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The Effects of System Options on Code Performance 

Courtenay T. Vaughan, Sandia National Laboratories1 

ABSTRACT: There are several options that can be used to run codes on a Cray XT3.  
In this paper, we will examine the effect of choice of page size, eager or non-eager 
communication protocol, and choice of malloc has on performance of several codes at 
different numbers of processors.  We will also analyze code characteristics and correlate 
those to the differences in performance.  
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1. Introduction 
In this paper, we will investigate the effects of three 

options for running codes on an XT3.  The choice of page 
size and whether or not to use the eager communication 
protocol are runtime options, while the choice to replace 
the standard malloc with GNU malloc is a compile time 
option.  We ran several codes with each of these options 
over a range of number of processors and present those 
results.  We then analyze those results and present some 
results using the hardware counters gathered through 
PAPI to explain these results.    

  
Most of these comparisons were run on Sandia’s Red 

Storm computer.  Red Storm is a CRAY XT3 with 12960 
nodes that are connected in a 27 x 20 x 24 mesh.  The 
mesh is a torus in the z direction.  The nodes are dual-
core 2.4 GHz AMD Opterons.  These runs were run using 
one core per node on a maximum of 2048 processors.  
Some of the results were run on our 2 cabinet test system, 
which is a Cray XT3 with 160 single-core 2.0 GHz AMD 
Opteron nodes. 

 
We ran each code over a range of processor counts.  

For each test, we ran the code with all combinations of 
the options in case the options interacted with each other.  
For a given code and a given number of nodes, all of the 
tests were run on the same nodes of the machine, one 
after another, to minimize variations in the mesh and with 
possible interference from other jobs on the machine.  
Most of the runs were run only once since our early 
experience with our test system indicated that this was 
sufficient. 

2. Available XT3 Options 
One of the options that we investigated is the choice 

of page size.  These pages are used by the processor to 
access memory.  For the current AMD Opterons, there is 
the choice of large or small pages, where large pages are 
2 Mbytes and small pages are 4 Kbytes.  In order for a 
memory location to be accessed, that location is first 
looked up in the TLB (Translation-Lookaside Buffer).  If 
the location is present in the TLB, it improves the speed 
of virtual address translation.  In small page mode, there 
are 256 entries in the TLB, while in large page mode, 
there are 8 entries.  The default for the XT3 is large pages 
and to run with small pages, one must specify “-
small_pages” on the command line when the job is 
launched. 

 
Another option is the option to use the eager 

communication protocol, where messages are sent from 
one processor to another before there is an 
acknowledgement that there is space for the message to 
be received.  By default, this option is used for small 
messages, while for large messages a rendezvous protocol 
is used where there is an acknowledgement that there is 
space for the message.  When this option is used, all of 
the messages are sent using the eager protocol and are 
resent if there is not enough space.  To use this option, the 
environment variable MPI_PTL_EAGER_LONG has to 
be set.  

 
The third option is the choice of malloc to use in the 

code.  There is a default malloc provided by Catamount 
(the compute node operating system for XT3), which is 
optimized for large memory allocations.  There is an 
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option to replace it with GNU malloc.  To use this option, 
-lgmalloc is specified on the link line when a code is 
compiled. 

3. Applications and Results 
In this paper, we have chosen to use some 

benchmarks from the HPCC benchmark suite to try to get 
a baseline for these options.  We then tested with several 
applications which are commonly used on the machine.  
These applications are CTH, PARTISN, SAGE, and 
Presto. 

A. HPCC 
 
The HPC Challenge benchmark suite [1] provides a 

variety of benchmarks that span the space of processor 
and network performance for parallel computers.  We 
have chosen to use five of the benchmarks in this study 
with the hope of capturing application behavior in a 
simpler framework.  The benchmarks that we are using 
are HPL (factor a large dense matrix) which emphasizes 
processor performance, PTRANS (matrix transposition) 
which tests network bisection bandwidth, STREAMS 
(vector operations) which tests memory performance,  

 
Figure 1.  HPCC on 64 processors 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.  HPCC on 384 processors 

RandomAccess (modify random memory locations across  
the entire machine) which stresses small message network 
performance, and FFT (a large 1-D Fast Fourier 
Transform) which is a coupled processor and network 
test.  Results for HPCC are given in figures 1 and 2. 
 
 These figures show all of the options compared 
to the default configuration which is large pages, not to 
use the eager communications protocol, and catamount 
malloc.  Three of the tests HPL, STREAMS, and FFT 
seem to indicate that any of the options are either neutral 
or bad for their performance.  Also it seems that overall, 
the eager communications protocol seems to make little 
difference.  In the case of the Random Access test, small 
pages seem to make a positive difference while GNU 
malloc is bad for performance.  For PTRANS, small 
pages are bad for performance, while GNU malloc is 
slightly better for the 384 processor case.  In the 64 
processor case, each processor in PTRANS will exchange 
information with one other processor, while in the 384 
processor case, there is several communication phases. 
   

