
New Advances in the Gyrokinetic
Toroidal Code and Their Impact on
Performance on the Cray XT Series

Nathan Wichmann, Cray Inc.
Mark Adams, Columbia University

Stephane Ethier, Princeton Plasma Physics Laboratory

May 07 Slide 2

Outline

 Intro to GTC
 Major Components
 New Decomposition Strategy
 Goals
 Results
 Future Work
 Conclusions

May 07 Slide 3

The Gyrokinetic Toroidal Code GTC
 Description:

• 3D Particle-in-cell code (PIC) in toroidal geometry
• Developed by Prof. Zhihong Lin (now at UC Irvine)
• Used for non-linear gyrokinetic simulations of plasma

microturbulence [Lee, 1983]
• Fully self-consistent
• Uses magnetic field line following coordinates (ψ,θ,ζ) [Boozer,

1981]
• Grid follows the magnetic field lines (twisting around the torus)
• Guiding center Hamiltonian [White and Chance, 1984]
• Non-spectral Poisson solver [Lin and Lee, 1995]
• Low numerical noise algorithm (δf method)
• Full torus (global) simulation

May 07 Slide 4

Particle-in-cell (PIC) method

 Particles sample distribution function (markers).
 The particles interact via a grid, on which the

potential is calculated from deposited charges.

The PIC Steps
• “SCATTER”, or deposit,

charges on the grid (nearest
neighbors)

• Solve Poisson equation
• “GATHER” forces on each

particle from potential
• Move particles (PUSH)
• Repeat…

May 07 Slide 5

Charge Deposition for charged rings:
4-point average method

Classic PIC 4-Point Average GK
(W.W. Lee)

Charge Deposition Step (SCATTER operation)

GTC

May 07 Slide 6

Domain Decomposition: Pre 2007
 Domain decomposition:

• each MPI process holds a toroidal section
• each particle is assigned to a processor according to its

position
 Initial memory allocation is done locally on each

processor to maximize efficiency
 Communication between domains is done with MPI calls

(runs on most parallel computers)

May 07 Slide 7

2nd Level of Parallelism:
Loop-level with OpenMP

MPI_init

MPI process MPI process MPI process MPI process

MPI_finalize

OpenMP
Loop

OpenMP
Loop

Start
threads

Merge
threads

May 07 Slide 8

Computational Facts about GTC

 Only 5000 lines.
 Written in Fortran 95

• Latest version uses object oriented programming
 Highly portable. GTC runs on most parallel computers as

long as the MPI library is available.
 Part of the NERSC benchmark suite of codes to evaluate

new computers.
 Pre 2007 version ran using real(4) (32 bit reals)
 New version using real(8)

• PETSc solver needs 64 bit precision
• Rest of gtc only needs 32 bit precision but currently uses 64 bit

May 07 Slide 9

Major component of GTC

 Pushi
• Major computational kernel “Moves particles”
• Large body loops; Gathers; Lots of loop level parallism

 Chargei
• Major computational kernel “Scatter”
• Gather/Scatter with potential conflicts; Can be restructured to exploit loop

level parallelism
 Shifti

• Sorts out particles that move out of its domain and sends those to the
“next” processor. Process repeats until all particles are where they are
suppose to be.

 Poisson Solver
• Solve Poisson Equation. Prior to 2007 the solve was redundantly executed

on each processor. New version uses the PETSc solver to efficiently
distribute the work.

 Smooth and Field
• Smaller computational kernels

May 07 Slide 10

GTC pre-2007: 1D Particle decomposition
 Each domain in the 1D domain decomposition can have more than 1 processor

associated with it.
 Each processor holds a fraction of the total number of particles in that domain.

• Required an All_reduce to collect all of the charges from all particles in a given
domain

 Each processor stores the mesh of an entire plane
• Poor cache characteristics
• Redundant work: “smoothing”, “field”, and “poisson” calculations not parallel
• Not scalable to large reactor sizes.

