

CUG 2007 Proceedings 1 of 6

Porting of VisIt Parallel Visualization Tool to the Cray XT3

Kevin Thomas, Cray Inc.

ABSTRACT: VisIt, the popular visualization tool developed by the U.S. Department of
Energy, was recently ported to run on the Cray XT3. While many applications are easily
ported to the Cray XT3, VisIt, with its extensible and distributed architecture, presented a
unique challenge. The Catamount OS lacks support for critical features used by VisIt,
but the visualization of large datasets requires parallel computation. Through a variety
of strategies, the port was completed without requiring source code changes to the
application.

KEYWORDS: Cray XT3, Catamount, Porting, Visualization

Introduction

VisIt, a visualization tool developed by the U.S.
Department of Energy, is required by the U.K. Atomic
Weapons Establishment (AWE) for use on its Cray XT3
system. While visualization is not a well-established
application area for the Cray XT3, it is understandable
that AWE should want to use VisIt, as the ability to
perform simulation processing and visualization on a
single computer system simplifies the research workflow.
Otherwise, two systems are needed, and large datasets
need to be migrated between them.

The primary goal for the VisIt porting project was to
meet AWE’s performance goals, measured by a set of
benchmarks developed for the system procurement
process. Full support for all standard VisIt capabilities,
plus minimal source code changes to the application, were
to be accommodated. Likewise, it was important that
VisIt could be easily upgraded to new versions as they
were released by its development team at Lawrence
Livermore National Laboratory – changes needed to be
small and localized so that they could be integrated into
the standard source release.

VisIt version 1.4.1 was used for this port.

Application Architecture

VisIt is composed of several components, each of
which is built as a separate program. These include:

• the graphical user interface (gui)
• the command-line interface (cli) with Python

scripting
• the metadata server for managing datasets

• the viewer for 3D visualization
• the compute engine for manipulating datasets

These components intercommunicate via TCP/IP
sockets that allow them to be distributed across a network.
For example, the gui and viewer might run on a
workstation, while the metadata server and compute
engine run on a remote server. The cli is useful for batch
processing, where a large dataset might be processed to
generate a set of images, or for scripting repetitive
operations.

Figure 1: VisIt Components

While these components are available as single
process programs, the compute engine also has a parallel
version, implemented with MPI. It is functionally
equivalent to the serial version; but it can process much

CUG 2007 Proceedings 2 of 6

larger datasets, and it uses parallel algorithms to reduce
processing time.

End users can extend VisIt in several different ways.
Three classes of extensions are implemented through
plugins, which are shared libraries loaded at run time:

• database plugins read grid structure and property
value data.

• operator plugins act on this data to create new
results (for example, slice, clip, project).

• plot plugins generate visualization objects (for
example, contour, pseudo-color, scatter).

VisIt comes with a wide range of standard plugins. In
addition to these, AWE uses custom database plugins to
read local data file formats.

Porting Strategies Considered

The VisIt architecture and operating system
requirements were evaluated to determine the best
approach to port it to the Cray XT3 system. While Cray
XT3 login nodes run a standard Linux distribution, the
Catamount OS that runs on the compute nodes does not
support sockets or shared libraries. Because of this, it was
desirable to use login nodes to run components that did
not require large-scale compute resources. As VisIt had
already been ported to Linux, no additional effort was
required for these components.

Porting the Parallel Compute Engine

The parallel compute engine was the only component
that did not fit into the initial porting strategy. Three
approaches, described in the following sections, were
considered to port it.

Use Linux-based login nodes

One approach to port the parallel compute engine was
to build it for Linux, then run it on login nodes using an
MPI library built to use TCP/IP sockets. This approach
was rejected early on because it did not meet goals for
performance and scalability: Cray XT3 systems contain
only a few login nodes, and it had been determined that
dozens of processors would be required to meet the AWE
performance goals.

Use mixed node-type execution

The second approach was to use an untested feature
of the software architecture, developed for the Sandia Red
Storm project – the Cray XT3 system prototype – that
allows a parallel program to run on a mix of Linux and
Catamount nodes. This feature had the potential to
remove the requirement to support socket communication

on Catamount, because only MPI process rank 0 of the
parallel compute engine communicates with the other
VisIt components via sockets. A parallel compute engine
runs with process rank 0 on the login node and the
remaining ranks on compute nodes might provide a
solution. Some changes to the engine source would be
required to isolate the heavy computation within the
parallel engine from the rank 0 process and therefore
offload the login node.

