

CUG 2007 Proceedings 1 of 5

The Effects of System Options on Code Performance

Courtenay T. Vaughan, Sandia National Laboratories1

ABSTRACT: There are several options that can be used to run codes on a Cray XT3.
In this paper, we will examine the effect of choice of page size, eager or non-eager
communication protocol, and choice of malloc has on performance of several codes at
different numbers of processors. We will also analyze code characteristics and correlate
those to the differences in performance.

KEYWORDS: Red Storm, XT3, application performance, catamount

1 This research was sponsored by Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California
94550. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

1. Introduction
In this paper, we will investigate the effects of three

options for running codes on an XT3. The choice of page
size and whether or not to use the eager communication
protocol are runtime options, while the choice to replace
the standard malloc with GNU malloc is a compile time
option. We ran several codes with each of these options
over a range of number of processors and present those
results. We then analyze those results and present some
results using the hardware counters gathered through
PAPI to explain these results.

Most of these comparisons were run on Sandia’s Red

Storm computer. Red Storm is a CRAY XT3 with 12960
nodes that are connected in a 27 x 20 x 24 mesh. The
mesh is a torus in the z direction. The nodes are dual-
core 2.4 GHz AMD Opterons. These runs were run using
one core per node on a maximum of 2048 processors.
Some of the results were run on our 2 cabinet test system,
which is a Cray XT3 with 160 single-core 2.0 GHz AMD
Opteron nodes.

We ran each code over a range of processor counts.

For each test, we ran the code with all combinations of
the options in case the options interacted with each other.
For a given code and a given number of nodes, all of the
tests were run on the same nodes of the machine, one
after another, to minimize variations in the mesh and with
possible interference from other jobs on the machine.
Most of the runs were run only once since our early
experience with our test system indicated that this was
sufficient.

2. Available XT3 Options
One of the options that we investigated is the choice

of page size. These pages are used by the processor to
access memory. For the current AMD Opterons, there is
the choice of large or small pages, where large pages are
2 Mbytes and small pages are 4 Kbytes. In order for a
memory location to be accessed, that location is first
looked up in the TLB (Translation-Lookaside Buffer). If
the location is present in the TLB, it improves the speed
of virtual address translation. In small page mode, there
are 256 entries in the TLB, while in large page mode,
there are 8 entries. The default for the XT3 is large pages
and to run with small pages, one must specify “-
small_pages” on the command line when the job is
launched.

Another option is the option to use the eager

communication protocol, where messages are sent from
one processor to another before there is an
acknowledgement that there is space for the message to
be received. By default, this option is used for small
messages, while for large messages a rendezvous protocol
is used where there is an acknowledgement that there is
space for the message. When this option is used, all of
the messages are sent using the eager protocol and are
resent if there is not enough space. To use this option, the
environment variable MPI_PTL_EAGER_LONG has to
be set.

The third option is the choice of malloc to use in the

code. There is a default malloc provided by Catamount
(the compute node operating system for XT3), which is
optimized for large memory allocations. There is an

CUG 2007 Proceedings 2 of 5

option to replace it with GNU malloc. To use this option,
-lgmalloc is specified on the link line when a code is
compiled.

3. Applications and Results
In this paper, we have chosen to use some

benchmarks from the HPCC benchmark suite to try to get
a baseline for these options. We then tested with several
applications which are commonly used on the machine.
These applications are CTH, PARTISN, SAGE, and
Presto.

A. HPCC

The HPC Challenge benchmark suite [1] provides a

variety of benchmarks that span the space of processor
and network performance for parallel computers. We
have chosen to use five of the benchmarks in this study
with the hope of capturing application behavior in a
simpler framework. The benchmarks that we are using
are HPL (factor a large dense matrix) which emphasizes
processor performance, PTRANS (matrix transposition)
which tests network bisection bandwidth, STREAMS
(vector operations) which tests memory performance,

Figure 1. HPCC on 64 processors

Figure 2. HPCC on 384 processors

RandomAccess (modify random memory locations across
the entire machine) which stresses small message network
performance, and FFT (a large 1-D Fast Fourier
Transform) which is a coupled processor and network
test. Results for HPCC are given in figures 1 and 2.

 These figures show all of the options compared
to the default configuration which is large pages, not to
use the eager communications protocol, and catamount
malloc. Three of the tests HPL, STREAMS, and FFT
seem to indicate that any of the options are either neutral
or bad for their performance. Also it seems that overall,
the eager communications protocol seems to make little
difference. In the case of the Random Access test, small
pages seem to make a positive difference while GNU
malloc is bad for performance. For PTRANS, small
pages are bad for performance, while GNU malloc is
slightly better for the 384 processor case. In the 64
processor case, each processor in PTRANS will exchange
information with one other processor, while in the 384
processor case, there is several communication phases.

