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Porting of VisIt Parallel Visualization Tool to the Cray XT3 

Kevin Thomas, Cray Inc. 

ABSTRACT: VisIt, the popular visualization tool developed by the U.S.  Department of 
Energy, was recently ported to run on the Cray XT3.  While many applications are easily 
ported to the Cray XT3, VisIt, with its extensible and distributed architecture, presented a 
unique challenge.  The Catamount OS lacks support for critical features used by VisIt, 
but the visualization of large datasets requires parallel computation.  Through a variety 
of strategies, the port was completed without requiring source code changes to the 
application. 
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Introduction 

VisIt, a visualization tool developed by the U.S.  
Department of Energy, is required by the U.K.  Atomic 
Weapons Establishment (AWE) for use on its Cray XT3 
system.  While visualization is not a well-established 
application area for the Cray XT3, it is understandable 
that AWE should want to use VisIt, as the ability to 
perform simulation processing and visualization on a 
single computer system simplifies the research workflow.  
Otherwise, two systems are needed, and large datasets 
need to be migrated between them. 

The primary goal for the VisIt porting project was to 
meet AWE’s performance goals, measured by a set of 
benchmarks developed for the system procurement 
process.  Full support for all standard VisIt capabilities, 
plus minimal source code changes to the application, were 
to be accommodated.  Likewise, it was important that 
VisIt could be easily upgraded to new versions as they 
were released by its development team at Lawrence 
Livermore National Laboratory – changes needed to be 
small and localized so that they could be integrated into 
the standard source release. 

VisIt version 1.4.1 was used for this port.   

Application Architecture 

VisIt is composed of several components, each of 
which is built as a separate program.  These include:  

• the graphical user interface (gui) 
• the command-line interface (cli) with Python 

scripting 
• the metadata server for managing datasets 

• the viewer for 3D visualization 
• the compute engine for manipulating datasets 

These components intercommunicate via TCP/IP 
sockets that allow them to be distributed across a network.  
For example, the gui and viewer might run on a 
workstation, while the metadata server and compute 
engine run on a remote server.  The cli is useful for batch 
processing, where a large dataset might be processed to 
generate a set of images, or for scripting repetitive 
operations. 

  

Figure 1: VisIt Components 

While these components are available as single 
process programs, the compute engine also has a parallel 
version, implemented with MPI.  It is functionally 
equivalent to the serial version; but it can process much 
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larger datasets, and it uses parallel algorithms to reduce 
processing time. 

End users can extend VisIt in several different ways.  
Three classes of extensions are implemented through 
plugins, which are shared libraries loaded at run time: 

• database plugins read grid structure and property 
value data. 

• operator plugins act on this data to create new 
results (for example, slice, clip, project). 

• plot plugins generate visualization objects (for 
example, contour, pseudo-color, scatter).   

VisIt comes with a wide range of standard plugins.  In 
addition to these, AWE uses custom database plugins to 
read local data file formats. 

Porting Strategies Considered 

The VisIt architecture and operating system 
requirements were evaluated to determine the best 
approach to port it to the Cray XT3 system.  While Cray 
XT3 login nodes run a standard Linux distribution, the 
Catamount OS that runs on the compute nodes does not 
support sockets or shared libraries.  Because of this, it was 
desirable to use login nodes to run components that did 
not require large-scale compute resources.  As VisIt had 
already been ported to Linux, no additional effort was 
required for these components.     

Porting the Parallel Compute Engine 

The parallel compute engine was the only component 
that did not fit into the initial porting strategy.  Three 
approaches, described in the following sections, were 
considered to port it. 

Use Linux-based login nodes 

One approach to port the parallel compute engine was 
to build it for Linux, then run it on login nodes using an 
MPI library built to use TCP/IP sockets.  This approach 
was rejected early on because it did not meet goals for 
performance and scalability: Cray XT3 systems contain 
only a few login nodes, and it had been determined that 
dozens of processors would be required to meet the AWE 
performance goals. 

Use mixed node-type execution 

The second approach was to use an untested feature 
of the software architecture, developed for the Sandia Red 
Storm project – the Cray XT3 system prototype – that 
allows a parallel program to run on a mix of Linux and 
Catamount nodes.  This feature had the potential to 
remove the requirement to support socket communication 

on Catamount, because only MPI process rank 0 of the 
parallel compute engine communicates with the other 
VisIt components via sockets.  A parallel compute engine 
runs with process rank 0 on the login node and the 
remaining ranks on compute nodes might provide a 
solution.  Some changes to the engine source would be 
required to isolate the heavy computation within the 
parallel engine from the rank 0 process and therefore 
offload the login node. 

