaseGet General | nfo and returns a pointer
to this data structure to the caller.

Handling external symbol name collisions

Although the well-known plugin interface symbols
are renamed to unique identifiers by thedpl ugi n
utility, libraries may, in general, define othertemal
symbols. Thus, it is possible that two librariesfige
symbols with the same name. This presents nccdifi
with regular dynamic linking, since each library is
managed as an independent symbol name space. But
when static linking is used, duplicate symbol nacesse
a link error.

In practice, name space collisions between plugin
library external symbols are rare. One reasotas the
coding conventions used by the Vislt developersicavo
giving two routines the same name. Outside ofugipl|
symbols with duplicate names create linker errsrasell.

There is one case within the standard Vislt plugins
that a name collision occurs. An investigationeaded
that two items were copied from a library and im@to
plugin. This code extract was fairly small, sonity have
been easier to copy it into the plugin rather thhange
the plugin build to include the extra library.

Once the parallel compute engine (which includes th
library) was statically linked with the plugin liry
containing the duplicated source code, a duplisgtebol
error occurred. There are many ways to work ardhisd
error, but it is easiest to make the symbols peivdty
declaring them with the Gtatic keyword) in the plugin
source. Another approach would be to use a linkgion
to ignore the duplicate symbols, or to delete theyip
copy of the code.

Plugin discovery at run time

There is one installation issue related to plugins.
Vislt determines which plugins to open by reading a
directory in$VI SI TDI R (the Vislt installation directory).
Since regular plugins are not built for the pataitempute
engine,$VI SI TDI R must point to the plugin directory for
the Linux components. This means thelt S| TDI R must
be in a file system accessible from the computeespd
such as Lustre or UFS.

While they are not full implementations of the
standard dynamic linking routines, these replacémen
routines provide the functionality required to sopp/isit
plugins. Extra build steps beyond the standardi Wigild
are required to ruhl dpl ug andgend! for all plugins to
be included in the parallel compute engine. Thauki
based components continue to use the regular plugin
shared libraries. Because the replacement routines

effectively emulate their standard counterpart,sparce
changes to the component are required.

Socket Communication

Interprocess communication with TCP/IP sockets
allows unrelated processes to exchange data wihin
given computer system or across a network. Thisots
available for Catamount, however. Rather, MPI
communication is the standard communication for
Catamount programs; but MPI only works within a
domain of compute nodes of related processes.M8b,
cannot be used as a lower-level communication layer
emulate sockets.

Portals

The Cray XT3 system uses Portals, a low-level
communication facility that can support the essdnti
features of sockets. The Portals library allowsiteary
processes to exchange information between nodes type
(login or compute nodes). It is used by both MRl a
throughout the Cray XT3 system software for dadadfer
between nodes.

It would be possible to replace the socket-based
communication within Vislt with an alternative
implementation based on Portals. This would ingolv
some source code changes, but they would be fairly
localized because the organization of the Visltvearfe
isolates the communication implementation in a n@du
from the bulk of Vislt. This would add a restranti to
Vislt that would limit all components to execute an
given Cray XT3 system, since Portals only operafésn
a single system.

Another approach would be to use Portals to
implement a socket-like interface for the Catamount
component only; and introduce a new program tcaac
bridge between the Catamount socket emulation hed t
Linux components using standard sockets. In thag,w
the Linux components could be spread across a PEP/I
based network of computers, although the parallel
compute engine would still be tied to the Cray XT3
system.

CUG 2007Proceedings 4 of 6

Catamount Linux

Compute
Engine

Figure 2: Socket Emulation via Portals

The socket emulation for Catamount can be crafied t
minimize or eliminate source code changes to Vidlb
do this, a somewhat lengthy but well-defined set of
routines is required to provide standard socket and
network functions donnect, bi nd, get host byaddr,
and so on). Since none of these calls are impladen
within Catamount, there are no side effects foepfharts
of Vislt to introduce these functions. This is plified
because Vislt uses the socket-specidiendnsg and
recvinsg calls for data transfer, rather than the general
purposew i t e andr ead system calls.