Processor 2
Processor 3

Processor 0
Processor 1

May 07 Slide 11

GTC 2007 and beyond: 2D Particle decomp
 Each processor holds a fraction of particles - and of grid

• Radial geometric partitioning for equal area per processor
• Memory footprint scalable to LARGE reactor sizes

 Significant difference in communication
• Large All_reduce has been eliminated
• Require extra shift to move particles in the radial direction

 Domain overlap due to
• Discrete nature of grid (ie, not aligned with radial partitions)
• Gyroradius lead to deposition on larger grid

Processor 2
Processor 3Processor 0

Processor 1

May 07 Slide 12

Goal: Develop a new baseline benchmark

 GTC has change significantly in both capabilities and
performance characteristics
• Can now simulate much larger reactors
• Now uses PETSc for the solver
• Major all_reduce has been eliminated but a “shift” was added

 Want a new baseline benchmark which can:
• Run on a large variation of machines
• Can be use to project performance to larger machines and

problems
• Act as a comparison across generations of machines
• Can be used to determine the effectiveness of multi-core

processors

May 07 Slide 13

New weak scaling benchmark
Scales the problem in both reactor size and # of

particles
Runs on 64 to 16384 processors with a step size of 4x
Assumes a constant decomposition of 64 slices in

direction of the torus
Reaches a reactor size the size of ITER at 16384

May 07 Slide 14

Data Collected
Scaling data from 64 to 16384 processors on XT3/XT4

jaguar at ORNL, compare to old GTC
Examine differences of running on either only the XT4

or XT3, or “whatever you get”
Examine the scaling of each component
Examine the data of dual core vs single core

May 07 Slide 15

GTC DEVICE WEAK SCALING

0

500

1000

1500

2000

2500

3000

3500

64 256 1024 4096 16384

NPES

T
IM

E

XT3 OLD GTC JAG XT4 T1 JAG XT4 T2

JAG XT3 T1 JAG XT3 T2 JAG XT3.5 T1

Old GTC code does not scale well
when increasing the device size

Scaling of new code is ok
but is not as flat as we like

May 07 Slide 16

GTC DEVICE WEAK SCALING

400

900

1400

1900

2400

2900

3400

10 100 1000 10000

NPES

T
im

e

XT3 OLD GTC JAG XT4 T1 JAG XT4 T2

JAG XT3 T1 JAG XT3 T2 JAG XT3.5 T1

Relatively little difference
between XT3 and XT4

May 07 Slide 17

Component Times

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

10 100 1000 10000

NPEs

T
im

e

(s

e
c

o
n

d
s

) PUSHER

SHIFT

CHARGE

POISSON

SMOOTH

FIELD

Time in Shifter is
climbing dramatically. Why?

Pushi and Chargei remain
the dominate routines

May 07 Slide 18

Phases of SHIFT

0.0

50.0

100.0

150.0

200.0

250.0

300.0

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T I M E

SHIFTIR

SHIFTIBAR

SHIFTI

All the time is in a barrier
inserted at the beginning of shifti.

Excellent indication of load imbalance

May 07 Slide 19

Plot of Max, Average, and Min time per PE in Pushi

PUSHER

250.0

270.0

290.0

310.0

330.0

350.0

370.0

390.0

410.0

430.0

10 100 1000 10000

N P E S

PUSHER AVE

Maximum PE time in pushi is
climbing as PE count increases

May 07 Slide 20

Component Times with Barrier in Pushi

0

100

200

300

400

500

600

700

10 100 1000 10000

NPES

T
im

e

PUSHER

SHIFT

CHARGE

POISSON

SMOOTH

FIELD

Really our problem is in the pusher

Shifti remains small as PE count increases
NOT a communication problem

May 07 Slide 21

Instrument PUSHI using pat_region_begin

 Wanted to collect more data on pushi, so we
instrumented the program using Craypat regions

 include “pat_apif.h”
 call PAT_region_begin(10, "pushi" ,istat)
 call pushi(…)
 call PAT_region_end(10,istat)

Compile with craypat module loaded
Relink using pat_build
Ran the program
Ran pat_report on resulting .xf file.