This approach was eventually abandoned when 
further investigation revealed that the Cray XT3 system 
software did not allow parallel jobs with mixed node 
types.  It was also incompatible with Catamount Virtual 
Node (CVN), the OS feature that provides support for 
dual-core Opteron processors. 

Use Catamount-based compute nodes 

The third strategy was to run the full parallel compute 
engine on compute nodes.  This required resolving some 
missing capabilities within Catamount, discussed in the 
next section. 

Porting Issues and Solutions 

Since Cray XT3 compute nodes running the 
Catamount OS do not support sockets or shared libraries, 
the porting effort concentrated on developing solutions to 
compensate for these missing features.  There were two 
additional, more subtle issues to be resolved, described in 
the following sections. 

Building statically-linked executables 

The default build procedure for VisIt and its support 
libraries generates a large number of shared libraries.  
Linking with these libraries creates dynamically-linked 
executables – but the Catamount OS requires that 
executables be statically linked.  So, with the exception of 
the plugin shared libraries, the build procedure could be 
adjusted to generate all static libraries, primarily through 
changes to settings for the GNU autoconf configure 
scripts that are used to set up the Makefiles before the 
software is compiled.  This change is not desirable for 
Linux-based components, so separate software builds are 
required for Linux and Catamount respectively, even 
though each component targets one OS or the other. 

X Windows libraries not available on Catamount 

The second issue arose because all VisIt components 
share a set of common libraries.  This is partly required to 
avoid redundant implementation and partly a convenience 
of software organization.  The result is that each 
component executable has a large static call tree of 
routines, many of which are never called.  This is largely 
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innocuous, especially when shared libraries are used in a 
demand-paged, virtual memory environment like Linux.  
In the case of the parallel compute engine for Catamount, 
this led to the requirement that X Windows libraries be 
available. 

Because the X Windows libraries are standard on 
Linux, it is allowed to link these libraries into a 
Catamount program as long as the routines are not called 
during run time.  This is possible because Catamount and 
Linux share the same base programming environment, so 
the libraries are passively compatible, and warnings 
printed by the linker for these libraries can be safely 
ignored.  Of course any attempt to call these routines from 
a Catamount program would fail. 

Plugin Support 

The VisIt plugin infrastructure accesses plugins via 
the dlopen, dlsym, and dlclose system calls.  With 
these calls, it is possible to access external symbols 
(routines or data structures) within a shared library that is 
not specified at program link time – a form of dynamic 
linking.  The plugin can be developed after the program is 
developed so long as it adheres to the interface 
requirements of the program.  In VisIt, plugins have a 
general interface plus component-specific interfaces.  
These interfaces are implemented as external data 
structures in the shared libraries, and have fixed, well-
known names. 

First Approach 

The first approach to support plugins was to 
implement dlopen, dlsym, and dlclose as utility 
library calls.  Here, dlopen allocates a region of memory 
on the heap and reads the shared library into this region.  
dlsym uses the ELF1 library primitives to access the 
symbol table of the shared library, just as the Linux linker 
does.  While this approach works fine for leaf routines, 
more extensive support for dynamic linking proved too 
ambitious for this project. 

Second Approach 

A second approach to support plugins was to 
statically link the required plugins into the parallel 
compute engine.  Some flexibility was lost with this 
approach, since all plugins must be available when the 
parallel compute engine is linked.  This limitation was not 
too burdensome because new plugins are not created 
frequently. Code size grew with this approach, but the 
overall application size only increased moderately. 

                                                 
1 ELF (Executable and Linking Format) object files can be 
manipulated using a standard system library libelf. 

Building the plugin libraries 

The first step was to build static plugin libraries.  This 
was accomplished in the same way as with other libraries, 
by using specially-crafted configure parameters.  Some 
minor hand-editing of the generated Makefiles was 
required to avoid warning messages. 

Renaming the plugin interface symbols 

Since the plugin libraries have the same external 
symbol names (in conformance with the VisIt plugin 
requirements), the libraries cannot be directly linked into a 
single program.  Also, the components do not contain 
explicit references to the libraries or their symbols, 
because these are determined at run time.  Thus, directly 
linking plugin libraries into a component is not possible. 