B. CTH

CTH is an explicit, three-dimensional, multimaterial

shock hydrodynamics code which has been developed at
Sandia for serial and parallel computers. It is designed to
model a large variety of two- and three-dimensional
problems involving high-speed hydrodynamic flow and
the dynamic deformation of solid materials, and includes
several equations of state and material strength models
[2]. CTH is written mostly in FORTRAN 77 with a little
bit of C code.

The numerical algorithms used in CTH solve the

equations of mass, momentum, and energy in an Eulerian
finite difference formulation on a three-dimensional
Cartesian mesh. CTH can be used in either a flat mesh
mode where the faces of adjacent cells are coincident or
in a mode with Automatic Mesh Refinement (AMR)
where the mesh can be finer in areas of the problem
where there is more activity. We will be using the code
in a flat mesh mode for this study.

For this study, we will be using a shaped-charge

problem that scales with the number of processors. The
shaped-charge consists of a cylindrical container filled
with high explosive capped with a copper liner. When
the explosive is detonated from the center of the back of
the container, the liner collapses and forms a jet. The
problem is run in quarter symmetry. The simulation
consists of those three materials and a fourth material that
forms a target for the jet.

Results for the shaped charge problem for CTH are

shown in figure 3. Lower values are better.

HPCC - 384 processors, N = 150035

0.91

0.94

0.97

1.00

1.03

1.06

PTRANS HPL STREAMS Random FFT
Test

R
at

io
 to

 D
ef

au
lt

small
small eager
eager
gmalloc
small gmalloc
small eager gmalloc
eager gmalloc

HPCC - 64 processors, N = 80003

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

PTRANS HPL STREAMS Random FFT
Test

R
at

io
 to

 D
ef

au
lt

small
small eager
eager
gmalloc
small gmalloc
small eager gmalloc
eager gmalloc

CUG 2007 Proceedings 3 of 5

Figure 3. CTH – shaped charge problem

CTH was run both on the two cabinet test system and

on Red Storm after Red Storm’s upgrade to 2.4 GHz dual
core processors. The 128 processor test case was run on
both systems and was repeated to confirm that the results
from the two systems were consistent. The results
indicate that there is a small but consistent benefit for
using small pages. The timings seem to have a little more
variation on larger numbers of processors, but the trend in
consistent.

C. PARTISN

The Parallel, Time-dependent SN (PARTISN) code
is designed to solve the time-independent or dependent
multigroup discrete ordinates form of the Boltzmann
transport equation in several different geometries [3].
PARTISN provides neutron transport solutions on
orthogonal meshes with adaptive mesh refinement in 1D,
2D or 3D. Much effort has been devoted to making
PARTISN efficient on massively parallel computers. The
package can be coupled to nonlinear multiphysics codes
that run for weeks on thousands of processors to finish
one simulation. The test problem is the Sntiming
problem, in which flux and eigenvalue convergence are
monitored by PARTISN. The results are shown in
figures 4 and 5.

The PARTISN code is mostly FORTRAN and was

run only on the two cabinet test system. In these figures,
better performance is indicated by a smaller grind time.
PARTISN has two phases in the calculation, there is a
transport phase and a diffusion phase, and both phases are
run in each iteration of the code. With this code, page
size again seems to be the dominative difference among
the options, with large pages giving better performance
than small pages and the difference seems to be bigger for
the transport phase of the computation.

Figure 4. PARTISN transport phase

Figure 5. PARTISN diffusion phase

D. Presto

Presto is a Lagrangian, three-dimensional explicit,

transient dynamics code for the analysis of solids
subjected to large, suddenly applied loads [4]. It is built
on the SIERRA framework [5], which supplies a data
management for a parallel computing environment.
Presto is designed for problems with large deformations,
nonlinear material behavior, and contact. There is a
versatile element library incorporating both continuum
and structural elements. The contact algorithm is
supplied by ACME [6]. The contact algorithm detects
contacts that occur between elements in the deforming
mesh and prevents those elements from interpenetrating
each other. This is done on a decomposition of just the
surface elements of the mesh. The contact algorithm is
communication intensive and can change as the problem
progresses. The SIERRA framework and Presto are
written in C++.