May 07 Slide 22

PUSHI Times

270

280

290

300

310

320

330

0 200 400 600 800 1000 1200

NPES

T
im

e

15-20% variation in time spent in pushi

May 07 Slide 23

PUSHI Flops

2.15E+11

2.2E+11

2.25E+11

2.3E+11

2.35E+11

2.4E+11

2.45E+11

2.5E+11

2.55E+11

2.6E+11

0 200 400 600 800 1000 1200

NPES

F
L

O
P

S

PUSHI L1$ Hit Rate

95.40

95.45

95.50

95.55

95.60

95.65

95.70

95.75

0 200 400 600 800 1000 1200

NPES

H
it

 R
a

te

There does not appear to be a correlation
between time and either FLOPs or cache hit rate

May 07 Slide 24

PUSHI TLB Misses

000.0E+0

50.0E+6

100.0E+6

150.0E+6

200.0E+6

250.0E+6

300.0E+6

350.0E+6

400.0E+6

0 200 400 600 800 1000 1200

NPES

T
L

B
 M

is
s
e
s

Significant difference in TLB misses
between different PEs

May 07 Slide 25

Time vs TLB Misses

280

285

290

295

300

305

310

315

320

325

000.0E+0 100.0E+6 200.0E+6 300.0E+6 400.0E+6

TLB Misses

T
im

e

VERY strong correlation between
TLB Misses and time spent in pushi

Why is the happening?
What can we do to fix it?

We don’t know…

May 07 Slide 26

How can we improve the effectiveness of the TLBs?

 If we use 32 bit floats, will we have fewer TLB misses?

 Can we find the memory access pattern that is causing
the TLB misses?
• If we find it, can we change it?

 Will the AMD quad core perform better?
• Even if it does, we are not really willing to wait.

May 07 Slide 27

Multi Core vs Single Core

 Number of cores per socket are increasing
• How does this effect GTC performance?
• Will the profile change in the future?
• Do we need to be worrying about different parts of the code?

 Designed a experiment were we ran a fixed problem size
on 512 sockets using only a single core per socket, then
ran the same problem using 1024 cores on 512 sockets
• Effectively Strong Scaling from Single Core to Dual Core
• Askes the question: How much faster will I get my science done

given more cores?
• Includes effects of algorithm scaling

May 07 Slide 28

Component Times using 512 XT4 sockets

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

MAIN

LOOP

PUSHER SHIFT CHARGE POISSON SMOOTH FIELD

S
e

c
o

n
d

s

512 Single Core 1024 Dual Core

Sum of all the components

The major components get good speed up

Other components are
not going much faster

Lower is better

May 07 Slide 29

Relative DC vs SC performance for all components

179%

206%

93%

204%

140%

89% 86%

0%

50%

100%

150%

200%

250%

MAIN LOOP PUSHER SHIFT CHARGE POISSON SMOOTH FIELD

R
e

la
ti

v
e

 S
p

e
e

d

JAGUAR XT4 SC JAGUAR XT4 DCOverall speed up is a very good: 1.8x

Higher is better

May 07 Slide 30

Future Work
 Explain and eliminate load imbalance inside of Pushi

• Are TLBs really the problem? How do we fix it?

 Can we switch back to using 32 bit precision for all of
some of the code?

 Examine PETSc solver for potential performance
improvements

 Examine Shifti in more detail

 Reexamine the use of OMP inside of GTC

 Perform a weak scaling study where only the mesh and
the number of particles are increased, but the device
size does not change

 Try to project “how God would simulate ITER”

May 07 Slide 31

Conclusions
 New version of GTC provides a substantial increase in

both capabilities and performance
• Can run larger problems than the older version
• New solver allows new science to be studied
• Performance substantially better than the older version for large

devices

 Scaling is good to 16K cores but more study is needed
• Scaling should improve if we can eliminate load imbalance

 GTC can effectively use dual core Opterons
• Main computational kernels see almost perfect speed up
• Shifter and other kernels may become more important as the

number of cores increases