This approach was eventually abandoned when
further investigation revealed that the Cray XT3 system
software did not allow parallel jobs with mixed node
types. It was also incompatible with Catamount Virtual
Node (CVN), the OS feature that provides support for
dual-core Opteron processors.

Use Catamount-based compute nodes

The third strategy was to run the full parallel compute
engine on compute nodes. This required resolving some
missing capabilities within Catamount, discussed in the
next section.

Porting Issues and Solutions

Since Cray XT3 compute nodes running the
Catamount OS do not support sockets or shared libraries,
the porting effort concentrated on developing solutions to
compensate for these missing features. There were two
additional, more subtle issues to be resolved, described in
the following sections.

Building statically-linked executables

The default build procedure for VisIt and its support
libraries generates a large number of shared libraries.
Linking with these libraries creates dynamically-linked
executables – but the Catamount OS requires that
executables be statically linked. So, with the exception of
the plugin shared libraries, the build procedure could be
adjusted to generate all static libraries, primarily through
changes to settings for the GNU autoconf configure
scripts that are used to set up the Makefiles before the
software is compiled. This change is not desirable for
Linux-based components, so separate software builds are
required for Linux and Catamount respectively, even
though each component targets one OS or the other.

X Windows libraries not available on Catamount

The second issue arose because all VisIt components
share a set of common libraries. This is partly required to
avoid redundant implementation and partly a convenience
of software organization. The result is that each
component executable has a large static call tree of
routines, many of which are never called. This is largely

CUG 2007 Proceedings 3 of 6

innocuous, especially when shared libraries are used in a
demand-paged, virtual memory environment like Linux.
In the case of the parallel compute engine for Catamount,
this led to the requirement that X Windows libraries be
available.

Because the X Windows libraries are standard on
Linux, it is allowed to link these libraries into a
Catamount program as long as the routines are not called
during run time. This is possible because Catamount and
Linux share the same base programming environment, so
the libraries are passively compatible, and warnings
printed by the linker for these libraries can be safely
ignored. Of course any attempt to call these routines from
a Catamount program would fail.

Plugin Support

The VisIt plugin infrastructure accesses plugins via
the dlopen, dlsym, and dlclose system calls. With
these calls, it is possible to access external symbols
(routines or data structures) within a shared library that is
not specified at program link time – a form of dynamic
linking. The plugin can be developed after the program is
developed so long as it adheres to the interface
requirements of the program. In VisIt, plugins have a
general interface plus component-specific interfaces.
These interfaces are implemented as external data
structures in the shared libraries, and have fixed, well-
known names.

First Approach

The first approach to support plugins was to
implement dlopen, dlsym, and dlclose as utility
library calls. Here, dlopen allocates a region of memory
on the heap and reads the shared library into this region.
dlsym uses the ELF1 library primitives to access the
symbol table of the shared library, just as the Linux linker
does. While this approach works fine for leaf routines,
more extensive support for dynamic linking proved too
ambitious for this project.

Second Approach

A second approach to support plugins was to
statically link the required plugins into the parallel
compute engine. Some flexibility was lost with this
approach, since all plugins must be available when the
parallel compute engine is linked. This limitation was not
too burdensome because new plugins are not created
frequently. Code size grew with this approach, but the
overall application size only increased moderately.

1 ELF (Executable and Linking Format) object files can be
manipulated using a standard system library libelf.

Building the plugin libraries

The first step was to build static plugin libraries. This
was accomplished in the same way as with other libraries,
by using specially-crafted configure parameters. Some
minor hand-editing of the generated Makefiles was
required to avoid warning messages.

Renaming the plugin interface symbols

Since the plugin libraries have the same external
symbol names (in conformance with the VisIt plugin
requirements), the libraries cannot be directly linked into a
single program. Also, the components do not contain
explicit references to the libraries or their symbols,
because these are determined at run time. Thus, directly
linking plugin libraries into a component is not possible.

To work around this problem, two utilities were
created. The first, bldplug, uses features of the system
linker, GNU ld, to convert the static plugin libraries into
object files, and at the same time adds a unique prefix
onto each external symbol. With these plugin object files
it is possible to link all plugins into a single program
without conflict.

