

Sorting Using the Xilinx Virtex-4 Field Programmable Gate
Arrays on the Cray XD1

Stephen Bique, Center for Computational Science (CCS),
Naval Research Laboratory, Washington, D.C., USA,
Wendell Anderson, CCS, Marco Lanzagorta, ITT
Corporation, Alexandria, Virginia, USA, Robert
Rosenberg, CCS

ABSTRACT: Sorting of lists is required by many scientific applications. To do so
efficiently raises many questions. Is it faster to sort many lists concurrently using a slow
sequential algorithm, or a small number of lists sequentially using a fast parallel
algorithm? How large a list can be sorted using various data structures and what is the

relative performance? The focus of this study is parallel algorithms, including parallel
bubblesort, mergesort, counting sort, and novel combinations of these algorithms. Several
implementations are described in detail using the Mitrion-C programming language.
Appreciable speedup is observed and results are reported from running programs on a
core of a Cray XD1 node with a Xilinx Virtex-4 LX FPGA as a coprocessor sorting data
generated by a symmetric multiprocessor (SMP).

KEYWORDS: XD1, FPGA, Mitrion-C, VHDL, HPC, SMP

1. Introduction

A Cray XD1 system is one of the high performance
computing (HPC) resources at the Naval Research

Laboratory [1]. The field programmable gate arrays
(FPGAs) in a Cray XD1 system are intended as
application acceleration processors (AAPs), which
improve performance by performing operations in parallel
and pipelining. Sorting is among the target applications
for acceleration [3].

A list of n elements is sorted in optimal sequential
time O(n log n). There exist O(log n) parallel algorithms
for sorting (for example, see [6]). If an FPGA coprocessor
must initially access every element one at a time to sort a
list, then at least (n) time is needed to sort a list of n
elements using a single external memory bank; whence,
the maximum speedup is limited to O(log n).

The speedup is diminished due to the overhead of

transferring data (lists to be sorted) and loading a binary
file with the configuration bit stream to the target FPGA
device. This overhead may significantly impact
performance unless it is possible to execute an application
logic many times without reconfiguration. Sorting is

carried out repeatedly for some HPC applications (see, for
example [2], p. 2791). For these applications, the
overhead of loading the application logic is reduced. To
reduce overhead further, at least one of the two-way
symmetric multiprocessor (SMPs) executes concurrently
instead of waiting while an FPGA coprocessor is running.

Under investigation are various implementations in
which an SMP “calls” upon a Xilinx Virtex-4 LX FPGA
coprocessor to carry out a stable sort on a list of keys and
to return the locations for the keys after sorting (instead of
returning only a sorted list). For example, given the list

<7,1,6,3,4,5,2,8>, the task is to find the corresponding list
<1,6,3,4,5,2,0,7> that specifies the locations of the sorted
keys (counting from zero). The keys are arbitrary 16-bit
nonnegative integers k, 0 k 65534. The number of

sequences and the length of all sequences are fixed in
advance. After execution on a coprocessor, an SMP uses
the returned lists to perform further processing on the
fields (of records). In a stable sort, two records maintain
their relative order when the keys are the same.

To compare different implementations, the measure

chosen is to compute the speedup using only the time
spent sorting on an FPGA versus the time spent sorting on
an SMP (AMD Opteron processor) by calling the C

CUG 2008 Proceedings 2 of 12

Standard Library function qsort(), which is widely
implemented. Define

Although there is some additional overhead that is not
taken into account, such a measure is nonetheless valid to

compare the relative performance of different
implementations. This measure underestimates the
speedup because qsort() does not carry out a stable sort.

The measure is useful to compare various
implementations that sort lists independent of the type of
algorithms employed. The speedup is not independent of

the input because the time to run qsort() depends upon the
input, although the time spent running on an FPGA does
not depend on the input for the same problem size.

To obtain more reliable results, the input for testing

consists of as many pseudorandom permutations as fit
into the FPGA’s external memory (subject to program

constraints). The following linear congruential generator
compatible with the Cray MATLIB routine RANF is used
to generate pseudorandom permutations on an SMP [5]:

x
n+1 = 4485709377909 x

n
mod 2

48
.

Using this method, consistent results were observed.

