It’s About Time: Multi-Resolution Timers for Scalable
Performance Debugging

James B. White 111
Oak Ridge National Laboratory

May 9, 2007

Abstract

Traditional performance profiling of highly parallel
applications does not always give enough informa-
tion to diagnose performance bugs, particularly those
caused by load imbalances and performance variabil-
ity, yet the data files for such profiling can grow lin-
early with parallel task count. In response to these
limitations, I have developed application timers de-
signed to limit data and reporting volumes at high
task counts without dispersing the signals of load im-
balance and performance variability. I will describe
use of these timers to diagnose actual performance
bugs running the Parallel Ocean Program on a Cray
XT4.

1 Introduction

A goal of high-performance computing (HPC) is to
accelerate computation, so developers of HPC soft-
ware often expend significant effort to optimize the
performance of that software on the target super-
computers. These optimization efforts are typically
guided by timing the execution of the software com-
ponents.

The main strategies for timing HPC software are
automated tools and explicit calls to timing libraries.
Each strategy has advantages and disadvantages.
The advantages of automated tools are that they re-
quire no changes to the software source code and they
may provide a wide range of performance-analysis
capabilities. Such tools are often dependent on a

particular hardware vendor, however, or they may
be unavailable on the newest supercomputers. Also,
timing data for highly parallel runs can overwhelm
filesystems and post-processing tools.

A prominent example of an automated perfor-
mance tool is CrayPat [1], available on current Cray
supercomputers. CrayPat can automatically instru-
ment parallel executables, so that these executables
generate a performance-data file when run. Cray-
Pat tools use this file to generate performance reports
or provide interactive analysis through an X-Window
graphical user interface.

Unfortunately, the performance-data file grows lin-
early with the number of parallel tasks in the gener-
ating run. The reporting and analysis tools, which
use a single process, can run out of memory with
files generated using a few thousand tasks. For ex-
ample, “pat_report” runs out of memory, generat-
ing no report, for runs of the Parallel Ocean Pro-
gram (POP) [2] using 4500 tasks on Jaguar, the Cray
XT3/4 at Oak Ridge National Laboratory (ORNL).
Thus it is currently unusable for runs using a moder-
ate fraction of the 23,000+ processor cores available
on Jaguar.

Timing libraries, conversely, can support runs of
many thousands of tasks. They can also be more
portable, often distributed with the source code of
the parallel application. Because timing libraries can
target specific regions of software, they can also have
lower overhead than instrumentation by automated
tools.

Timing libraries typically provide simple text out-

put at the end of a parallel run; this can be an ad-
vantage or disadvantage. The output may be short
and easy to understand, but it may be inadequate
to diagnose performance problems. And perhaps the
main disadvantage of timing libraries is the need to
modify the source code of the target application.

A prominent HPC application that uses timing
libraries is the Community Climate System Model
(CCSM) [3]. CCSM has separate model components
for the Earth’s atmosphere, ocean, land, and sea ice,
where each component runs on a separate group of
processors. Timers in the CCSM coupler guide load
balancing of the components among available proces-
sors, but they do not provide adequate information to
optimize each parallel component individually. Thus
components may have their own timing library.

For example, this is the case for the Commu-
nity Atmosphere Model (CAM) [4], the CCSM at-
mosphere component. Each parallel task creates a
separate file with its timer output, so load imbal-
ances are identifiable. Combing through the files to
find such imbalances can be difficult, however, and
the large number of files do not help diagnose perfor-
mance variability within a task.

POP, the ocean component in CCSM, also has its
own timers. POP appends a timer report to its stan-
dard output, a report that is short and easy to ana-
lyze. But it includes only maximum, minimum, and
average totals for each timer, and this level of detail
is inadequate to diagnose load imbalance and perfor-
mance variability within POP.