The simulation used in this investigation is the Brick

Walls problem consists of two sets of two brick walls

Partisn Diffusion 72^3/processor

160

165

170

175

180

185

190

195

200

205

210

1 8 27 64 125 160
Number of Processors

N
or

m
al

iz
ed

 G
rin

d
Ti

m
e

none
small
small eager
eager
gmalloc
small gmalloc
small eager gmalloc
eager gmalloc

Partisn Transport 72^3/processor

205

210

215

220

225

230

1 8 27 64 125 160
Number of Processors

N
or

m
al

iz
ed

 G
rin

d
Ti

m
e

none
small
small eager
eager
gmalloc
small gmalloc
small eager gmalloc
eager gmalloc

CTH 7.1 - shaped charge 90 x 216 x 90/proc

10

11

12

13

14

15

16

17

18

1 2 4 8 16 32 64 128 128 256 512 1024 2048
Number of Processors

Ti
m

e
pe

r T
im

es
te

p

none
small
small eager
eager
gmalloc
small gmalloc
small eager gmalloc
eager gmalloc

2 cabinet test system Upgraded

CUG 2007 Proceedings 4 of 5

colliding with each other. It is a weak scaling problem
where each processor is assigned 80 bricks. Each brick is
discretized with 4 x 4 x 8 elements, for a total of 10240
elements per processor. Due to the way the problem is
distributed on a parallel computer, each brick is located
on one processor so the only communication for the finite
element portion of the code is for the determination of the
length of the next timestep. The contact portion of the
calculation is communication intensive since it is done on
a different decomposition which involves only the surface
areas of the mesh. The results for Presto are shown in
figure 6.

Figure 6. Presto brick walls problem

In this case, there are two options which make a

difference in the run time. As we have seen in other
codes, small pages benefit Presto. However, in this case,
GNU malloc has a larger positive effect on performance.
This is probably due to the fact that Presto is a C++ code
and makes a larger use of memory allocation during the
calculation.

E. SAGE

SAGE is SAIC’s Adaptive Grid Eulerian hydrocode,

a multidimensional, multimaterial hydrodynamics code
with adaptive mesh refinement that uses second-order
accurate numerical methods [7]. We used a standard
problem called timing_c, which uses adaptation and heat
conduction, with 250000 cells per processor. SAGE is
mostly written in FORTRAN 90. Results for SAGE are
shown in figure 7.

For the SAGE results, a larger number of cell-

cycles/sec/proc indicates better performance. For this
simulation with SAGE, small pages gives a performance
improvement from about 45% to 60%, depending on the
number of processors. The other options do not seem to
make a large difference.

Figure 7. SAGE timing_c problem

4. PAPI Results for Small Pages
Since most of the benchmarks and applications were

affected by using small pages, we instrumented several of
the applications and looked at the hardware counters
using PAPI to see if we could explain how this option
affects performance. Table 1 shows the results from
processor 0 of these runs. The applications are ordered
based on the ratio of performance between the code run
with small pages and the code run with large pages, with
the applications that benefit most from large pages at the
top of the table.

App
Page
size

TLB
miss

Cache
access

Access
/miss

Cache
hit

FP
intensit
y

PTRANS large 3.30e7 6.37e10 1934 98.2% 0.150
64 proc small 1.03e9 6.54e10 63.8 98.2% 0.144
HPL large 5.57e8 3.16e12 5670 99.1% 1.693
64 proc small 2.98e8 3.17e12 10644 99.1% 1.686
PARTISN large 1.48e9 6.14e11 414 92.8% 0.558
32 proc small 1.38e9 6.18e11 449 92.7% 0.554
STREAM large 1.73e4 4.25e9 2.45e5 93.5% 0.344
64 proc small 6.97e6 4.34e9 623 93.6% 0.333
FFT large 2.03e7 3.34e9 164 97.6% 0.466
64 proc small 1.52e7 3.30e9 217 97.6% 0.441
CTH large 1.08e10 1.28e12 119 96.9% 0.570
32 proc small 3.30e9 1.32e12 398 97.0% 0.588
Random large 8.50e8 4.32e10 50.8 99.5% 0.0
64 proc small 1.01e8 4.57e10 452 99.5% 0.0
SAGE large 2.90e9 1.29e11 44.5 98.7% 0.226
32 proc small 2.29e7 1.02e11 4457 98.3% 0.231

Table 1. PAPI results for applications

For some of the applications and benchmarks in table
1, the measured statistics may include operations which
were not included in the performance measurements. In
particular, a couple of the benchmarks, such as
STREAMS and PTRANS, have statistics for the entire
test, not just for the test for which results are presented.

SAGE - timing_c - 250000 cells/proc

2000

3000

4000

5000

6000

7000

8000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

C
el

l-C
yc

le
s/

se
c/

pr
oc

none
small
small eager
eager
gmalloc
small gmalloc
small eager gmalloc
eager gmalloc

PRESTO - Walls, 10240 elem/proc, t = 5.0e-3

150

200

250

300

350

400

450

500

550

600

1 2 4 8 16 32 64 128 256 512 1024
Number of Processors

So
lu

tio
n

Ti
m

e

none
small
small eager
eager
gmalloc
small gmalloc
small eager gmalloc
eager gmalloc

CUG 2007 Proceedings 5 of 5

In these two cases, all of the subtests are consistent in that
large pages are better by about the same amount. The
statistics for these tests also contain measurements for the
portion of the test that checks the results. The statistics
for PARTISN contain both phases of the calculation since
it is an iterative process and both phases are performed
during every iteration.

