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ABSTRACT: With the recent agreement to build the multi-billion dollar 
international burning plasma experiment known as ITER, fusion simulations will 
be growing dramatically in both complexity and size. The Gyrokinetic Toroidal 
Code (GTC) is a 3D Particle-In-Cell code used for studying the impact of fine-
scale plasma turbulence on energy and particle confinement in the core of 
tokamak fusion reactors. To tackle global ITER-size simulations with full kinetic 
ion and electron physics, GTC will require new algorithms and supercomputers 
will have to grow in capabilities. We will review recent code modifications made 
to prepare for these new, exciting simulations and examine the performance of 
GTC on both the Cray XT3 and Cray XT4 systems using the latest Cray tools. 
Finally, we will look to the future and discuss plans for GTC and how that will 
effect its performance on future computers. 
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Introduction 
An effective method for analyzing the Vlasov-

Poisson system of equations, used in simulating 
fully ionized plasmas, is the particle in cell (PIC) 
method [6]. PIC methods evolve plasma dynamics 
selfconsistently by alternately pushing charged 
particles and solving the fields governed by 
Maxwell’s equations. These methods enable the 
study of plasma micro turbulence on global scales. 
This micro turbulence (eg, scales a few millimeters) 
is important in understanding transport phenomenon 
in magnetically confined plasmas and is best 
understood with a model that includes the effect of 
gyro motion of charged particles in magnetic fields. 
The basic idea behind the gyrokinetic simulation 
method is to time average rapid precessing motions, 
and only to push the guiding center motion for the 
particles [3].  

The gyrokinetic toroidal code (GTC) is an 
implementation of the gyrokinetic PIC method used 
for toroidal magnetic confined burning plasma 

devices. GTC has been run effectively, with scaling 
up to 32K cores, on all of the recent high 
performance computational architectures. The GTC 
programming models uses FORTRAN 95 and MPI, 
and uses PETSc for the potential solves in Poisson’s 
equation, which is discretized with linear finite 
elements. Note, standard gyrokinetic ordering 
implies that Poisson’s equation need only be solved 
on each poloidal plane (perpendicular to the toroidal 
direction in the torus), resulting in series of 
independent 2D grid linear solves. 

 Gyrokinetic PIC algorithm.  
The basic PIC algorithm consists of depositing 

the charge from the particles onto the grid, 
computing and smoothing the potential, computing 
the electric field and pushing particles with 
Newton’s laws of motion. Figure 1 shows a 
schematic of the PIC algorithm.  
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Figure 1. Schematic of the PIC algorithm  

 
Performance is governed by three basic types of 

operations in this algorithm: 1) grids work (ie, 
Poisson solve), 2) particle processing (eg, position 
and velocity updates and 3) interpolation between 
the two (ie, charge deposition and field calculation 
in particle pushing). The dominate computational 
cost depends on the number of particles use; the 
delta F methods used in GTC the grid work is a 
significant minority of the overall cost of the 
simulation, the cost being dominated by particle 
pushing. Earlier version of GTC parallelized the grid 
work with a shared memory model (Open MP) 
which is adequate if the grid is small enough and the 
size of the shared address space for each poloidal 
plane is large enough. As devices get larger, and 
finer grids are desired for some types of simulations, 
performance degrades with this model because more 
address spaces are required for each plane, and the 
larger grid that needs to be stored puts more pressure 
on the cache and the entire memory system. This 
performance degradation is due to increased pressure 
on the cache in the charge deposition and redundant 
work required in the solve, field calculation and 
smoothing phases. The large fusion devices that now 
need to be modeled and the small amount of shared 
memory parallelism available on the newest large 
machines (ie, Cray XT4 and IBM Blue Gene have 
essentially no shared memory) requires a domain 
decomposition of the grid with MPI parallelism. 
This report discusses an BPI parallel decomposition 
method for the grids in GTC. 
 