In addition to acting as a component of CCSM,
POP runs stand-alone ocean simulations. It was
while optimizing POP for stand-alone execution that
I experienced difficulty analyzing performance with
CrayPat and the built-in POP timers. In response
to this difficulty, I developed an experimental timer
library for POP, one designed to identify load imbal-
ance and performance variability. The following sec-
tions describe this library and my experience using it
with POP.

2 Timer Interface

Initial design decisions for the timer library regarded
the user interface. One possibility was to always refer
to each timer by a unique character string. For ex-
ample, the following Fortran subroutine calls would
start and stop the timer called “physics”.

call start_timer ("physics")
call stop_timer("physics")

This interface has the advantage of ease of use; timers
can be added without variable declarations and with-
out passing timer arguments. It has the disadvantage
of overhead; each call to the timer library requires a
string search or hash. String search can have startling
overhead for vector systems, such as the Cray X1E.

An interface using a timer type or integer handle
avoids this overhead. Each timer is first declared and
initialized, perhaps together with other timers in a
single module or procedure.

type(timer) :: t
t = new_timer("physics")

The start and stop calls then use the variable “t”,
which provides direct access to the timer state.

call start_timer(t)
call stop_timer(t)

This interface has the disadvantage of inconvenience.
Timer calls may no longer be local to the regions they
measure, because the timers may need to be declared
and initialized in a parent procedure. The interface
can lead to a proliferation of timer arguments or mod-
ule “use” statements.

I decided to use a compromise interface. Timers
are identified by a unique integer, and that integer
resides in a “save” variable in each procedure using
the timer.

integer, save :: t =0

call get_timer(t, "physics")
call start_timer(t)

call stop_timer(t)

On the first call to “get_timer” within the proce-
dure, the library does a string search and, if neces-
sary, creates a new timer, assigning “t” to the result-
ing timer. The value of “t” is then set, so subsequent

calls to “get_timer” just confirm that “t” matches
the timer with name “physics”. This confirmation
requires a single string comparison. These calls can
all be local to the procedure, with no argument pass-
ing or separate initialization.

The overhead associated with “get_timer” is then
as follows. The very first call allocates and initializes
timer space. If the timer argument is not set, the call
performs a linear search. If the string argument is not
matched, the call creates a new timer. If space exists
for the new timer, the operation is very lightweight;
otherwise the call re-allocates larger timer space and
copies over the existing timers. If the timer argument
is already set, the call just confirms that the timer
name matches the string argument.

The resulting overhead for “start_timer” is min-
imal. It first checks the argument and the state
of the target timer, using two “if” statements,
and then calls the Fortran intrinsic subroutine
“system_clock”. The matching “stop_timer” first
calls “system_clock” and then checks its argument
and the state of the target timer. It then updates ten
state variables for the timer, as follows.

1 Turn off the timer.
2 Increment the timer event count.
3 Increase the total tick count for the timer.

4,5 Update the maximum tick count and the corre-
sponding event number.

6,7 Update the minimum tick count and the corre-
sponding event number.

8,9 Update the second-largest tick count (2nd max)
and the corresponding event number.

10 Find the appropriate bin in the timer’s event his-
togram and increment its counter.

Pat Worley of ORNL suggested tracking the 2nd
max for each timer. The runtime measured by a
timer may include initialization work during the first
event, so the 2nd max helps measure the variability
of the remaining, non-initialization events. It might
also prove useful for filtering other singleton outliers
among timer events.

The event histograms are the feature that origi-
nally motivated development of these experimental
timers. The bins of each histogram count events in
particular tick ranges, and each histogram has bins
at multiple resolutions. Each histogram has bins for
each of 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 ticks, and
then bins for each of the tick ranges 10-19, 20-29,
..., 90-99, and then 100-199, 200-299, ..., 900-999,
and so on, with increasing order of magnitude, up
to the range nearest the value of “count_max” re-
turned by “system_clock”. To find the right bin,
“stop_timer” performs a linear search starting from
the bins with the smallest tick counts. The search
finds the right power of ten and then performs a sin-
gle integer division to find the right bin within that
power of ten. Thus the search performs one “if” test
for events in the tick range 0-9, two for events in the
range 10-99, and so on.