A goal of this work is to explore different algorithmic

solutions that are suitable for implementation on an
FPGA. The plan is to exploit the architecture of an FPGA
device in every implementation. By experimentation with

different programming constructs and features, it is
possible to discover which choices yield the best
performance. Ultimately, the aim is to write
implementations for which the speedup is appreciable.

Source Destination Read Write

FPGA FPGA QDR Fast

(3.2 GB/s)

Fast

(3.2 GB/s)

FPGA Host RAM Unavailable

Slow

(0.7 GB/s)

Host FPGA QDR Slow

(10 KB/s)

Fast

(3.2 GB/s)

Host Host RAM Fast (GB/s) Fast (GB/s)

Table 1 Approximate Bandwidth of I/O Operations

To exploit the architecture, an FPGA device reads
from and writes to its external memory in every
implementation. The speed of I/O operations is vastly
asymmetrical. Table 1 summarizes the I/O channels and

their speeds [7]. In the case of reads and writes by an
FPGA to its four external Quad Data Rate (QDR) II static
RAM (SRAM) cores, actual bandwidth depends directly
on the number of I/O operations performed in parallel.

To enhance software development, high-level

languages (HLLs) are used to study various ways of
sorting on an FPGA coprocessor. Although there is some
degradation in performance and chip utilization compared
to programming in a hardware description language
(HDLs) such as Verilog and VHDL, or even another
HLL, it is reasonable to expect that the relative
performance of different implementations would depend

more on the design techniques and algorithms employed
and less on the programming environment. El-Araby et.
al. offer a comparative analysis of DSPLogic, Impulse-C
and Mitrion-C in a Cray XD1 environment [4]. The scope
of their work (wavelet transforms and encryption
algorithms) does not include sorting algorithms.

Mitrion-C is a novel HLL for the so-called Mitrion
Virtual Processor (MVP) [8]. This soft core may be seen
as a virtual machine for which special programming
constructs are mapped to custom VHDL code for a
particular FPGA chip. The MVP is a massively parallel

computer that permits the type of fine-grain parallelism
that characterizes FPGAs. This virtual machine
implements speculative evaluation of if statements.

The MVP is part of the overhead that incorporates the

Mitrion-C code and actually runs on an FPGA. A
disadvantage of using Mitrion-C is that the MVP uses

resources so that only a fraction of the FPGAs resources
are available to the programmer. Another weakness is the
fact that the MVP runs at a slower clock frequency than
current FPGAs permit. As technology changes rapidly, it
is not feasible to fully, or to continue to, support every
chip unless there is strong market demand. Currently, the
MVP does not fully implement all of the functionality

supported by the Cray API for Virtex-4 FPGAs.

In subsequent sections, several different

implementations that carry out a stable sort are described
using Mitrion-C version 1.3, which is the latest version
available for the Cray XD1. For each implementation, the
observed speedup for various runs on a Cray XD1 node is

reported. The next section briefly introduces the data
types available in Mitrion-C [8][9][10].

speedup =
time running qsort() on SMP

time running FPGA
.

CUG 2008 Proceedings 3 of 12

2. Data Types

A compiler is able to automatically infer types and bit-

widths. If the programmer has additional information that
permits the bit-width to be reduced, then it is
advantageous to specify the bit-width to reduce program
complexity. In some cases it is necessary to specify the bit
width, e.g., when shifting left.

Mitrion-C replaces arrays in C by three different so-
called “collections:” lists, streams and vectors. Lists and
streams are suitable for LISP programming (LISt
Processing) whereas vectors suit parallel programming.
The base type can be integer, floating point or Boolean.

Unlike arrays in C, collections are immutable objects

that cannot be modified once defined. Loops in Mitrion-C
provide the chief tool to form new collections from
existing ones of the same type. In particular, only lists and
vectors (not streams) can be redefined using this tool.
However, redefining is possible only if the size is
unchanged since the length of lists and vectors is fixed.

Although not considered a collection, a tuple is
essentially a small sequence. Unlike collections, tuples
may contain different types (and instance tokens). The
base type in memory cannot be a collection or a tuple.
Collections may contain tuples, provided each entry has
the same sequence of types.

The for and foreach expressions are loops over a
collection. To run blocks of code in parallel, a
programmer uses vectors in a foreach loop to
automatically unroll the code, i.e., to make copies of the
loop body. To implement pipelining in the context of a
loop, a programmer writes a for loop over vectors. In
practice, only small vectors may be used due to the

limited availability of resources and the duplicate
configuration for every iteration.