GTC mesh and decomposition 
 
Figure 2 shows a diagram of a, typical magnetic 
fusion tokamak device. GTC stimulates the core 
plasma; this is a, toroidal domain with magnetic 
field lines with strong components in the toroidal 
direction but with some component in the poloidal 

plane resulting in a "twisting" magnetic field. GTC 
generates meshes for poloidal planes where 
Poisson's equation is solved. Thus, charge deposition 
first interpolates a particles charge to the two planes 
on each side of the toroidal domain in which it, is 
located. This charge on the poloidal plane is then 
interpolated onto the mesh points. Figure 3 (left) 
shows a sample set of poloidal mesh points on a 
poloidal plane. Figure 3 (right) shows a sample 
global grid with the field line following grid lines. 
 

 
Figure 2. Typical Tokamak Device  

 

 
Figure 3. GTC Meshing  

 
These planes form a natural 1D decomposition 

of the computational domain, which is the primary 
decomposition in GTC. The next section describes a 
new 2D (radial) decomposition of the particles and 
grid. This significantly complicates the parallel 
model in that the grid on the poloidal plane must be 
decomposed with explicit MPI parallel model.  
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 Radial grid decomposition 
 

The optimal grid decomposition for GTC is not 
obvious in that several efficiencies are impacted by 
the decomposition in different ways. Additionally, 
the optimal method may be more complex to 
implement than is necessary for acceptable perfor-
mance in the range of device sizes (up to 10K radial 
grid cells) and the computers of interest in the next 
several years (say 640K cores and 128 poloidal 
planes, resulting in 4K processes per plane). The 
first thing to note is that the particles move primarily 
along the magnetic field lines and thus do not move 
much in the radial direction. Thus, a radial 
partitioning will result in minimal communication of 
particles within the poloidal plane. A fully 2D grid 
decomposition has the advantage that the same 
decomposition can be used for the Poisson solver – 
currently a separate unstructured 2D decomposition 
is used. A difficulty with an unstructured 2D 
decomposition, however, is that a structured 
decomposition is essential required for fast 
computation of a particle’s processor. Also a 
structured 2D decomposition is not as efficient for 
the solver as an unstructured one when large 
amounts of parallelism are required. Given these 
tradeoffs and the relative simplicity in 
implementation we have opted for a structured 1D 
radial grid decomposition for the grid/particle 
computations and a 2D unstructured decomposition 
for most of the grid computations (ie, the Poisson 
solver).  

 
Figure 4. GTC Grid of one Plane 

 
Our approach is to assume that the density of 

particles is a known function of radius (eg, a 
constant) and to compute a nonoverlapping 
decomposition of the domain (ie, a geometric 
partitioning) that balances the particles exactly 
(given the assumed distribution). Figure 4 shows a 
small GTC grid of one plane (left) and a schematic 
of a geometric partitioning with four radial domains 
(processors or cores). Note the GTC computational 
domain has an inner hole of radius “a0” and an outer 
radius “a1” in Figure 4. The local domain, that needs 
to be stored on each processor, must be extended to 
accommodate the charge deposition. The particle 
position stored in the gyrokinetic method is the 
guiding centers of the particles – the gyrokinetic 
formulation models the gyro motion as a charged 
ring around particles guiding center. This charged 
ring is discretized with a few points (eg, four) on the 
ring; the charge at these points is deposited on the 
grid with linear or bilinear interpolation. A small but 
trivial optimization is to extend each radial domain 
to line up with the radial grid points of the mesh 
before the grid extension for the gyro radius is 
computed. This enlarges the size of the domain that 
a particle can occupy on each processor. This 
(overlapped) radial decomposition defines the valid 
region in which a particles guiding center must 
reside for a processor to be able to, in general, 
deposit the particle charge. That is, a particle’s 
guiding center must be in this region for it to be 
processed locally and must be sent to another 
processor of it strays outside of this region.  