3 Reporting
A call to “report_timers” generates a timing report.
call report_timers(unit,comm)

The call creates a report for all the tasks in the
MPT [5] communicator “comm”, and the root task of
“comm” prints the report to Fortran I/O unit “unit”.

All the other calls to the timer library are local
to each task; no parallel communication occurs in
the library until the report. A given timer may be
unique to a single task or an arbitrary subset of tasks
within the target communicator. The report genera-
tor assumes that timers on separate tasks that have
the same string name represent the same timer. The
first step of the report generator is to identify the
global list of timer names.

First each task sorts its local timer names in alpha-
betical order. A binary tree of MPI communication
then creates the global list. A given task first re-
ceives the list from its child and merges the list with
its own, eliminating repeats. It sends the resulting
list to its parent. The root task gets the final sorted
list and broadcasts it to all tasks (within the target
communicator). Each task then creates a map from
global-name indices to local-timer indices. This map

provides the many translations needed to generate
the report.

The report starts with a summary profile, which
serves as a table of contents for the rest of the report.
The summary includes the maximum, minimum, and
average, across tasks, of the total time accumulated
in each timer. Thus the maximum is the largest to-
tal of any single task, not the largest aggregate time
associated with a given timer.

Figure 1 shows a report summary from a POP
run on Jaguar. Note that the disparity between
the maximum, minimum, and average values for
“barotropic_driver” and “baroclinic_driver”
indicate a significant load imbalance.

After the summary report come detailed reports for
each timer, listed in the same order of timers as in the
summary. The first item presented after the timer
name is a list of MPI ranks that used that timer.
This list could be generated by a tree algorithm that
reduces contiguous task lists to ranges as it goes.
Each task provides just one true/false datum, how-
ever, so the current implementation gathers all the
data to the root. The root then generates the rank
list, reducing contiguous lists to ranges; for example,
“1,2,3,4,5,6,7,8,9,10,11” reduces to “1-11".

Following the rank list are the following statistics.

events per task The maximum, minimum, and av-
erage number of events, across tasks, for that
timer, followed by the number of tasks used in
computing the average.

longest event The time of the longest single event
for any task, in seconds and clock ticks, the task
that measured that event, and the number of the
event on that task.

max 2nd longest The time of the maximum,
across tasks, of the second-longest event for each
task, in seconds and clock ticks, the task that
measured that event, and the number of the
event on that task. Note that this is probably
not the second longest event across all tasks.

shortest event The time of the shortest single
event for any task, in seconds and clock ticks, the
task that measured that event, and the number
of the event on that task.

longest avg event The maximum across tasks of
the average event time for each task, in seconds
and clock ticks, the task that measured that av-
erage, and the number of events used in comput-
ing the average.

shortest avg event The minimum across tasks of
the average event time for each task, in seconds
and clock ticks, the task that measured that av-
erage, and the number of events used in comput-
ing the average.

avg event The average time of all events measured
by that timer, in seconds and clock ticks, and the
number of events used in computing the average.

max total The maximum across tasks of the total
time measured on each task, in seconds and clock
ticks, the task that measured that total, and the
number of events summed in the total.

min total The minimum across tasks of the total
time measured on each task, in seconds and clock
ticks, the task that measured that total, and the
number of events summed in the total.

avg total The average total time measured on each
task, in seconds and clock ticks, and the number
of tasks used in computing that average.

aggregate total The total time measured by that
timer, summed across tasks, in seconds and clock
ticks.

Note that only one task and event appear for extreme
events, even if more than one event had that value.

Figure 2 shows a detailed report for the timer
“barotropic_driver” from the same POP run used
for Figure 1. It further illustrates the load imbalance
found in Figure 1; the difference between maximum
and minimum measurements is an order of magni-
tude.