For example, there are database plugins for PLOT3D
and Silo. Both shared libraries contain the
GetGeneralInfo external symbol used to access the
plugin data structure. bldplug renames these as follows
to make them unique.

Plugin Original Symbol New Symbol
PLOT3D GetGeneralInfo PLOT3DGetGeneralInfo
Silo GetGeneralInfo SiloGetGeneralInfo

Adding the standard interface wrapper

The second utility, gendl, takes a set of plugin object
files and adds special-purpose versions of the standard
dlopen, dlsym, and dlclose routines. The new
dlopen examines a table of available plugins statically
linked into the program, and returns status to the caller
indicating whether the requested plugin is available or not.
The dlsym returns the requested plugin external symbol
via a similar table lookup, or it returns an error if no such
symbol exists. The dclose routine frees up the table
memory allocated in dlopen. The lookup table for
dlopen is created by gendl.

To extend the Silo plugin example, a call to dlopen
to access the Silo plugin causes the dlopen routine to
check its internal table to determine if the Silo database
plugin was available. If it is, a later call is made to dlsym
to access the GetGeneralInfo symbol from this library.
The replacement dlsym looks up the name

CUG 2007 Proceedings 4 of 6

SiloDatabaseGetGeneralInfo and returns a pointer
to this data structure to the caller.

Handling external symbol name collisions

Although the well-known plugin interface symbols
are renamed to unique identifiers by the bldplugin
utility, libraries may, in general, define other external
symbols. Thus, it is possible that two libraries define
symbols with the same name. This presents no difficulty
with regular dynamic linking, since each library is
managed as an independent symbol name space. But
when static linking is used, duplicate symbol names cause
a link error.

In practice, name space collisions between plugin
library external symbols are rare. One reason is that the
coding conventions used by the VisIt developers avoid
giving two routines the same name. Outside of a plugin,
symbols with duplicate names create linker errors as well.

There is one case within the standard VisIt plugins
that a name collision occurs. An investigation revealed
that two items were copied from a library and into a
plugin. This code extract was fairly small, so it may have
been easier to copy it into the plugin rather than change
the plugin build to include the extra library.

Once the parallel compute engine (which includes the
library) was statically linked with the plugin library
containing the duplicated source code, a duplicate symbol
error occurred. There are many ways to work around this
error, but it is easiest to make the symbols private (by
declaring them with the C static keyword) in the plugin
source. Another approach would be to use a linker option
to ignore the duplicate symbols, or to delete the plugin
copy of the code.

Plugin discovery at run time

There is one installation issue related to plugins.
VisIt determines which plugins to open by reading a
directory in $VISITDIR (the VisIt installation directory).
Since regular plugins are not built for the parallel compute
engine, $VISITDIR must point to the plugin directory for
the Linux components. This means that $VISITDIR must
be in a file system accessible from the compute nodes,
such as Lustre or UFS.

While they are not full implementations of the
standard dynamic linking routines, these replacement
routines provide the functionality required to support VisIt
plugins. Extra build steps beyond the standard VisIt build
are required to run bldplug and gendl for all plugins to
be included in the parallel compute engine. The Linux-
based components continue to use the regular plugin
shared libraries. Because the replacement routines

effectively emulate their standard counterpart, no source
changes to the component are required.

Socket Communication

Interprocess communication with TCP/IP sockets
allows unrelated processes to exchange data within a
given computer system or across a network. This is not
available for Catamount, however. Rather, MPI
communication is the standard communication for
Catamount programs; but MPI only works within a
domain of compute nodes of related processes. So, MPI
cannot be used as a lower-level communication layer to
emulate sockets.

Portals

The Cray XT3 system uses Portals, a low-level
communication facility that can support the essential
features of sockets. The Portals library allows arbitrary
processes to exchange information between node types
(login or compute nodes). It is used by both MPI and
throughout the Cray XT3 system software for data transfer
between nodes.

It would be possible to replace the socket-based
communication within VisIt with an alternative
implementation based on Portals. This would involve
some source code changes, but they would be fairly
localized because the organization of the VisIt software
isolates the communication implementation in a module
from the bulk of VisIt. This would add a restriction to
VisIt that would limit all components to execute on a
given Cray XT3 system, since Portals only operates within
a single system.