New Baseline Benchmark 

GTC has often been used to test out new 
systems.  Its scaling behaviour was well know and 
the problem sizes could be easily adaptable to a wide 
range of machine sizes and problems.  Because its 
behaviour was well understood, it provided good 
feedback on the performance of anything from new 
processor types to new interconnects.  Results could 
also be used to project out to much larger science 
problems. 

Today’s GTC has changed significantly in terms 
of both capabilities and performance characteristics.  
It can now simulate much larger fusion reactors 
using more and different kinds of particles.  It also 
uses the PETSc solver, which can solve the Poisson 
equation in parallel.  Finally the new decomposition 
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strategy eliminates the need to do a major 
mpi_allreduce inside all the processor in a plane, 
potentially dramatically changing the scaling to high 
processor counts. 

One of the early goals of this study was to define 
a new baseline benchmark that not only preserved 
the same beneficial characteristics of the old 
benchmark, but also demonstrated the new 
capabilities of the code, namely to simulate much 
larger fusion devices.  This benchmark would be 
used act as a comparison across generations of both 
machines and processors and project performance to 
larger machines and problem sizes. 

The new weak scaling benchmark that we 
created “weakly” scales the problem in terms of both 
the size of the reactor being simulated as well as the 
total number of particles in the reactor.  It runs on 64 
to 16K processors, increase the processor count by a 
factor of 4 with each step.  We assume that one will 
always use a constant decomposition of 64 slices in 
the direction of the torus as the code is known to 
scale well up to that point and the science rarely 
allows one to go beyond that number of slices.  If 
necessary, it is still possible to reduce the number of 
slices so one can run on fewer than 64 processors.  A 
critical feature of the benchmark is that at 16K 
processors we are simulating a reactor the size of 
ITER, an important reactor to simulate in the coming 
years. 

Scaling Results 

Data was collected on the 11,508 socket 
XT3/XT4 system at Oak Ridge National 
Laboratories (ORNL) called jaguar.  Each socket is a 
dual core AMD Opteron running at 2.6 Ghz.  The 
main performance different between the XT3 and 
XT4 half is the XT4 has approximately double the 
main memory bandwidth.  We collected data by 
running the benchmark from 64-4096 processor 
targeting either the XT3 or the XT4 exclusively, and 
from 64 to 16K processors allowing the scheduler to 
choose which processor type to use for any given 
PE.  Finally, we ran the old version of GTC up to 4K 
processors, the highest it could go given the size of 
the reactors being simulated. 

 
Weak Scaling to 16K processors 
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Figure 2: Weak Scaling Results 

Figure 2 above shows the results of the weak 
scaling study running on 64 to 16K processors.  The 
first observation is that the new version of GTC is 
performing much better than the older version as the 
processor count, and thus the device size grows.  
This is primarily the result of the new decomposition 
scheme’s and solver’s ability to distribute the work 
associated with large grids.  Scaling of the older 
version of GTC stopped at 4096 PEs because it 
could not run and ITER size device using 16K 
processors. 

Scaling to 4096 processors is good, but not as 
good as hoped for.  Time approximately doubles 
while ideally it would stay flat.  There does not 
appear to be much difference between the XT3 and 
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the XT4, an early indication that the majority of the 
code is not sensitive to memory bandwidth.  Moving 
to 16K PEs time almost doubles again.  While a 
tremendous amount of science can be accomplished 
at this number of PEs, performs has degraded 
sufficiently that the we suspected a problem. 

Component Times 
To get a better idea of where the time was being 

spent, we graphed the time spent in each of the 
major components at a function of the number of 
PEs.  Figure 3 below shows the time spent in each 
component.  Not surprisingly, the pusher and charge 
routines dominate the time.  Each is increasing in 
time as the number of PEs increase, but do not seem 
to be enough to cause the scaling that we observed.  
The shifter starts out very small relative the main 
two components, but at the number of PEs increase 
it begins to increase in time, with a dramatic jump at 
4K PEs.   