The statistics described above are not significantly
different from the content of other timer libraries.
But the report continues with histogram listings, con-
tent which I believe is unique to this timer library.

*%x*x profile for 360 tasks **x*

max total | min total | avg total | timer
----------- |-——— | |
841.11 | 841.08 | 841.09 | step
760.65 | 70.28 | 181.93 | barotropic_driver
760.49 | 68.89 | 179.52 | pcg_chrongear iteration
697.03 | 6.82 | 570.62 | baroclinic_driver
4.69 | 0.00 | 3.56 | pcg_chrongear preconditioning

Figure 1: Summary report from a POP run on Jaguar.

*** barotropic_driver
tasks: 0-359
events per task: 128 max, 128 min, 128 avg (360 tasks)
longest event: .262 sec (6262 ticks), task 359, event 1
max 2nd longest: .210 sec (6210 ticks), task 359, event 2
shortest event: .465 sec (465 ticks), task 286, event 103
longest avg event: .942 sec (5942 ticks), task 359, 128 event(s)
shortest avg event: .549 sec (549 ticks), task 286, 128 event(s)
avg event: .421 sec (1421 ticks), 46080 event(s)
max total: 760.647 sec (760647 ticks), task 270, 128 event(s)
min total: 70.280 sec (70280 ticks), task 285, 128 event(s)
avg total: 181.927 sec (181927 ticks), 360 tasks
aggregate total: 65493.801 sec (65493795 ticks)

= O 01 O OO,

Figure 2: Detailed report for timer “barotropic_driver” from the same run used for Figure 1.

4 Reduced histograms

Each task has a separate multi-resolution histogram
for each timer. A goal of the experimental timer
library is to combine histograms across tasks in a
way that makes the report manageable without losing
important performance signals in the measurements.
The first attempt to combine histograms used the
idea of histogram “shape”. For a given timer his-
togram, each task would sort the bins in order of
event counts. Histograms with the same sorted order
of bins were considered to have the same “shape”,
and these histograms were combined using maximum,
minimum, and average statistics.

In the worst case, the number of resulting his-
tograms could be as large as the number of differ-
ent orders of the bins. If n is the number of bins,
the number of possible orders of bins is n!, a num-
ber much larger than the largest possible number of
parallel tasks. Thus, in the worst case, this combina-
tion scheme could lead to no reduction at all in the
number of histograms.

The current combination scheme is more aggres-
sive. For each timer, each task finds the bin with
the maximum number of events. Histograms with
the same maximum-count bin are combined across
tasks, again using maximum, minimum, and average
statistics. The number of possible histograms is just
the number of bins, which is much smaller than the
number of parallel tasks for a large job.

Figure 3 shows the histogram report for the timer
“barotropic_driver” from the same POP run used
for Figure 1. The report reduces 360 histograms, one
from each of the 360 tasks, down to four. The com-
bined histograms are listed in order of the tick range
of the bin with the largest count, so the histogram
dominated by the longest events comes first. Each
histogram report first lists the tasks associated with
that histogram, a list created using the same algo-
rithm as for the timer task list, described earlier.
Each nonzero bin then generates a line with the fol-
lowing content.

ticks The range of tick counts for events accumu-
lated in that bin.

max The maximum number of events in that tick

range measured by any single task, and the task
that measured that number.

min The minimum number of events in that tick
range measured by any single task, and the task
that measured that number.

avg The average number of events in that tick range,
averaged over the tasks listed for that histogram.

The first two histograms in Figure 3 show the tasks
with most events of 4000-6000 ticks, and the second
two show the tasks with most events of 6-7 ticks.
Not only does the report show the load imbalance, it
shows which tasks had which loads and how variable
those loads were over the history of the run.

Using histograms like these, I was able to de-
termine that the load imbalance comes from the
data distribution used in this POP run. Blocks of
grid points are distributed across tasks in a two-
dimensional Cartesian grid, and some of the blocks
have grid points that are all on land. Tasks with these
land blocks have no computation to perform for large
segments of the run, leading to the load imbalance.

