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ABSTRACT: PetaScale computing platforms need to be coupled with efficient IO subsystems that can deliver 
commensurate IO throughput to scientific applications.  In order to gain insights into the deliverable IO efficiency on the Cray 
XT platform at ORNL, this paper presents an in-depth efficiency evaluation of its parallel IO software stack. Our evaluation 
covers the performance of a variety of parallel IO interfaces, including POSIX IO, MPI-IO, and HDF5. Moreover, we describe 
several tuning parameters for these interfaces and present their effectiveness in enhancing the IO efficiency.   
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1 Introduction 

High Performance Computing (HPC) is soon approaching the era of PetaScale computing. Massive Parallel 
Processing (MPP) platforms such as Lawrence Livermore National Lab’s (LLNL) BlueGene/L [4] and Oak Ridge 
National Lab’s (ORNL) XT4 (Jaguar) [18] have already reached 100s of TFLOPS. Large-scale data-intensive 
scientific applications on these platforms demand increasingly higher IO throughputs as well as higher 
computational capacity. Correspondingly, scalable parallel IO needs to be available for these applications to perform 
well. In fact, aggregated IO throughput ranging from 10-100 GB/s has been reported for Red Storm and Thunderbird 
at Sandia National Laboratory, and Tera-10 at CEA in Europe [6], among many others.  However, such performance 
marks are the systems’ peak IO bandwidth, which are usually measured with best suitable parameters for the IO 
subsystem, while what matters the most to the end users is the deliverable IO bandwidth to their respective scientific 
applications. 
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Figure 1 Parallel IO Software Architecutre 
 
For the reasons of portability and convenient data representation, HPC systems are often deployed with a varying 
depth of software stacks such as the basic POSIX syscall interfaces, MPI-IO and HDF5 as shown in Figure 1. 
Collectively, these layers provide portable abstractions for IO accesses.  At the top end, scientific applications 
perform IO through middleware libraries such as Parallel netCDF [9], HDF [23, 24] and MPI-IO [22], often 
cooperatively among their processes.  Parallel file systems, towards the bottom of the stack, directly serve IO 

 



 

 

requests by striping file extents and/or IO blocks across multiple storage devices.  Obtaining a good collective-IO 
performance across many processes on top of these software layers is a complex task.  It requires not only awareness 
of the processes' collective data access patterns, but also a thorough understanding of the entire software stack and in 
particular, the behavior of underlying file systems.   
 
MPI-IO [15] is the IO interface for the popular message passing parallel programming model. It is also a frequently 
used IO programming interface in scientific applications. As shown in Figure 1, MPI-IO is layered on top of file 
systems.  ADIO [19] is the abstract IO interface of MPI-IO, which is typically implemented with specializations for 
specific file systems.  Together, these programming stacks offer crucial avenues for efficient storage accesses.  
Numerous techniques have been investigated and implemented to improve the scalability of MPI-IO data operations, 
such as two-phase IO [20], data sieving [21], and data shipping [13]. Along with these techniques, there is an 
assortment of tuning parameters for improving the efficiency of different IO access patterns. 
 
All these different IO possibilities raise really important questions to both the application scientists and system 
designers: what IO interface is appropriate to choose from the portfolio? How to gain the best IO efficiency for a 
given IO interface? In this paper, we tackle on these questions and present our recent evaluation of IO efficiency of 
parallel IO stacks over Jaguar.  Our evaluation covers the performance of a set of common parallel IO interfaces, 
including POSIX IO, MPI-IO, and HDF5. Moreover, we describe a variety of tuning parameters and their 
effectiveness in enhancing the IO efficiency for these interfaces. 
 
The rest of the paper is organized as follows.  In the next section, we provide an overview of Cray XT4 and its IO 
software stack, as well as the configuration of its IO subsystem.  Following that, we analyze the IO efficiency for the 
POSIX layer.  In Section 4, we investigate the MPI-IO layer performance while Section 5 presents examples in 
tuning the IO kernels of a scientific parallel IO benchmark, Flash IO [1]. Section 6 concludes the paper. 