The shifter is where all of communication is 
performed.  There are two attributes to the 
communication that could potentially cause the 
behavior seen.  First, it could be the result of the 
communication itself, either because of network or 
injection bandwidth contention.  The second 
possibility is that the communication effectively acts 
like a barrier, if there was load imbalance in the 
shifter or prior to the shifter, we could see it as extra 
time spent in the shifter even though that was not the 
true cause. 
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Figure 3: Component Times 

Load Imbalance 
To test whether the cause was the 

communication or load imbalance, we inserted a 

barrier just inside the shifter drive and then timed the 
three components.  The results can be seen in figure 
4 below. 
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Figure 4: Breakdown of time in shift 

All of the communication is done in shifti, the 
routine that moves particles in the direction of the 
torus, or shiftir, the routine that moves particles 
radially.  The two remain quite flat across all PE 
counts.  On the other hand, the barrier time is 
climbing dramatically as PE count increases.   

Since this barrier is not necessary for the 
communication, the barrier itself and the time 
associated with it could just have easily been 
counted in the PUSHI routine.  It is thus interesting 
to replot the components graph with the barrier time 
counted at part of PUSHI. 
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Figure 5: Component Times 

Figure 5 now clearly shows that our problem is 
actually in the main two computational kernels.  
Both PUSHI and CHARGEI are increasing in time 
as the number of PEs increase.   
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Instrument PUSHI  
With scaling apparently limited by load balance 

problem in PUSHI, we decided to try collect as 
much information as we could about that routine.  
To do that, we collected Opteron counter data using 
the Cray Pat performance tool.  The first step was to 
simply plot the time spent in PUSHI as a function of 
PE number. 
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Figure 6: Time spent in PUSHI for different PEs 

One can see in Figure 6 that there is about a 15-
20% difference in time depending on the PE 
number.  Initial examination of the FLOP count 
cache hit rate data that they was a not sufficient 
variable in computational or memory work load to 
explain the variable in times.  When we graphed the 
number of TLB misses we did observe significant 
variation. 

Figure 7 shows almost a factor of four difference 
in TLB misses depending on PE number, a variation 
that could potentially explain the variation in time.  
The question was if there was a correlation between 
TLB misses and PUSHI time. 
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Figure 7: TLB misses on different PEs 
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Figure 8: PUSHI Time and a function of TLB 

misses 
 

Figure 8 is a plot of PUSHI time and a function 
of TLB misses for every PE.  One can see a VERY 
strong correlation.  Any PE that took less than 100 
million TLB misses ran in less than 290 seconds, 
and any PE that took more than 300 M TLB misses 
to more than 312 seconds.   

With this latest data, much of the focus of 
performance studies are trying to explain both the 
frequency of TLB misses and the distribution of 
TLB as a function of PEs.  Unfortunately we do not 
have a good explanation for this data.  PUSHI does 
contain some multi-dimensional gathers, but it is not 
clear if that is the problem, of even if there might be 
more than one problem. 
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Multi Core versus Single Core 

A clear trend in micro processor design is the 
introductions of multi-core sockets.  Today the XT4 
is a dual core system, but it will be possible to 
upgrade that to quad core Opterons once then 
become available.  While vendors are constantly 
improving memory bandwidth, cores share all of the 
memory bandwidth on and off the socket.  Given the 
trend toward more and more cores sharing memory 
bandwidth, it is important to understand how one’s 
program responds to a multi-core environment. 