A different distribution of blocks clarifies this load
imbalance. 1 implemented a distribution in POP
that packs all the blocks with ocean points to the
low-number tasks [6]. Figure 4 shows the resulting
histogram report analogous to Figure 3. The task
lists are much simpler, showing that tasks 0-302 had
events of 4000-7000 ticks, while tasks 303-359 had
events of mostly 57 ticks. The histogram report thus
shows that only 303 tasks have ocean blocks, so only
303 tasks are really needed. Figure 5 shows the anal-
ogous histogram report using the packed distribution
and just 304 tasks. (The run uses 304 tasks instead
of 303 because it is easier to request even task counts
on Jaguar, which currently has dual-core processors.)
The histogram shows only one task “wasted”.

5 Scalability

The previous examples show results of runs using 360
tasks or fewer, well within the range of automated
tools like CrayPat. The question remains of how this
timing library performs for larger runs. Figures 6 and

*** baroclinic_driver

event histogram for tasks: 0,2-4,13-22,25,27,31-44,47-53,55-62,65-71,74-80,84-89,91-96,
102-107,109-114,121-124,127-132,138-141,145-151,155-159,163-169,172-178,180,182-184,
193-202,205,207,211-224,227-233,235-242,245-251,254-260,264-269,271-276,282-287,289-294,
301-304,307-312,318-321,325-331,335-339,343-349,352-358

6000-6999 ticks: 001 max (task 000), 001 min (task 000), 001 avg

5000-5999 ticks: 127 max (task 000), 127 min (task 000), 127 avg

event histogram for tasks: 23-24,45-46,54,63-64,72-73,81-83,90,97-101,108,115-120,
125-126,133-137,142-144,152-154,160-162,170-171,179,181,185-192,206,208-210
6000-6999 ticks: 001 max (task 023), 001 min (task 023), 001 avg

5000-5999 ticks: 001 max (task 045), 000 min (task 023), 000 avg

4000-4999 ticks: 127 max (task 023), 126 min (task 045), 126 avg

event histogram for tasks: 1,6,11

6000-6999 ticks: 01 max (task 001), 01 min (task 001), 01 avg
7 tick(s): 75 max (task 001), 69 min (task 006), 73 avg

6 tick(s): 58 max (task 006), 52 min (task 001), 54 avg

event histogram for tasks: 5,7-10,12,26,28-30,203-204,225-226,234,243-244,252-253,
261-263,270,277-281,288,295-300,305-306,313-317,322-324,332-334,340-342,350-351,359
6000-6999 ticks: 001 max (task 005), 001 min (task 005), 001 avg

7 tick(s): 057 max (task 005), 000 min (task 204), 006 avg

6 tick(s): 127 max (task 262), 070 min (task 005), 120 avg

5 tick(s): 005 max (task 204), 000 min (task 005), 000 avg

Figure 3: Histogram report for timer “barotropic_driver” from the same run used for Figure 1.

***x baroclinic_driver

event histogram for tasks: 0-122,180-302
6000-6999 ticks: 001 max (task 000), 001 min (task 000), 001 avg
5000-5999 ticks: 127 max (task 000), 127 min (task 000), 127 avg

event histogram for tasks: 123-179
6000-6999 ticks: 001 max (task 123), 001 min (task 123), 001 avg
4000-4999 ticks: 127 max (task 123), 127 min (task 123), 127 avg

event histogram for tasks: 303-359

6000-6999 ticks: 001 max (task 303), 001 min (task 303), 001 avg
7 tick(s): 009 max (task 340), 000 min (task 303), 003 avg

6 tick(s): 127 max (task 309), 118 min (task 340), 123 avg

5 tick(s): 001 max (task 303), 000 min (task 304), 000 avg

Figure 4: Histogram report analogous to Figure 3, but from a run using a packed instead of a Cartesian
data distribution.