2 Cray XT4 and its IO Subsystem 

In this section, we provide an overview of Cray XT4 and the IO subsystem. 
 

2.1 An Overview of Cray XT4 
 

 
Figure 2: Cray XT4 system architecture (courtesy of Cray Inc.) 

Cray XT3 and Cray XT4 represent generations of Massive Parallel Processing platforms from Cray.  They have 
similar architectures, except that XT4 is equipped with higher speed memory (DDR2-667MHz) and its SeaStar2 
interconnect has higher sustained bandwidth.  The basic building block of the Cray XT3/4 systems is a Processing 
Element (PE), as shown in Figure 1. Each PE is comprised of one AMD processor (single, dual or quad core), along 
with its own memory, integrated memory controller, HyperTransport links, and a dedicated communication chip, 
SeaStar or SeaStar2.  The HyperTransport interface enables high bandwidth direct connections between the 
processor, the memory and the SeaStar/SeaStar2 chip. Jaguar has recently combined its Cray XT3 and Cray XT4 
platforms into a single 119TF system. 
 



 

 

Cray XT4 inherits its system software from a sequence of systems developed at Sandia National Laboratories and 
University of New Mexico: ASCI Red [17], the CPlant [9, 10], and Red Storm [11].  Two different operating 
systems are running two different types of processing elements: Catamount on compute PEs and Linux on service 
PEs.  The compute PEs run the Catamount lightweight operating system.  The Catamount kernel runs only one 
single-threaded process and does not support demand-paged virtual memory.  Service PEs (i.e., login, IO, network, 
and system PEs) run Linux to provide a user-familiar environment for application development and for hosting 
system and performance tools.  The Portals [5] data movement layer is used for flexible, low-overhead inter-node 
communication.  It delivers data from a sending process’ user space to the receiving process’ user space without 
kernel buffering. 
 

2.2 Cray XT4 Parallel IO Software Stack  
 
The IO subsystem of Cray XT4 is provided through Lustre file system [7].  Lustre offers a very scalable IO 
subsystem, supporting IO services to tens of thousands of concurrent clients, with an aggregated IO rate of 1000s 
GB/sec. Lustre is a distributed parallel file system and presents a POSIX interface to its clients with parallel access 
capabilities to the shared objects.  Lustre is composed of four main parts, namely, Metadata Server (MDS) providing 
metadata services; Object Storage Servers (OSSs) managing and providing access to underlying Object Storage 
Targets (OSTs); OSTs controlling and providing access to the actual physical block devices and data, and client(s) 
that access and use the data.  The OSS/OST compartmentalization in Lustre provides increased scalability for large-
scale computing platforms.  On Cray XT systems, IO PEs are configured as Lustre servers that provide IO and 
metadata services, each attached with high performance storage targets, such as DDN S2A9550 [8].  
 
There are two types of IO clients to the IO services over XT4: regular Linux clients from service PEs and 
Catamount clients from compute PEs.  Clients from the service PEs, including the login PEs, network and system 
PEs, obtain their IO services through regular Linux Lustre clients.  In contrast, on the compute PEs, IO services are 
only available through an interface called liblustre, which transfers Lustre IO requests through Portals 
communication library to the IO PEs.  Figure 3 shows the detail layering of the IO interfaces over Cray XT4.  
Moreover, parallel processes from compute PEs can perform IO either by directly invoking POSIX read/write, or by 
calling through a MPI-IO library.  Their IO system calls from applications on compute PEs, such as read/write, are 
converted to liblustre routines through a preloaded SYSIO library [13], either at compile time or run-time.  
Moreover, Cray provides a proprietary MPI-IO implementation.  This package offers parallel IO through a liblustre-
specific ADIO [14] implementation of the  MPI-IO [15] interface, denoted as AD_Sysio in the figure. 
 