We wanted to run GTC in both a single core and 
a dual core mode and examine the change in 
performance.  To do this we decided run a problem 
on 512 Opteron sockets using only 1 core per socket, 
and then to run the exact same problem using the 
same number of socket but using both cores on 
every socket.  While we realized that by using twice 
and many MPI processes to solve the same problem 
we are also testing the ability of the code to 
“strongly” scale, we feel that this is a reasonable 
data point.  Basically we want to know how much 
faster our science will be solved as we get access to 
more and more cores.  
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Figure 9: Relative dual core speed up for each  

component 
 

Figure 9 shows the relative performance of the 
entire code as well as broken down on a per 
component basis.  We see that the “MAIN LOOP”, 
the entire computational portion of the code, gets a 
very nice speed increase of 179% moving to dual 

core from single core run.  This is already at the high 
end of the range of dual core speed up.   

To really understand what is going on we want 
to look at the speed up for each component.  The 
first order information is very good; both of the two 
main computation kernels get an excellent speed up 
of 200%.  This is a strong indication that neither of 
this routines are memory bandwidth intensity.  The 
only caveat might be that if we are limited by TLB 
misses, and can eventually improve that TLB miss 
rate, the routine might speed up to the point that they 
start to pressure memory bandwidth. 

The PETSc solver does get a respectable speed 
up of 140%.  In the case of the solver the speed 
increase could be limited by local memory 
bandwidth, network bandwidth, of scaling of the 
algorithm itself.  At this point we do not have 
sufficient data to know which it is. 

The SHIFT, SMOOTH, and FIELD all actually 
go slower in dual core mode.  In the chase of SHIFT, 
it is this is not surprising, the kernel is either moving 
data around locally, or communicating that across 
the network.  In either case both cores will be 
competing for a shared resource.  We have not 
examined SMOOTH of FIELD, but this data 
strongly suggests that they are bandwidth limited. 

Taken together, Figure 9 is telling us that we 
should be able to utilize quad core systems.  The 
main computations should get a very nice speed up.  
This figure also contains a warning.  As the number 
of cores continue to increase, routines that today are 
not considered important, could dominate in the 
future if memory bandwidth does not increase or if 
corrective action is not taken. 
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Future Work 

The work done for this paper thus far has been 
extremely valuable.  We have established a new 
baseline benchmark, collected scaling data, and 
begun the process of predicting the performance of 
the code on future systems.  That said there is still 
much work to be done.  Below is a list of what we 
hope to study over the next several months. 

• Explain and eliminate the load imbalance in 
PUSHI.  If TLBs are really the problem, what is 
the fundamental cause?  How do we ultimately 
fix the problem so that we not only scale better, 
but hopefully single CPU performance 
improves. 

• Switch back to 32 precision for the most of 
the computation in GTC.  While the PETSc 
solver needs to remain a 64 bit precision solver, 
the rest of GTC can be computed using only 32 
bit floats.  Advantages include potentially better 
TLB performance, less memory bandwidth 
consumed, better utilization of the cache, and 
double the peak performance of the SSE 
floating point units. 

• Examine the PETSc solver for performance 
improvements.  We did not directly examine 
the performance of the PETSc solver in this 
study, but the Dual Core study showed the 
PETSc performance may become more 
important in the future.  We plan on working 
with the Cray Scientific Libraries group to 
improve the performance of the solver. 

• Examine the use of OMP.  With the advent 
of multi-core chips there is a renewed interest 
in OpenMP to help everything from attaching 
different levels of parallelism to reducing the 
number of messages on the network.  Will 
OpenMP make sense for GTC? 

• Other Weak Scaling Studies.  We plan on 
performance other weak scaling studies to 
enhance our ability to predict the performance 
of future science problems.  One in particular is 
simulating the ITER reactor with trillions of 
particles.  The new code makes this plausible, 
but how will it perform? 

Conclusions 

The new GTC provides a substantial increase in both 
performance and scientific capabilities.  It can run larger 
science problems then ever before and the new PETSc 
solver allows one to perform more complex simulations.  
While performance for large devices is much better than 
the older version and scaling is good to 16K cores, there 
is still a strong desire to improve scaling further.  Finally, 
GTC performs very will on Dual Core Opteron chips, and 
should be able to continue to perform well as the number 
of cores per socket increases. 
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