**% baroclinic_driver

event histogram for tasks: 0-150,152-302
6000-6999 ticks: 001 max (task 000), 001 min (task 000), 001 avg
5000-5999 ticks: 127 max (task 000), 127 min (task 000), 127 avg

event histogram for task: 151
6000-6999 ticks: 001 max (task 151), 001 min (task 151), 001 avg
4000-4999 ticks: 127 max (task 151), 127 min (task 151), 127 avg

event histogram for task: 303

6000-6999 ticks: 001 max (task 303), 001 min (task 303), 001 avg
7 tick(s): 006 max (task 303), 006 min (task 303), 006 avg

6 tick(s): 121 max (task 303), 121 min (task 303), 121 avg

Figure 5: Histogram report analogous to Figure 4, but from a run using 304 instead of 360 tasks.

**x* baroclinic_driver

event histogram for tasks: 12-16,56-66,85-92,131-143,150-151,160-168,206-232,235
-245,283-307,310-323,327-328,356-383,385-406,412-414,429-458,460-490,495,497-499
,502-1282,1284-1357,1359-1432,1435-1508,1510-1551,1554-1583, 1586-1601,1603-1622,
1624-1625,1629-1658,1662-1676,1679-1696,1704-1733,1737-1751,1754-1771,1779-1808,
1814-1825,1830-1848,1853-1883,1889-1900,1905-1924,1926-1957,1964-1975,1981-2031,
2040-2050,2055-2106,2113-2125,2130-2181,2187-2199,2206-2256,2261-2275,2282-2332,
2335-2345,2348,2358-2420,2431-2494,2505-2518,2520-2569,2580-2581,2584-2588,2590-
2592,2594-2644,2655-2656 ,2658-2663,2665-2667 ,2670-2700,2702-2720,2729-2730,2732-
2736,2747-2774,2777-2796,2801-2805,2807-2808,2823-2849,2855-2872,2874-2880,2897-
2924,2931-2955,2958-2959,2972-2998,3007-3029,3032-3034,3047-3072,3082-3101,3103-
3109,3125-3147,3158-3172,3175,3178-3183,3201-3221,3233-3248,3257-3259,3277-3296,
3309,3311-3325,3332-3334,3351-3372,3381-3382,3386-3401,3426-3446,3456-3457,3460-
3476 ,3502-3520,3530-3548,3550-3552,3580-3594,3605-3613,3615-3623,3625-3627, 3659~
3662,3664-3669,3679-3688,3691-3698,3700-3701,3732,3734-3737,3741-3742,3754-3764,
3767-3778,3805-3812,3829-3839,3843-3849,3851-3853,3877-3886,3905-3914,3918-3928,
3951-3963,3983-3989,3993-4004,4025-4040,4058-4064 ,4068-4078,4099-4115,4132-4139,
4142-4154,4176-4191,4207-4229,4249-4266,4282-4304,4319-4320,4322-4342,4357-4379,
4393-4418,4431-4432,4434-4455,4468-4493

500-599 ticks: 001 max (task 0012), 001 min (task 0012), 001 avg

300-399 ticks: 127 max (task 0012), 127 min (task 0012), 127 avg

event histogram for tasks: 2182,2184-2186,2200-2205

500-599 ticks: 001 max (task 2182), 001 min (task 2182), 001 avg
10-19 ticks: 126 max (task 2182), 126 min (task 2182), 126 avg

9 tick(s): 001 max (task 2182), 001 min (task 2182), 001 avg

event histogram for tasks: 2,4

500-599 ticks: 001 max (task 0002), 001 min (task 0002), 001 avg
8 tick(s): 110 max (task 0002), 076 min (task 0004), 093 avg

7 tick(s): 051 max (task 0004), 017 min (task 0002), 034 avg

event histogram for tasks: 0-1,3,5-6,8-11,17-20,23,33-55,67-81,93-94,108-130,144
-149,152-157,169,182-193,195-205,233-234,256-263,265-267,271-282,308-309,330-331
,334-337,341,345-355,384,409-411,421-428,459,500-501