There are several things that can be seen from table

1. The first is that the L1 cache hit rate is largely
independent from the page size and has no effect on
which page size is most beneficial. Except for the
Random Access benchmark which does no floating point
calculations, the floating point intensity indicates which
page size is better for performance. That statistic seems
to be a result rather than a cause of better performance.
There also does not seem to be any correlation between
floating point intensity and which page size gives better
performance.

What seem to correlate with performance is a

combination of the number of L1 data cache accesses and
the number of TLB misses. For codes which show the
best performance with small pages, the ratio of data cache
accesses to TLB misses is larger for small pages than for
large pages. However, the reverse does not always apply.
In the case of the STREAMS benchmark, that ratio is
almost 400 times larger for large pages, but the
performance improvement for large pages is less than 1%.
The performance does seem to correlate a little better if
one looks only at the number of L1 data cache accesses.
It looks like there are other factors at work here.

5. Conclusions and Future Work
There are a couple of observations that we can draw

from the data presented here. The first is that trends
observed from benchmarks do not always translate over
to real application codes.

The results indicate that GNU malloc should be tried

if one is using a C++ application. This may be the case
for some other applications that do a lot of dynamic
memory allocation and deallocation. Most of the other
applications that we ran will malloc a large amount of
memory when the application starts and never change its
memory configuration.

The option to use the eager message protocol for all

messages seems to have little effect on any of the codes
that we ran for this test.

For most codes, using small pages seems to result in

better performance, and the difference can be large. In
the cases where it does not help, it does not seem to hurt
much. The number of TLB entries for large pages would
seem to be a limiting factor. With large pages, there is a

larger portion of memory that can be accessed without a
TLB miss, but it is located in large contiguous blocks. If
the memory that is being accessed is spread throughout
memory, then small pages may allow it to be accessed
with fewer misses. We would like to try this experiment
again when the quad-core Opteron processors are
available since they will have a larger number of TLB
entries in large page mode.

About the Author
Courtenay Vaughan is a Senior Member of Technical

Staff at Sandia National Laboratories. He can be reached
at Sandia National Laboratories, P. O. Box 5800, MS
1319, Albuquerque, New Mexico 87185, E-Mail:
ctvaugh@sandia.gov.

References
1. P. Luszczek, J. Dongarra, D. Koester, R.

Rabensiefner, R. Lucas, J. Kepner, J. McCalpin,
D. Baily, and D. Takahasi, “Introduction to the
HPC challenge benchmark suite,” March 2005,
http://icl.cs.utk.edu/hpcc/pubs/index.html.

2. E. S. Hertel, Jr., R. L. Bell, M. G. Elrick, A. V.

Farnsworth, G. I. Kerley, J. M. McGlaun, S. V.
Petney, S. A. Silling, P. A. Taylor, L. Yarrington,
“CTH: A Software Family for Multi-Dimensional
Shock Physics Analysis,” Proceedings, 19th
International Symposium on Shock Waves 1,
274ff (Université de Provence, Provence, France)
(1993).

3. R. E. Alcouffe, R. S. Baker, J. A. Dahl, S. A.

Turner, and Robert Wart, “PARTISN: A Time-
Dependent, Parallel Neutral Particle Transport
Code System,” LA-UR-05-3925 (May 2005).

4. J. Richard Koteras and Arne S. Gullerud, Presto

User's Guide Version 1.05, Sand Report
SAND2003-1089, April 2003.

5. Edwards, H. C., and Stewart, J. R., “SIERRA: A

Software Environment for Developing Complex
Multi-Physics Applications”, First MIT
Conference on Computational Fluid and Solid
Mechanics, Bathe, K.J., editor, Elsevier
Scientific, 2001.

6. Kevin H. Brown, Randall M. Summers, Micheal

W. Glass, Arne S. Gullerud, Martin W. Heinstein,
and Reese E. Jones, “ACME Algorithms for
Contact in a Multiphysics Environment API
Version 1.0,”Sand Report SAND2001-3318,
October 2001.

7. D. J. Kerbyson, H. J. Alme, A. Hoise, F. Petrini,

H. J. Wasserman, and M. Gittings, “Predictive
Performance and Scalability Modeling of a
Large-Scale Application”, in Proceedings of the
ACM/IEEE International Conference on High-
Performance Compution and Networking (SC
2001), November 2001.