SOLD Implementation

A purpose-built library and daemon were created to
implement a sufficient socket emulation capability
Vislt. Called SOLD (Socket OffLoad Daemon), the
library provides the necessary socket and network
functions. The functions use Portals to pass ¢ogiests
on to the Linux-based daemon (a helper processghwh
implements the functions (that is, it offloads the
implementation from Catamount to Linux).

For example, to communicate with another Vislt
component, the parallel compute engine first cétis
socket function. This function passes the request to the
daemon, which creates a socket on the Linux node, a
passes back a handle (file descriptor placehotdevjsit.
Visit uses this handle to call thennect function, which

causes the daemon to connect the previously created

socket to the TCP/IP port of the other Vislt comgan

In this way, the parallel compute engine is unaware
that it is running in a special partition of thea@rXT3
system, since it can communicate normally with\adit
components, even those running on other computers.

There are performance implications for this type of
communication. If all processes of a large pargtib
were to attempt to communicate simultaneously, they
would easily overwhelm the SOLD daemon. In theecas
of Vislt, only MPI process rank 0 actively useslszis to
communicate with the other components. Because the
an extra user-domain process in the communicatash p
(the daemon), both communication latency and badtitiwi
are negatively impacted versus a direct commurinati
path. For the purposes of supporting Vislt, tkisot a
performance bottleneck.

One interesting realization did arise during thd_BO
implementation. It became apparent in the debuggin
phase that all of the parallel compute engine pees
performed some network-related calls. This pgsstron
the SOLD daemon process. Later investigation ledea
that this work was unnecessary, and only occurred
because of an omitted check during initializatio®nly
MPI process rank 0 needed to make the call. A lgimp
change to Vislt — a bug fix, actually — resolvedsth
problem.

Performance

A benchmark suite provided by AWE was used to test
Vislt performance. The input dataset was a 32lyita
file in TyphonlO format. A set of four Python qui$ was
used as input to the Vislt cli to simulate typicgkractive
usage. The test included visualization of pseulboco
mesh, filled boundary, wire frame, and contour phatth
rotate, pan, and zoom operations. Image files were
written at several points.

The performance goal was to update frames on the
user display at a rate of at least 1 per secondhen/the
test was run on a Cray XT3 system with dual core 2.
GHz processors, the goal could not be consistangdy
with 16 compute engine processes, but at 32 presdhks
goal was demonstrated.

Figure 3 shows the maximum and average seconds
per frame for the six tests within the first of tfeur
benchmark runs.

CUG 2007Proceedings 5 of 6

140
120 \

(<5}

£1.00

s

080

1%}

=060

o

3040

(<5}

%020

0.00 \ T T ‘
0 16 32 48 64 80

Processes

‘— Required ==¢==Maximum =&=Average

Figure 3: Freund Benchmark Scaling

Conclusion

Vislt, including its parallel compute engine, nowns
on the Cray XT3 system at AWE. The implementatson
efficient and scalable, and it meets the perforraagmals
of the project. Minimal source code changes to the
application were required to port it, although esiee
changes to the build process were necessary.

To accomplish this, two special-purpose
implementations of standard system features werated,
one to emulate dynamic linking, the other to enmlat
TCPI/IP sockets. Both of these implementationsqoerf
well within AWE'’s performance goals.

Acknowledgments

The author thanks Sean Ahern of Oak Ridge National
Laboratory, Hank Childs of Lawrence Livermore Natb
Laboratory, and Matthew Wheeler of the Atomic
Weapons Establishment for valuable technical
consultations as well as material contributionsrdyuthis
project. Tony Booker of Cray Inc. designed and
implemented SOLD. His contributions were crucial.

About the Author

Kevin Thomas is a staff member of the Performance
Team at Cray Inc.

CUG 2007Proceedings 6 of 6