Another approach would be to use Portals to
implement a socket-like interface for the Catamount
component only; and introduce a new program to act as a
bridge between the Catamount socket emulation and the
Linux components using standard sockets. In this way,
the Linux components could be spread across a TCP/IP-
based network of computers, although the parallel
compute engine would still be tied to the Cray XT3
system.

CUG 2007 Proceedings 5 of 6

Figure 2: Socket Emulation via Portals

The socket emulation for Catamount can be crafted to
minimize or eliminate source code changes to VisIt. To
do this, a somewhat lengthy but well-defined set of
routines is required to provide standard socket and
network functions (connect, bind, gethostbyaddr,
and so on). Since none of these calls are implemented
within Catamount, there are no side effects for other parts
of VisIt to introduce these functions. This is simplified
because VisIt uses the socket-specific sendmsg and
recvmsg calls for data transfer, rather than the general
purpose write and read system calls.

SOLD Implementation

A purpose-built library and daemon were created to
implement a sufficient socket emulation capability for
VisIt. Called SOLD (Socket OffLoad Daemon), the
library provides the necessary socket and network
functions. The functions use Portals to pass the requests
on to the Linux-based daemon (a helper process), which
implements the functions (that is, it offloads the
implementation from Catamount to Linux).

For example, to communicate with another VisIt
component, the parallel compute engine first calls the
socket function. This function passes the request to the
daemon, which creates a socket on the Linux node, and
passes back a handle (file descriptor placeholder) to VisIt.
Visit uses this handle to call the connect function, which
causes the daemon to connect the previously created
socket to the TCP/IP port of the other VisIt component.

In this way, the parallel compute engine is unaware
that it is running in a special partition of the Cray XT3
system, since it can communicate normally with all VisIt
components, even those running on other computers.

There are performance implications for this type of
communication. If all processes of a large parallel job
were to attempt to communicate simultaneously, they
would easily overwhelm the SOLD daemon. In the case
of VisIt, only MPI process rank 0 actively uses sockets to
communicate with the other components. Because there is
an extra user-domain process in the communication path
(the daemon), both communication latency and bandwidth
are negatively impacted versus a direct communication
path. For the purposes of supporting VisIt, this is not a
performance bottleneck.

One interesting realization did arise during the SOLD
implementation. It became apparent in the debugging
phase that all of the parallel compute engine processes
performed some network-related calls. This put stress on
the SOLD daemon process. Later investigation revealed
that this work was unnecessary, and only occurred
because of an omitted check during initialization. Only
MPI process rank 0 needed to make the call. A simple
change to VisIt – a bug fix, actually – resolved this
problem.

Performance

A benchmark suite provided by AWE was used to test
VisIt performance. The input dataset was a 32 gigabyte
file in TyphonIO format. A set of four Python scripts was
used as input to the VisIt cli to simulate typical interactive
usage. The test included visualization of pseudocolor,
mesh, filled boundary, wire frame, and contour plots with
rotate, pan, and zoom operations. Image files were
written at several points.

The performance goal was to update frames on the
user display at a rate of at least 1 per second. When the
test was run on a Cray XT3 system with dual core 2.4
GHz processors, the goal could not be consistently met
with 16 compute engine processes, but at 32 processes the
goal was demonstrated.

Figure 3 shows the maximum and average seconds
per frame for the six tests within the first of the four
benchmark runs.

CUG 2007 Proceedings 6 of 6

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 16 32 48 64 80

Processes

S
ec

o
n

d
s/

F
ra

m
e

Required Maximum Average

 Figure 3: Freund Benchmark Scaling

Conclusion

VisIt, including its parallel compute engine, now runs
on the Cray XT3 system at AWE. The implementation is
efficient and scalable, and it meets the performance goals
of the project. Minimal source code changes to the
application were required to port it, although extensive
changes to the build process were necessary.

To accomplish this, two special-purpose
implementations of standard system features were created,
one to emulate dynamic linking, the other to emulate
TCP/IP sockets. Both of these implementations perform
well within AWE’s performance goals.

Acknowledgments

The author thanks Sean Ahern of Oak Ridge National
Laboratory, Hank Childs of Lawrence Livermore National
Laboratory, and Matthew Wheeler of the Atomic
Weapons Establishment for valuable technical
consultations as well as material contributions during this
project. Tony Booker of Cray Inc. designed and
implemented SOLD. His contributions were crucial.

About the Author

Kevin Thomas is a staff member of the Performance
Team at Cray Inc.