A common technique is to reshape a list into a

multidimensional list of vectors. It is then possible to
iterate over the smaller vectors using a foreach inner
loop. In this way, a programmer reduces the resource

requirements and still achieves a degree of parallelism.
This approach is relevant if the problem can be
decomposed in a suitable way. Matrix multiplication is a
good example that permits such decomposition.

A list or a vector defined outside a loop, can be

referenced in the body of the loop, which is not possible

with streams. Lists and vectors (not streams) can also be
built-up or taken apart via the concatenation (><), take
(</) and drop (/<) operators. Although not documented,
the operands should be one-dimensional, which is not
checked by the compiler.

3. Performing Sorts Concurrently

 The speedup in sorting a single list of n elements is

limited to O(log n). A way to improve performance is to
perform many sorts at the same time. The number of sorts
that can be performed concurrently depends both on the
amount of resources required to perform a single sort and
the amount of resources available on the FPGA.

To take advantage of the architecture and minimize
the time spent on I/O, a simple strategy is proposed. For
each memory bank in parallel, iteratively read lists, sort
them and write the resulting lists back at corresponding
locations. For the Cray XD1 node with a Virtex-4 FPGA,
this strategy leads to a fourfold improvement in
performance (since there are four QRD IIs), provided

sufficient resources are available. The external memories
(QDR IIs) are dual ported, allowing simultaneous reads
and writes.

Another way to improve performance is to overlap I/O

activity with useful work. I/O takes O(n) time to read a
list of n elements. Although this time cannot be reduced,

ideally the coprocessor is busy performing other useful
work so that the cost of I/O is small. Pipelining is one
way to overlap computations and I/O operations. Another
strategy is to perform many non-pipelined sorts
concurrently for each external memory bank. Both cases
may be implemented using function calls.

Consider many concurrent sorts using a slow
algorithm. As sorting is a relatively slow process, many
lists may be read and written while sorting takes place.
The challenge is to write efficient Mitrion-C code that
runs on the Cray XD1 and that reads or writes many lists
using separate function calls without any memory access
conflicts.

A solution is to perform I/O operations in a round-

robin fashion and commence a sort as soon as a list is
read. Hence, many sorts are scheduled in a “circular
pipeline” using function calls. A foreach “block
expression” is suitable to implement such a circular
queue. The programming challenge is to make function

calls back to back.

4. Parallel Bubblesort

A parallel version of bubblesort is commonly known
as “odd-even sort.” The name parallel bubblesort is
preferred because it emphasizes the implicit parallelism.
For convenience, define for any finite list, say

CUG 2008 Proceedings 4 of 12

L = <a0, a1, …, ap, aq, …, an-1>,

with L = n elements, any pair of consecutive elements,

say (ap, aq), is said to be even or odd if the position p of
the first element of the pair is even or odd, respectively,
e.g., (a0, a1) is an even pair while (a1, a2) is an odd pair.
An algorithm is stated next.

 Algorithm Parallel Bubblesort (L)

 Input: L a list
 Output: J indices for sorted list
 Requirement: The length of L is even.

1. Sort all even pairs in parallel.
2. Sort all odd pairs in parallel.

3. Repeat steps 1-2 sequentially exactly L

2

times.

Example. Consider how parallel bubblesort works on the

list 1,3,8,5,6,7,2,5. Label duplicates using subscripts so
that ak indicates the element a appears for the k

th
 time in

the original sequence. Comparisons of odd pairs are
indicated using arrows after every “even” pass (step 1) in
the next illustration.

The algorithm requires L

2

 passes in case a maximum

or minimum of a finite set of distinct elements appears
furthest from its location after sorting. Such an extreme
value necessarily must be moved after every comparison
except for the last odd pair, which yields

2
L

2
1

 +1= L 1

moves. This sorting algorithm is stable provided equal

elements are never swapped.

Which of the three types of collections is a suitable

choice for implementation? Actually the only choice is a
vector. Neither lists nor streams permit iteration over
more than one element at a time. Using multiple internal
memory banks, it is possible to perform multiple memory
accesses in parallel. Since it is not possible to create a
collection whose base type is an instance token (which are
memory references), it follows that considerable

resources would be needed to manage many internal
memory banks.