 
Figure 3 Cray XT4 Parallel IO Stack 

2.3 Configuration of the Jaguar IO Subsystem  
 
The ORNL’s XT4 (Jaguar) serves 3 Lustre file systems; two in 150 TB and one 300 TB capacity.  Each file system 
has its own dedicated XT4 MDS service node.  Jaguar currently has 8 available MDS service nodes.  In total 72 XT4 
service nodes are assigned as OSSs for these 3 file systems.  Each OSS node is configured with 4 OSTs. Two of 
these OSTs are serving LUNs for the 300 TB file system, while remaining two OSTs serve LUNs for two 150 TB 



 

 

file systems.  Details can be seen in Figure 3.  Today, ORNL Jaguar provides roughly 45 GB/s block IO bandwidth 
via the 300 TB Lustre file system. 
 
As mentioned earlier, DDN 9550 is the ORNL’s current choice for the backend block devices.  There are 18 racks or 
in other words 18 couplets of DDN 9550s assigned for the block IO.  A separate rack is assigned for the current and 
future metadata needs of Jaguar.  Jaguar MDS/OSS nodes and the DDN 9550s are connected direct Fibre Channel 
(FC) links.  Each MDS/OSS XT4 server node is equipped with two 1-port 4 Gbps FC HBAs.  DDN 9550 couplets 
are also provided with 4 Gbps FC ports.  DDN 9550s LUNs are configured such that, each LUN spans two tiers of 
disks as suggested by CFS for the optimal performance as can be seen in Table 1.  Each 9550 DDN couplet has a 
capacity of 36 TB.  The write-back cache is set to 1MB on each controller. Below table shows the LUN/Tier 
configuration for Jaguar attached DDN 9550s.  Each LUN has a capacity of 2 TBs and 4 kB block size. 
 

Table 1: ORNL Jaguar’s LUN/Tier mapping 
 

LUN Label Owner Tiers Tier list  LUN Label Owner Tiers Tier list 
0 LUN0 1 2 1 2  8 LUN8 1 2 1 2 
1 LUN1 1 2 3 4  9 LUN9 1 2 3 4 
2 LUN2 1 2 5 6  10 LUN10 1 2 5 6 
3 LUN3 1 2 7 8  11 LUN11 1 2 7 8 
4 LUN4 2 2 9 10  12 LUN12 2 2 9 10 
5 LUN5 2 2 11 12  13 LUN13 2 2 11 12 
6 LUN6 2 2 13 14  14 LUN14 2 2 13 14 
7 LUN7 2 2 15 16  15 LUN15 2 2 15 16 

 

Figure 3: ORNL Jaguar’s OSS/LUN layout 

3 Parallel IO with the POSIX Read/Write 

POSIX IO API, although developed primarily for single node UNIX environments, is still the primary access 
mechanism for lower layer IO stacks.  Scientific computing applications not only benefit from a widely 
implemented standard IO API that is available on high-performance platforms but also the chance of running legacy 
code with minor modification if any needed at all.  On the other hand, these benefits come with a performance and 
orchestration penalty over large-scale parallel scientific computational applications.  In this section we explore 
various performance aspects of POSIX IO access for the ORNL’s Jaguar system.  

3.1 Hotspot tests 
 

As described earlier, Lustre is a parallel distributed file system with multiple OSTs. Each OST holds objects as the 
smallest storage unit.  While accessing objects striped over multiple OSTs theoretically increase the overall IO 
performance, it is also possible for multiple clients to access a single object located on a single OST.  Such access 
pattern might be beneficial for certain parallel computing applications and data distribution patterns but also has the 
potential to create a hotspot.  In this set of tests we analyze the Cray XT4’s IO subsystem response for such an 
access pattern using the LLNL’s IOR block IO benchmark [2].  
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For this test one of the smaller Lustre systems (150 TB) is used.  The file is located on a single OST and a varying 
number of clients are concurrently accessing it (all read or all write in an alternating fashion).  The transfer size per 
client is set to vary between 4 MB and 64 MB.  Figure 4 illustrates the results obtained.  The maximum read or write 
performance is limited to 400 MB/s, which is aligned with the theoretical limit per OST (Fibre Channel 4Gbps 
adaptors).  As can be seen, altering the transfer size does not change overall performance for writes drastically, with 
increasing number of processes.  A similar trend is observed for the reads.  However, comparing the read and write 
performance, it is clear that writes are much more graceful to hotspot pressure compared to the reads. 
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Figure 4: POSIX read/write Hotspot tests 