To work around this problem, two utilities were 
created.  The first, bldplug, uses features of the system 
linker, GNU ld, to convert the static plugin libraries into 
object files, and at the same time adds a unique prefix 
onto each external symbol.  With these plugin object files 
it is possible to link all plugins into a single program 
without conflict. 

For example, there are database plugins for PLOT3D 
and Silo.  Both shared libraries contain the 
GetGeneralInfo external symbol used to access the 
plugin data structure.  bldplug renames these as follows 
to make them unique. 

Plugin Original Symbol New Symbol 
PLOT3D GetGeneralInfo PLOT3DGetGeneralInfo 
Silo GetGeneralInfo SiloGetGeneralInfo 

 

Adding the standard interface wrapper 

The second utility, gendl, takes a set of plugin object 
files and adds special-purpose versions of the standard 
dlopen, dlsym, and dlclose routines.  The new 
dlopen examines a table of available plugins statically 
linked into the program, and returns status to the caller 
indicating whether the requested plugin is available or not.  
The dlsym returns the requested plugin external symbol 
via a similar table lookup, or it returns an error if no such 
symbol exists.  The dclose routine frees up the table 
memory allocated in dlopen.  The lookup table for 
dlopen is created by gendl. 

To extend the Silo plugin example, a call to dlopen 
to access the Silo plugin causes the dlopen routine to 
check its internal table to determine if the Silo database 
plugin was available.  If it is, a later call is made to dlsym 
to access the GetGeneralInfo symbol from this library.  
The replacement dlsym looks up the name 
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SiloDatabaseGetGeneralInfo and returns a pointer 
to this data structure to the caller. 

Handling external symbol name collisions 

Although the well-known plugin interface symbols 
are renamed to unique identifiers by the bldplugin 
utility, libraries may, in general, define other external 
symbols.  Thus, it is possible that two libraries define 
symbols with the same name.  This presents no difficulty 
with regular dynamic linking, since each library is 
managed as an independent symbol name space.  But 
when static linking is used, duplicate symbol names cause 
a link error. 

In practice, name space collisions between plugin 
library external symbols are rare.  One reason is that the 
coding conventions used by the VisIt developers avoid 
giving two routines the same name.  Outside of a plugin, 
symbols with duplicate names create linker errors as well. 

There is one case within the standard VisIt plugins 
that a name collision occurs.  An investigation revealed 
that two items were copied from a library and into a 
plugin.  This code extract was fairly small, so it may have 
been easier to copy it into the plugin rather than change 
the plugin build to include the extra library. 

Once the parallel compute engine (which includes the 
library) was statically linked with the plugin library 
containing the duplicated source code, a duplicate symbol 
error occurred.  There are many ways to work around this 
error, but it is easiest to make the symbols private (by 
declaring them with the C static keyword) in the plugin 
source.  Another approach would be to use a linker option 
to ignore the duplicate symbols, or to delete the plugin 
copy of the code. 

Plugin discovery at run time 

There is one installation issue related to plugins.  
VisIt determines which plugins to open by reading a 
directory in $VISITDIR (the VisIt installation directory).  
Since regular plugins are not built for the parallel compute 
engine, $VISITDIR must point to the plugin directory for 
the Linux components.  This means that $VISITDIR must 
be in a file system accessible from the compute nodes, 
such as Lustre or UFS.   

While they are not full implementations of the 
standard dynamic linking routines, these replacement 
routines provide the functionality required to support VisIt 
plugins.  Extra build steps beyond the standard VisIt build 
are required to run bldplug and gendl for all plugins to 
be included in the parallel compute engine.  The Linux-
based components continue to use the regular plugin 
shared libraries.  Because the replacement routines 

effectively emulate their standard counterpart, no source 
changes to the component are required. 

Socket Communication 

Interprocess communication with TCP/IP sockets 
allows unrelated processes to exchange data within a 
given computer system or across a network.  This is not 
available for Catamount, however.  Rather, MPI 
communication is the standard communication for 
Catamount programs; but MPI only works within a 
domain of compute nodes of related processes.  So, MPI 
cannot be used as a lower-level communication layer to 
emulate sockets. 

Portals 

The Cray XT3 system uses Portals, a low-level 
communication facility that can support the essential 
features of sockets.  The Portals library allows arbitrary 
processes to exchange information between node types 
(login or compute nodes).  It is used by both MPI and 
throughout the Cray XT3 system software for data transfer 
between nodes. 