How is the basic operation (sort pairs in parallel)

efficiently implemented using vectors? Using indices is
too costly. Lists may be partitioned into two vectors
containing the even and odd elements. It is then possible

to iterate over such pairs of vectors in a foreach loop to
access all elements in parallel.

The stages are different as there is one less

comparison to carry out during the “odd” stage because
the number of odd pairs is one less than the number of
even pairs. The elements that are not used need to be

dropped and later added back. The concatenation, take
and drop operators are useful to manage these operations.
Figure 1 shows a suitable Mitrion-C code fragment.

Figure 1 Parallel Bubblesort in Mitrion-C

This partitioning into evens and odds is easily done
when a list is read from external memory. In particular,
iterate over the list of indices in a foreach loop and then
reformat the returned lists into vectors. Reading via
iteration over a vector in a for loop surprisingly yields
worst performance in the vast majority of test cases.

1

1

1

1

3

3

3

3

8

51

5
1

51

5
1

8

6

6

6

6

8

2

7

7

2

8

2

2

7

52

5
2

5
2

5
2

7

1

1

1

3

3

2

5
1

2

3

2

51

5
1

6

52

5
2

5
2

6

6

8

7

7

7

8

8

CUG 2008 Proceedings 5 of 12

If the number of elements is odd, then use an if
statement to assign a large value for the last odd element;

otherwise, read elements from external memory. Such
large values are not written at the end. Use the take
operator (</) in a foreach loop to write all of the elements
except the last even and odd elements. Then write the last
even element.

Consider the number of operations performed on lists

with eight elements using four memory banks. A total of
28 comparisons are performed each iteration. Sixteen
comparisons are performed in parallel during the “even”
pass because there are four lists (one per external memory
bank) and four pairs for which the position of the first
element is even. Twelve comparisons are performed in
parallel during the “odd” pass because there are four lists

and three pairs for which the position of the first element
is odd.

Length
of List

Number
of Lists

Approximate
Speedup vs. qsort()

3 699048 12.0

4 524288 13.2

5 419428 16.4

6 349524 17.1

7 299592 18.9

8 262144 19.8

9 233016 21.5

10 209712 21.2

11 190648 22.6

12 174760 22.8

13 161316 23.9

14 149796 24.2

15 139808 24.9

16 131072 24.6

17 123360 25.4

18 116508 26.2

20 104856 25.9

24 87380 27.3

26 80656 28.4

32 65536 29.1

34 61680 29.8

36 58252 30.2

38 55188 30.3

39 53772 30.3

40 52428 30.0

Table 2 Performance of Parallel Bubblesort

The observed speedup for various runs on the Cray
XD1 is shown in Table 2. If there are fewer than four
elements, then there is at most one even or odd pair,

which is a degenerate case. There are not sufficient
resources to sort lists with more than forty elements using
the same implementation.

5. Mergesort

Mergesort is a classical sorting algorithm that is

typically regarded as a recursive algorithm. Such “top-
down” algorithms are suitable for sequential computers.
Yet this algorithm may be viewed as a “bottom-up”
algorithm with the number of merging phases being
logarithmic in the length of the list.

In sequential programming, the merging procedure
terminates by copying the shorter of the two lists that
remain (one of which is the partially merged list) as soon
as one of the lists is emptied. In this way, the sequential
time complexity of merging is minimized. Such
processing is not relevant for FPGA programming for
which more regular program flow is needed.

A merge operation is linear in the length of the

merged list, which is a consequence of the fact that an
element is removed from one of the two lists after each
comparison (there are only so many elements to remove).
Hence, a for loop is suitable to implement each merge
operation.

There are different programming techniques to handle

the case when one of the lists becomes empty. A sentinel
can be used to handle the special cases. Storing the
sentinel at the end of the list in memory using a brute
force approach is costly. There are strategies to reduce
such costs. Notwithstanding, tests using sentinels did not

yield better performance.

Another method involves counting the elements

remaining in each sublist. When one of the lists becomes
empty, copy the elements from the other list to the end of
the merged list. Writing such code is slightly more
complicated. Good performance has been observed using

this approach.

A common trick is to scan pairs of lists in opposite

directions and iterate until the indices cross, instead of
scanning in the same direction. Using this method, the
special case when one of the lists becomes empty is
avoided. To do so, reverse the right list and merge with

the left list scanning from the “outside.”