B. CTH 
 
CTH is an explicit, three-dimensional, multimaterial 

shock hydrodynamics code which has been developed at 
Sandia for serial and parallel computers.  It is designed to 
model a large variety of two- and three-dimensional 
problems involving high-speed hydrodynamic flow and 
the dynamic deformation of solid materials, and includes 
several equations of state and material strength models 
[2].  CTH is written mostly in FORTRAN 77 with a little 
bit of C code. 

 
The numerical algorithms used in CTH solve the 

equations of mass, momentum, and energy in an Eulerian 
finite difference formulation on a three-dimensional 
Cartesian mesh.  CTH can be used in either a flat mesh 
mode where the faces of adjacent cells are coincident or 
in a mode with Automatic Mesh Refinement (AMR) 
where the mesh can be finer in areas of the problem 
where there is more activity.  We will be using the code 
in a flat mesh mode for this study. 

 
For this study, we will be using a shaped-charge 

problem that scales with the number of processors.  The 
shaped-charge consists of a cylindrical container filled 
with high explosive capped with a copper liner.  When 
the explosive is detonated from the center of the back of 
the container, the liner collapses and forms a jet.  The 
problem is run in quarter symmetry.  The simulation 
consists of those three materials and a fourth material that 
forms a target for the jet. 

 
Results for the shaped charge problem for CTH are 

shown in figure 3.  Lower values are better. 
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Figure 3.  CTH – shaped charge problem 

 
CTH was run both on the two cabinet test system and 

on Red Storm after Red Storm’s upgrade to 2.4 GHz dual 
core processors.  The 128 processor test case was run on 
both systems and was repeated to confirm that the results 
from the two systems were consistent.  The results 
indicate that there is a small but consistent benefit for 
using small pages.  The timings seem to have a little more 
variation on larger numbers of processors, but the trend in 
consistent. 

 

C. PARTISN 
 

The Parallel, Time-dependent SN (PARTISN) code 
is designed to solve the time-independent or dependent 
multigroup discrete ordinates form of the Boltzmann 
transport equation in several different geometries [3].  
PARTISN provides neutron transport solutions on 
orthogonal meshes with adaptive mesh refinement in 1D, 
2D or 3D.  Much effort has been devoted to making 
PARTISN efficient on massively parallel computers.  The 
package can be coupled to nonlinear multiphysics codes 
that run for weeks on thousands of processors to finish 
one simulation.  The test problem is the Sntiming 
problem, in which flux and eigenvalue convergence are 
monitored by PARTISN.  The results are shown in 
figures 4 and 5. 

 
The PARTISN code is mostly FORTRAN and was 

run only on the two cabinet test system.  In these figures, 
better performance is indicated by a smaller grind time.  
PARTISN has two phases in the calculation, there is a 
transport phase and a diffusion phase, and both phases are 
run in each iteration of the code.  With this code, page 
size again seems to be the dominative difference among 
the options, with large pages giving better performance 
than small pages and the difference seems to be bigger for 
the transport phase of the computation. 

 
Figure 4.  PARTISN transport phase 

 

 
Figure 5.  PARTISN diffusion phase 

 

D. Presto 
 
Presto is a Lagrangian, three-dimensional explicit, 

transient dynamics code for the analysis of solids 
subjected to large, suddenly applied loads [4].  It is built 
on the SIERRA framework [5], which supplies a data 
management for a parallel computing environment.  
Presto is designed for problems with large deformations, 
nonlinear material behavior, and contact.  There is a 
versatile element library incorporating both continuum 
and structural elements.  The contact algorithm is 
supplied by ACME [6].  The contact algorithm detects 
contacts that occur between elements in the deforming 
mesh and prevents those elements from interpenetrating 
each other.  This is done on a decomposition of just the 
surface elements of the mesh.  The contact algorithm is 
communication intensive and can change as the problem 
progresses.  The SIERRA framework and Presto are 
written in C++. 

 
The simulation used in this investigation is the Brick 

Walls problem consists of two sets of two brick walls 
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colliding with each other.  It is a weak scaling problem 
where each processor is assigned 80 bricks.  Each brick is 
discretized with 4 x 4 x 8 elements, for a total of 10240 
elements per processor.  Due to the way the problem is 
distributed on a parallel computer, each brick is located 
on one processor so the only communication for the finite 
element portion of the code is for the determination of the 
length of the next timestep.  The contact portion of the 
calculation is communication intensive since it is done on 
a different decomposition which involves only the surface 
areas of the mesh.  The results for Presto are shown in 
figure 6. 

 

 
Figure 6.  Presto brick walls problem 

 
In this case, there are two options which make a 

difference in the run time.  As we have seen in other 
codes, small pages benefit Presto.  However, in this case, 
GNU malloc has a larger positive effect on performance.  
This is probably due to the fact that Presto is a C++ code 
and makes a larger use of memory allocation during the 
calculation. 

 

E. SAGE 
 
SAGE is SAIC’s Adaptive Grid Eulerian hydrocode, 

a multidimensional, multimaterial hydrodynamics code 
with adaptive mesh refinement that uses second-order 
accurate numerical methods [7].  We used a standard 
problem called timing_c, which uses adaptation and heat 
conduction, with 250000 cells per processor.  SAGE is 
mostly written in FORTRAN 90.  Results for SAGE are 
shown in figure 7. 