It would be possible to replace the socket-based 
communication within VisIt with an alternative 
implementation based on Portals.  This would involve 
some source code changes, but they would be fairly 
localized because the organization of the VisIt software 
isolates the communication implementation in a module 
from the bulk of VisIt.  This would add a restriction to 
VisIt that would limit all components to execute on a 
given Cray XT3 system, since Portals only operates within 
a single system. 

Another approach would be to use Portals to 
implement a socket-like interface for the Catamount 
component only; and introduce a new program to act as a 
bridge between the Catamount socket emulation and the 
Linux components using standard sockets.  In this way, 
the Linux components could be spread across a TCP/IP-
based network of computers, although the parallel 
compute engine would still be tied to the Cray XT3 
system. 



 
CUG 2007 Proceedings 5 of 6 

 

 

Figure 2: Socket Emulation via Portals 

The socket emulation for Catamount can be crafted to 
minimize or eliminate source code changes to VisIt.  To 
do this, a somewhat lengthy but well-defined set of 
routines is required to provide standard socket and 
network functions (connect, bind, gethostbyaddr, 
and so on).  Since none of these calls are implemented 
within Catamount, there are no side effects for other parts 
of VisIt to introduce these functions.  This is simplified 
because VisIt uses the socket-specific sendmsg and 
recvmsg calls for data transfer, rather than the general 
purpose write and read system calls. 

SOLD Implementation 

A purpose-built library and daemon were created to 
implement a sufficient socket emulation capability for 
VisIt.  Called SOLD (Socket OffLoad Daemon), the 
library provides the necessary socket and network 
functions.  The functions use Portals to pass the requests 
on to the Linux-based daemon (a helper process), which 
implements the functions (that is, it offloads the 
implementation from Catamount to Linux). 

For example, to communicate with another VisIt 
component, the parallel compute engine first calls the 
socket function.  This function passes the request to the 
daemon, which creates a socket on the Linux node, and 
passes back a handle (file descriptor placeholder) to VisIt.  
Visit uses this handle to call the connect function, which 
causes the daemon to connect the previously created 
socket to the TCP/IP port of the other VisIt component. 

In this way, the parallel compute engine is unaware 
that it is running in a special partition of the Cray XT3 
system, since it can communicate normally with all VisIt 
components, even those running on other computers. 

There are performance implications for this type of 
communication.  If all processes of a large parallel job 
were to attempt to communicate simultaneously, they 
would easily overwhelm the SOLD daemon.  In the case 
of VisIt, only MPI process rank 0 actively uses sockets to 
communicate with the other components.  Because there is 
an extra user-domain process in the communication path 
(the daemon), both communication latency and bandwidth 
are negatively impacted versus a direct communication 
path.  For the purposes of supporting VisIt, this is not a 
performance bottleneck. 

One interesting realization did arise during the SOLD 
implementation.  It became apparent in the debugging 
phase that all of the parallel compute engine processes 
performed some network-related calls.  This put stress on 
the SOLD daemon process.  Later investigation revealed 
that this work was unnecessary, and only occurred 
because of an omitted check during initialization.  Only 
MPI process rank 0 needed to make the call.  A simple 
change to VisIt – a bug fix, actually – resolved this 
problem. 

Performance 

A benchmark suite provided by AWE was used to test 
VisIt performance.  The input dataset was a 32 gigabyte 
file in TyphonIO format.  A set of four Python scripts was 
used as input to the VisIt cli to simulate typical interactive 
usage.  The test included visualization of pseudocolor, 
mesh, filled boundary, wire frame, and contour plots with 
rotate, pan, and zoom operations.  Image files were 
written at several points. 

The performance goal was to update frames on the 
user display at a rate of at least 1 per second.  When the 
test was run on a Cray XT3 system with dual core 2.4 
GHz processors, the goal could not be consistently met 
with 16 compute engine processes, but at 32 processes the 
goal was demonstrated.  

Figure 3 shows the maximum and average seconds 
per frame for the six tests within the first of the four 
benchmark runs. 
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 Figure 3: Freund Benchmark Scaling 

Conclusion 

VisIt, including its parallel compute engine, now runs 
on the Cray XT3 system at AWE.  The implementation is 
efficient and scalable, and it meets the performance goals 
of the project.  Minimal source code changes to the 
application were required to port it, although extensive 
changes to the build process were necessary. 

To accomplish this, two special-purpose 
implementations of standard system features were created, 
one to emulate dynamic linking, the other to emulate 
TCP/IP sockets.  Both of these implementations perform 
well within AWE’s performance goals. 
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