
The Effects of System Options on
Code Performance

Courtenay T. Vaughan
ctvaugh@sandia.gov

Sandia National Laboratories
May 2007

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

XT3 Available Options

• small vs. large pages
– Controls memory page size
– large pages are default
– yod -small_pages ...

• eager vs. rendezvous message sends
– Controls message protocol
– rendezvous protocol is default
– export MPI_PTL_EAGER_LONG=1

• Catamount malloc vs. GNU malloc
– Controls which malloc is being used
– Link time option (cc ... -lgmalloc ...)

Test Parameters

• Codes were run for all combinations of options
• Codes were run using only one core per socket
• All results on a given number of processors for a

given code were run using the same nodes on the
machine

• Most of the results are from Red Storm (2.4 GHz
processors) while some are from our test system
(2.0 GHz processors)

• Most tests were run once
– Early experience with the test system indicated that

this was sufficient

HPCC

• Series of 7 benchmarks in one package. We are
using 5 of them:
– PTRANS - matrix transposition
– HPL - Linpack direct dense system solve
– STREAMS - Memory bandwidth
– Random Access - Global random memory access
– FFT - large 1-D FFT

• Code is C plus libraries

HPCC - 64 processors, N = 80003

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

PTRANS HPL STREAMS Random FFT
Test

R
at

io
 to

 D
ef

au
lt

small
small eager
eager
gmalloc
small gmalloc
small eager gmalloc
eager gmalloc

larger values indicate better performance

HPCC - 384 processors, N = 150035

0.91

0.94

0.97

1.00

1.03

1.06

PTRANS HPL STREAMS Random FFT
Test

R
at

io
 to

 D
ef

au
lt

small
small eager
eager
gmalloc
small gmalloc
small eager gmalloc
eager gmalloc

larger values indicate better performance

CTH

• Three-dimensional shock
hydrodynamics code

• Ran in flat mesh mode - no
AMR (Automatic Mesh
Refinement)

• Shaped charge problem
• 90 x 216 x 90 cells per

processor
• Code is mostly FORTRAN

with a little C

time = 0.0 ms

time = 0.3 ms

CTH 7.1 - shaped charge 90 x 216 x 90/proc

10

11

12

13

14

15

16

17

18

1 2 4 8 16 32 64 128 128 256 512 1024 2048
Number of Processors

Ti
m

e
pe

r T
im

es
te

p

none
small
small eager
eager
gmalloc
small gmalloc
small eager gmalloc
eager gmalloc

2 cabinet test system Upgraded

smaller times indicate better performance

Partisn

• LANL code that solves the Boltzmann transport
equation

• Has a transport and diffusion phase
• SN timing problem with 723 cells per processor
• Run only on 2 cabinet test system
• Code is mostly FORTRAN

Partisn Transport 72^3/processor

205

210

215

220

225

230

1 8 27 64 125 160
Number of Processors

N
or

m
al

iz
ed

 G
rin

d
Ti

m
e

none
small
small eager
eager
gmalloc
small gmalloc
small eager gmalloc
eager gmalloc

smaller times indicate better performance

smaller times indicate better performance

Partisn Diffusion 72^3/processor

160

165

170

175

180

185

190

195

200

205

210

1 8 27 64 125 160
Number of Processors

N
or

m
al

iz
ed

 G
rin

d
Ti

m
e

none
small
small eager
eager
gmalloc
small gmalloc
small eager gmalloc
eager gmalloc

smaller times indicate better performance

Presto

• Structural mechanics with
contact algorithm

• Walls problem
– Two sets of two brick

walls colliding
– 10240 elements/proc

• Each brick contained on a
processor
– All communication for

contact
• Code is C++ 32 processor problem

colored by processor number

PRESTO - Walls, 10240 elem/proc, t = 5.0e-3

150

200

250

300

350

400

450

500

550

600

1 2 4 8 16 32 64 128 256 512 1024
Number of Processors

So
lu

tio
n

Ti
m

e

none
small
small eager
eager
gmalloc
small gmalloc
small eager gmalloc
eager gmalloc

SAGE

• LANL Eulerian Hydrocode with AMR (Adaptive
Mesh Refinement)

• timing_c problem
– has adaptation and heat conduction
– 250000 cells per processor

• Code is mostly FORTRAN 90

SAGE - timing_c - 250000 cells/proc

2000

3000

4000

5000

6000

7000

8000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096
Number of Processors

C
el

l-C
yc

le
s/

se
c/

pr
oc

none
small
small eager
eager
gmalloc
small gmalloc
small eager gmalloc
eager gmalloc

these 4 use small pages

larger values indicate better performance

PAPI Results for Different Page Sizes

 Large pages Small pages
App TLB

miss
Cache
access

Access
/miss

Cache
hit rate

FP
intensity

TLB
miss

Cache
access

Access
/miss

Cache
hit rate

FP
intensity

PTRANS 3.30e7 6.37e10 1934 98.2% 0.150 1.03e9 6.54e10 63.8 98.2% 0.144

HPL 5.57e8 3.16e12 5670 99.1% 1.693 2.98e8 3.17e12 10644 99.1% 1.686

PARTISN 1.48e9 6.14e11 414 92.8% 0.558 1.38e9 6.18e11 449 92.7% 0.554

STREAM 1.73e4 4.25e9 2.45e5 93.5% 0.344 6.97e6 4.34e9 623 93.6% 0.333

FFT 2.03e7 3.34e9 164 97.6% 0.466 1.52e7 3.30e9 217 97.6% 0.441

CTH 1.08e10 1.28e12 119 96.9% 0.570 3.30e9 1.32e12 398 97.0% 0.588

Random 8.50e8 4.32e10 50.8 99.5% 0.0 1.01e8 4.57e10 452 99.5% 0.0

SAGE 2.90e9 1.29e11 44.5 98.7% 0.226 2.29e7 1.02e11 4457 98.3% 0.231

codes ranked by large page preference

Observations from PAPI Data

• The L1 data cache hit rate does not seem to
change with different page sizes

• The floating point intensity of a calculation has
no bearing on which page size is better

• The number of cache accesses per TLB miss can
indicate something about which page size to use

• The number of L1 data cache accesses can vary
with the page size

Summary

• No set of options is always best
• Results from benchmarks do not necessarily

translate to codes
• Small pages generally helps and can help

significantly
• GNU malloc helps C++ codes
• The eager message protocol has small effects for

the codes that were tested