 
For the SAGE results, a larger number of cell-

cycles/sec/proc indicates better performance.  For this 
simulation with SAGE, small pages gives a performance 
improvement from about 45% to 60%, depending on the 
number of processors.  The other options do not seem to 
make a large difference. 

 
Figure 7.  SAGE timing_c problem 

4. PAPI Results for Small Pages 
Since most of the benchmarks and applications were 

affected by using small pages, we instrumented several of 
the applications and looked at the hardware counters 
using PAPI to see if we could explain how this option 
affects performance.  Table 1 shows the results from 
processor 0 of these runs.  The applications are ordered 
based on the ratio of performance between the code run 
with small pages and the code run with large pages, with 
the applications that benefit most from large pages at the 
top of the table. 

 

App 
Page 
size 

TLB 
miss 

Cache 
access 

Access 
/miss 

Cache 
hit 

FP 
intensit
y 

PTRANS large 3.30e7 6.37e10 1934 98.2% 0.150 
64 proc small 1.03e9 6.54e10 63.8 98.2% 0.144 
HPL large 5.57e8 3.16e12 5670 99.1% 1.693 
64 proc small 2.98e8 3.17e12 10644 99.1% 1.686 
PARTISN large 1.48e9 6.14e11 414 92.8% 0.558 
32 proc small 1.38e9 6.18e11 449 92.7% 0.554 
STREAM large 1.73e4 4.25e9 2.45e5 93.5% 0.344 
64 proc small 6.97e6 4.34e9 623 93.6% 0.333 
FFT large 2.03e7 3.34e9 164 97.6% 0.466 
64 proc small 1.52e7 3.30e9 217 97.6% 0.441 
CTH large 1.08e10 1.28e12 119 96.9% 0.570 
32 proc small 3.30e9 1.32e12 398 97.0% 0.588 
Random large 8.50e8 4.32e10 50.8 99.5% 0.0 
64 proc small 1.01e8 4.57e10 452 99.5% 0.0 
SAGE large 2.90e9 1.29e11 44.5 98.7% 0.226 
32 proc small 2.29e7 1.02e11 4457 98.3% 0.231 
 

Table 1.  PAPI results for applications 
 

For some of the applications and benchmarks in table 
1, the measured statistics may include operations which 
were not included in the performance measurements.  In 
particular, a couple of the benchmarks, such as 
STREAMS and PTRANS, have statistics for the entire 
test, not just for the test for which results are presented.  
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In these two cases, all of the subtests are consistent in that 
large pages are better by about the same amount.  The 
statistics for these tests also contain measurements for the 
portion of the test that checks the results.  The statistics 
for PARTISN contain both phases of the calculation since 
it is an iterative process and both phases are performed 
during every iteration. 

 
There are several things that can be seen from table 

1.  The first is that the L1 cache hit rate is largely 
independent from the page size and has no effect on 
which page size is most beneficial.  Except for the 
Random Access benchmark which does no floating point 
calculations, the floating point intensity indicates which 
page size is better for performance.  That statistic seems 
to be a result rather than a cause of better performance.  
There also does not seem to be any correlation between 
floating point intensity and which page size gives better 
performance. 

 
What seem to correlate with performance is a 

combination of the number of L1 data cache accesses and 
the number of TLB misses.  For codes which show the 
best performance with small pages, the ratio of data cache 
accesses to TLB misses is larger for small pages than for 
large pages.  However, the reverse does not always apply.  
In the case of the STREAMS benchmark, that ratio is 
almost 400 times larger for large pages, but the 
performance improvement for large pages is less than 1%.  
The performance does seem to correlate a little better if 
one looks only at the number of L1 data cache accesses.  
It looks like there are other factors at work here. 

5. Conclusions and Future Work 
There are a couple of observations that we can draw 

from the data presented here.  The first is that trends 
observed from benchmarks do not always translate over 
to real application codes. 

 
The results indicate that GNU malloc should be tried 

if one is using a C++ application.  This may be the case 
for some other applications that do a lot of dynamic 
memory allocation and deallocation.  Most of the other 
applications that we ran will malloc a large amount of 
memory when the application starts and never change its 
memory configuration. 

 
The option to use the eager message protocol for all 

messages seems to have little effect on any of the codes 
that we ran for this test. 

 
For most codes, using small pages seems to result in 

better performance, and the difference can be large.  In 
the cases where it does not help, it does not seem to hurt 
much.  The number of TLB entries for large pages would 
seem to be a limiting factor.  With large pages, there is a 

larger portion of memory that can be accessed without a 
TLB miss, but it is located in large contiguous blocks.  If 
the memory that is being accessed is spread throughout 
memory, then small pages may allow it to be accessed 
with fewer misses.  We would like to try this experiment 
again when the quad-core Opteron processors are 
available since they will have a larger number of TLB 
entries in large page mode. 
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