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XT3 Available Options

• small vs. large pages
– Controls memory page size
– large pages are default
– yod -small_pages ...

• eager vs. rendezvous message sends
– Controls message protocol
– rendezvous protocol is default
– export MPI_PTL_EAGER_LONG=1

• Catamount malloc vs. GNU malloc
– Controls which malloc is being used
– Link time option (cc ... -lgmalloc ...)



Test Parameters

• Codes were run for all combinations of options
• Codes were run using only one core per socket 
• All results on a given number of processors for a 

given code were run using the same nodes on the 
machine

• Most of the results are from Red Storm (2.4 GHz 
processors) while some are from our test system 
(2.0 GHz processors)

• Most tests were run once
– Early experience with the test system indicated that 

this was sufficient



HPCC

• Series of 7 benchmarks in one package.  We are 
using 5 of them:
– PTRANS - matrix transposition
– HPL - Linpack direct dense system solve
– STREAMS - Memory bandwidth
– Random Access - Global random memory access
– FFT - large 1-D FFT

• Code is C plus libraries



HPCC - 64 processors, N = 80003
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HPCC - 384 processors, N = 150035
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CTH

• Three-dimensional shock 
hydrodynamics code

• Ran in flat mesh mode - no 
AMR (Automatic Mesh 
Refinement)

• Shaped charge problem
• 90 x 216 x 90 cells per 

processor
• Code is mostly FORTRAN 

with a little C

time = 0.0 ms

time = 0.3 ms



CTH 7.1 - shaped charge 90 x 216 x 90/proc
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Partisn

• LANL code that solves the Boltzmann transport 
equation

• Has a transport and diffusion phase
• SN timing problem with 723 cells per processor
• Run only on 2 cabinet test system
• Code is mostly FORTRAN



Partisn Transport 72^3/processor
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smaller times indicate better performance 

Partisn Diffusion 72^3/processor
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Presto

• Structural mechanics with 
contact algorithm

• Walls problem
– Two sets of two brick 

walls colliding
– 10240 elements/proc

• Each brick contained on a 
processor
– All communication for 

contact
• Code is C++ 32 processor problem

colored by processor number



PRESTO - Walls, 10240 elem/proc, t = 5.0e-3
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SAGE

• LANL Eulerian Hydrocode with AMR (Adaptive 
Mesh Refinement)

• timing_c problem
– has adaptation and heat conduction
– 250000 cells per processor

• Code is mostly FORTRAN 90



SAGE - timing_c - 250000 cells/proc
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PAPI Results for Different Page Sizes 

 Large pages Small pages 
App TLB 

miss 
Cache 
access 

Access 
/miss 

Cache 
hit rate 

FP 
intensity

TLB 
miss 

Cache 
access 

Access 
/miss 

Cache 
hit rate 

FP 
intensity

PTRANS 3.30e7 6.37e10 1934 98.2% 0.150 1.03e9 6.54e10 63.8 98.2% 0.144 

HPL 5.57e8 3.16e12 5670 99.1% 1.693 2.98e8 3.17e12 10644 99.1% 1.686 

PARTISN 1.48e9 6.14e11 414 92.8% 0.558 1.38e9 6.18e11 449 92.7% 0.554 

STREAM 1.73e4 4.25e9 2.45e5 93.5% 0.344 6.97e6 4.34e9 623 93.6% 0.333 

FFT 2.03e7 3.34e9 164 97.6% 0.466 1.52e7 3.30e9 217 97.6% 0.441 

CTH 1.08e10 1.28e12 119 96.9% 0.570 3.30e9 1.32e12 398 97.0% 0.588 

Random 8.50e8 4.32e10 50.8 99.5% 0.0 1.01e8 4.57e10 452 99.5% 0.0 

SAGE 2.90e9 1.29e11 44.5 98.7% 0.226 2.29e7 1.02e11 4457 98.3% 0.231 

codes ranked by large page preference



Observations from PAPI Data

• The L1 data cache hit rate does not seem to 
change with different page sizes

• The floating point intensity of a calculation has 
no bearing on which page size is better

• The number of cache accesses per TLB miss can 
indicate something about which page size to use

• The number of L1 data cache accesses can vary 
with the page size



Summary

• No set of options is always best
• Results from benchmarks do not necessarily 

translate to codes
• Small pages generally helps and can help 

significantly
• GNU malloc helps C++ codes
• The eager message protocol has small effects for 

the codes that were tested