500-599 ticks: 001 max (task 0000), 001 min (task 0000), 001 avg

8 tick(s): 061 max (task 0003), 000 min (task 0008), 001 avg

7 tick(s): 106 max (task 0033), 065 min (task 0009), 081 avg

6 tick(s): 062 max (task 0009), 000 min (task 0000), 044 avg

Figure 6: Histogram report analogous to Figure 3, but from a run using smaller grid blocks and 4500 tasks.
Continues in Figure 7.

event histogram for tasks: 7,21-22,24-32,82-84,95-107,158-159,170-181,194,246-25
5,264,268-270,324-326,329,332-333,338-340,342-344,407-408,415-420,491-494,496,12
83,1358,1433-1434,1509,1552-1553,1584-1585,1602,1623,1626-1628,1659-1661,1677-16
78,1697-1703,1734-1736,1752-1753,1772-1778,1809-1813,1826-1829,1849-1852,1884-18
88,1901-1904,1925,1958-1963,1976-1980,2032-2039,2051-2054,2107-2112,2126-2129,21
83,2257-2260,2276-2281,2333-2334,2346-2347,2349-2357,2421-2430,2495-2504,2519,25
70-2579,2582-2583,2589,2593,2645-2654,2657,2664,2668-2669,2701,2721-2728,2731,27
37-2746,2775-2776,2797-2800,2806,2809-2822,2850-2854,2873,2881-2896,2925-2930, 29
56-2957,2960-2971,2999-3006,3030-3031,3035-3046,3073-3081,3102,3110-3124,3148-31
57,3173-3174,3176-3177,3184-3200,3222-3232,3249-3256,3260-3276,3297-3308,3310,33
26-3331,3335-3350,3373-3380,3383-3385,3402-3425,3447-3455,3458-3459,3477-3501,35
21-3529,3549,3553-3579,3595-3604,3614,3624,3628-3658,3663,3670-3678,3689-3690, 36
99,3702-3731,3733,3738-3740,3743-3753,3765-3766,3779-3804,3813-3828,3840-3842, 38
50,3854-3876,3887-3904,3915-3917,3929-3950,3964-3982,3990-3992,4005-4024,4041-40
57,4065-4067,4079-4098,4116-4131,4140-4141,4155-4175,4192-4206,4230-4248,4267-42
81,4305-4318,4321,4343-4356,4380-4392,4419-4430,4433,4456-4467 ,4494-4499

500-599 ticks: 001 max (task 0007), 001 min (task 0007), 001 avg

7 tick(s): 063 max (task 0338), 000 min (task 0026), 003 avg

6 tick(s): 126 max (task 0251), 064 min (task 0338), 117 avg

5 tick(s): 014 max (task 3173), 000 min (task 0007), 006 avg

Figure 7: Continuation of Figure 6.

10

7 show the histogram report analogous to Figure 3,
but for a run using smaller grid blocks and 4500 tasks,
too many tasks for CrayPat at the time of this writ-
ing. The positive result is that moving from 360 to
4500 tasks only increases the number of histograms
from four to five. Less positive is the length of the
task lists for some of the histograms; the longest list
covers 18 lines.

These long task lists are a result of the Cartesian
distribution and the irregular land patterns on the
Earth. The packed distribution eliminates the prob-
lem, as shown in Figure 8 for 4500 tasks and in Fig-
ure 9 for the minimal 3268 tasks. POP with the
packed distribution now reports the number of ocean
blocks directly, so inferring this from the timer out-
put is not necessary. Nevertheless, this number is
clear from the clean report in Figure 8, and Figure 9
further shows the performance improvement (from
300-399 ticks down to 100-299 ticks) from the added
efficiency of using the optimal task count.