3.2 Read/Write Operation Throughput Tests 
 

Using the same benchmark from LLNL, we also tested the access throughput for a fixed sized object.  The transfer 
size per client is varied between 64 bytes for small message access and 2GB for large messages.  1000 consecutive 
iterations of read/write operations per client are timed.  One client process is assigned to access a single OST.  
Results can be seen in Figure 5.  While we obtained faster reads for very small messages (smaller than 2KB), for 
transfer sizes beyond 2KB writes outperformed the reads.   
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Figure 5: POSIX read/write Speed tests 

3.3 Bandwidth Tests 
 

One other interesting aspect to analyze using POSIX IO semantics is the shared and individual file per process 
access bandwidth performance.  Using IOR, we set the file size to 512 MB and the transfer size per client to 64 MB.  
We also striped the test file(s) over various numbers of stripes (OSTs), namely, 31, 32, 59, and 64.  Results can be 
seen in Figure 6, for shared file and separate file per process, respectively. Overall, shared file performs better than 
separated file. This can be attributed to increased write-back and read-ahead cache locality as well as more efficient 
physical disk allocation for the shared file access compared to the separate file per process case.  Furthermore, prime 



 

 

number stripe counts help the read performance while hurting the writes.  Finally, it can be seen clearly that 
increasing the number of writer or reader processes might have an adverse affect on the aggregate performance. 
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Figure 6: POSIX read/write bandwidth tests: (L) shared file; and (R) separate files 

4 MPI-IO 

MPI-IO augments the MPI standard by providing a standard parallel IO interface. MPI-IO collective operations 
allow coalescing for small message requests which means merging small data access operations in a single large one 
with the potential increase in performance and IO efficiency providing extensive C/C++ and Fortran language 
bindings.  The readers are urged to access the MPI-2 documentation [3] for more details about MPI-IO. As most of 
the modern MPP systems, Cray XT4 is provided an MPI-IO library.   
 
Due to its ease of use and efficiency, MPI-IO is popular among the parallel application developers.  In this section, 
we investigate the MPI-IO efficiency of ORNL’s Jaguar system.  The analysis is performed for both individual MPI-
IO and collective MPI-IO access. 
 

4.1 Independent MPI-IO access 
 

Using the IOR benchmark described in the previous section, we measured the shared file and file per process IO 
performance for read and write access.  The resultant file size is set to 512 MB and the transfer size per process is 64 
MB.  Figure 7 shows the performance results. As can be seen, the increasing number of reader/writer process has the 
potential effect of impeding the overall performance.  Furthermore, the prime number stripe counts help for both 
read and write access for smaller process counts (less than or equal to 512). Writes with large number of processes 
may also benefit prime number of stripes.  
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MPI-IO Write Shared File
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Figure 7: Independent MPI-IO, shared file performance: (L) Read; and (R) Write 



 

 

For the file per process case, the performance test results are provided in Figure 8.  For this access pattern, unlike the 
results from the shared file access, the prime number stripe counts do not help overall performance.  More 
importantly, the performance with file per process case is worse than the shared file access pattern. 
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Figure 8: Independent MPI-IO file per process performance: (L) Read; and (R) Write 

4.2 Collective MPI-IO access 
 

For evaluating the collective MPI-IO access efficiency we used the MPI-Tile-IO benchmark. MPI-Tile-IO [12] is a 
tile reading MPI-IO application.  It tests the performance of tiled access to a two dimensional dense dataset, 
simulating the type of workload that exists in some visualization and numerical applications.  In our tests, 
interleaved tiled reads/writes are performed to a file with 64 stripes on one of the smaller 150TB Lustre file systems 
over Jaguar. Figure 9 shows the results. As can be seen collective write performs better than collective read.  
Moreover, our analysis clearly shows that collective writes needs a large collective buffer and 32 MB is sufficient 
for our test environment.  This behavior can be seen in Figure 10.  