6 Conclusions

Motivated by the need to debug performance in par-
allel applications resulting from load imbalance and,
potentially, performance variability, I have developed
a timer library with multi-resolution histograms and
reduced reporting. The timers themselves are lo-
cal to each parallel task, with each timer identi-
fied globally by a unique character string. The li-
brary reports timer values in reduced form, using
maximum, second-maximum, minimum, and average
values, along with task and event numbers of the
extreme measurements. The report combines his-
tograms with the same maximum bin, the bin with
the largest event count.

In tests with POP runs, the timing library showed
a scalable reduction in output without hiding sources
of load imbalance and performance variability. The
maximum-bin histogram reduction maintains a small
number of reported histograms, but the task list for
a given histogram can grow with task count.

Potential improvements to the library include mea-
surement and reporting of timer overhead, OpenMP
support, and “nicer” report output.

11

Acknowledgments

Pat Worley of ORNL provided useful suggestions and
background on other timing libraries.

This research was sponsored by the Mathematical,
Information, and Computational Sciences Division,
Office of Advanced Scientific Computing Research,
US Department of Energy, under Contract No. DE-
AC05-000R22725 with UT-Battelle, LLC.

This research used resources of the National Center
for Computational Sciences at ORNL, which is sup-
ported by the Office of Science of the US Department
of Energy under Contract No. DE-AC05-000R22725.

References

[1] Using Cray Performance Analysis Tools.
Cray, Inc., 2006. Document S-2376-31 from
“http://docs.cray.com/”.

Parallel Ocean Program (POP) User Guide. Los
Alamos National Laboratory, March 23, 2003. See
“http://climate.lanl.gov/”.

CCSM3.0 User’s Guide. M Vertenstein, T
Craig, T Henderson, S Murphy, GR Carr
Jr, and N Norton. National Center for
Atmospheric Research, June 25, 2004. See

“http://www.ccsm.ucar.edu/”.

User’s Guide to the NCAR Community At-
mosphere Model (CAM 3.0). JR McCaa,
M Rothstein, BE Eaton, JM Rosinski, E
Kluzek, and M Vertenstein. National Cen-
ter for Atmospheric Research, June 2004. See
“http://www.ccsm.ucar.edu/models/atm-cam/”.

[6] MPI: A Message-Passing Interface Stan-
dard. Message Passing Interface Fo-
rum. University of Tennessee, 1995. See

“http://www.mpi-forum.org/”.

[6] “Performance Analysis of Production POP
Runs on the Cray XT3.” J White IIIL
First Annual Cray Technical Workshop,
USA. Nashville, February 26-27, 2007. See

“http://nccs.gov/news/workshops/cray/”.

*** baroclinic_driver

event histogram for tasks: 0-3267

500-599 ticks: 001 max (task 0000), 001 min (task 0000), 001 avg
300-399 ticks: 127 max (task 0001), 126 min (task 0000), 126 avg
200-299 ticks: 001 max (task 0000), 000 min (task 0001), 000 avg

event histogram for tasks: 3268-4499
500-599 ticks: 001 max (task 3268), 001 min (task 3268), 001 avg

6 tick(s): 126 max (task 3503), 110 min (task 3436), 118 avg
5 tick(s): 017 max (task 3436), 001 min (task 3503), 008 avg

Figure 8: Histogram report analogous to Figure 4, but from a run using smaller grid blocks and 4500 tasks.

*** baroclinic_driver

event histogram for tasks: 122-128,154,169-197,210,238-254

200-299 ticks: 104 max (task 0127), 065 min (task 0197), 087 avg

100-199 ticks: 063 max (task 0197), 024 min (task 0127), 040 avg

event histogram for tasks: 0-121,129-153,155-168,198-209,211-237,255-3267

200-299 ticks: 064 max (task 0166), 007 min (task 3054), 020 avg
100-199 ticks: 121 max (task 3054), 064 min (task 0166), 107 avg

Figure 9: Histogram report analogous to Figure 5, but from a run using smaller grid blocks and 3268 tasks.

12