 

Collective IO with Different Buffer Size

0
1000
2000
3000
4000
5000
6000
7000
8000

read-
16proc

read-
64proc

w rite-
16proc

w rite-
64proc

B
an

dw
id

th
 (M

B
/s

ec
) 4MB

8MB

16MB

32MB

64MB

128MB

 

Collective Write

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

4MB 8MB 16MB 32MB 64MB 128MB

Coll_Buff Size

B
an

dw
id

th
 (M

B
/s

ec
)

w rite

 
Figure 9: Collective MPI-Tile-IO with varying 

collective buffer sizes 
Figure 10: Collective MPI-Tile-IO with varying 

collective buffer sizes 

 

5 Sample Application Tuning with Flash IO 

As stated earlier, benchmarking the IO subsystem gives the system architects an idea how the system will 
respond under certain conditions.  Oftentimes, these are obtained through synthetic benchmarks and reveal the 
subsystems peak response. However, under normal production workload, a user might experience an entirely 
different IO subsystem behavior.  Although it is not perfectly possible to foresee all possible scenarios and test and 
prepare for them, it is possible to mimic these workloads using micro kernel codes.  These codes are mostly excerpts 



 

 

from actual scientific applications and they are targeted to stimulate and analyze a certain subsystem’s behavior 
under close to realistic workloads or access patterns.  Flash IO is examples of such benchmarks. We describe and 
explain our analysis of ORNL’s Jaguar IO subsystem using Flash IO. 

 
The Flash IO benchmark is designed to analyze the IO subsystem performance using the IO kernel of the FLASH 
application. The Flash IO is implemented on top of HDF5 [16]. It recreates the primary data structures in Flash and 
produces a checkpoint file, a plotfile with centered data, and a plotfile with corner data. It uses the same IO routines 
used by FLASH. Our Flash IO performance results with respect to varying buffer sizes are presented in Figure 13. 
As can be seen, Flash IO benefits from varying collective buffer sizes, thus it is important to enable collective IO 
buffering.  Our analysis reveal that the optimal performance can be achieved using a 32 MB collective buffer size. 
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Flash IO -- 2048 processes
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Figure 13: Flash IO results for varying 

collective buffer sizes. 
Figure 14: Flash IO results for varying 

number of IO aggregators. 

 
Figure 14 presents the results for Flash IO test runs with respect to varying number of IO aggregators.  This set of 
tests reveal that, the number of IO aggregators in Flash IO needs to be tuned for optimal performance and for our 
given test setup, 256 or 512 aggregators are optimal for would be sufficient, particularly for Flash IO runs with small 
blocksizes. 

6 Conclusions 

To gain insights into the deliverable IO efficiency on the Cray XT4 platform at ORNL, this paper presents an in-
depth evaluation of its parallel IO software stack.  Our evaluation covers the performance of a variety of parallel IO 
interfaces, including POSIX IO, MPI-IO[15], and HDF5 [16]. Through our evaluation, we have shown that it is 
important to make salient choice on the number of stripes for parallel IO over Cray XT. In addition, users need to be 
aware of the speed variance of IO accesses with different IO request sizes. Moreover, we have demonstrated that it 
is beneficial to limit IO accesses to a moderate number of processes, typically less than 512 processes.  
 
Furthermore, we have described a variety of tuning parameters for the parallel IO stack and have demonstrated their 
effectiveness in enhancing the IO efficiency of a common scientific IO benchmark, Flash IO [1]. Our results suggest 
that by tuning the collective buffer size and the number of IO aggregators, the achievable bandwidth of Flash IO can 
be increased by as much as 20%. 
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