Example. Suppose the left list is 1,2 and the right list is
3,4. Reverse the right list and concatenate to obtain the
new list 1,2,4,3. Set the left index i = 0 and the right index

j = 3.
i j Merged List

0 3 1

1 3 12

2 3 123

2 2 1234

CUG 2008 Proceedings 6 of 12

The alternating method, however, requires special
handling to implement a stable algorithm. The reason is

that when a list on the left is emptied and the right list
contains duplicates, they are not in the original order.
Additional steps are required to force the algorithm to be
stable. The following invariant is proposed:

The left list is sorted in nondecreasing order with
duplicates in original order and the right list is sorted
in nonincreasing order with duplicates in reverse of
their original order.

A stable merging algorithm based on this invariant is
stated next.

Algorithm Alternating Stable Mergesort (L)

 Input: L a list
 Output: J indices for sorted list

 Requirement: L = 2
k
m, for some k and m.

1. Merge lists of length m into lists of length 2m

in alternating non-decreasing and
nonincreasing orders. When comparing
elements from a left and right list, choose the
smaller element and in the case of equality,
choose the element from the left list. If the
right index has crossed into the left list,
choose the leftmost element, which is the

only choice by the invariant. If the left index
has crossed into the right list, then choose the
rightmost element by the invariant.

2. Double m and repeat step 2 as long as

2m L .

Example. Below is an illustration how mergesort operates
on the list 1,3,5,8,6,7,2,5. Subscript k in ak indicates the

element a appears for the k
th

 time in the original
sequence.

What data structure should be used to implement the

mergesort algorithm? Collections are useful to iterate over

elements. The mergesort algorithm does not prescribe
such iteration as an element may or may not be removed
during any iteration. A solution is to use the equivalent of
an array in local memory so that elements can be accessed
repeatedly.

Viewing mergesort as a bottom-up tree, each merge
operation at the same level can be performed sequentially.

In this way, successive merges at different levels take the
same amount of time. A pipelined solution is then easy to
implement.

In order to pipeline the stages of the mergesort

algorithm, a separate internal memory bank is created for
each stage. If these banks were only large enough to hold

a single list, then there can be unacceptable delays in the
pipeline. In order to allow a stage to operate continuously,
larger banks are created so that different stages can use
the same bank concurrently. To do so, the internal
memory banks are treated as circular queues.

A pipelined implementation of mergesort using

function calls in a foreach loop yields good performance
for intermediate size lists. Table 3 shows results from runs
on the Cray XD1 using counters to carry out the merge
operations. The observed speedup decreases as the lengths
of the lists become smaller.

Length
of List

Number of
Lists

Approximate
Speedup vs. qsort()

64 32768 16.2

128 16384 18.5

256 8192 20.0

Table 3 Mergesort Performance

A bottom-up approach offers a high degree of implicit

parallelism. Each successive merge (row) can be executed
in a pipeline. All pairs (in a row) can also be merged
concurrently. However, the former type of parallelism is
more efficient. Pipelining without concurrently merging
pairs implies each merge operation requires

approximately the same amount of work and time, which
allows most of the configured hardware to remain
operational most of the time.

If each successive stage merged pairs concurrently,

then later stages would take longer time; whence, a
bottleneck would be created. Besides merging all pairs

concurrently would quickly exhaust all resources. In
particular, extra internal memory banks would be needed
to perform all of the required concurrent reads and writes.
Regardless, read and write operations must be carried out
sequentially for both the original list and the results.
Hence there is little to be gained by concurrent merging
since the pipeline is only as fast as the slowest link in the

chain.

Is it practical to merge four lists instead of just two?

Consider merging four sorted lists using an efficient for
loop so that an element is removed during every iteration.

To do so requires finding the minimum of four elements.

1

1,3

3

1,3,5
1
,8

5
1

8,5
1

8

1,2,3,5
1
,5
2
,6,7,8

6

6,7

7

7,6,5
2
,2

2

5
2
,2

5
2

CUG 2008 Proceedings 7 of 12

Finding the minimum can be done using only three
comparisons as demonstrated in Figure 2.

Figure 2 Minimum of Four Sorted Lists

Actually, it is unnecessary to perform all three
comparisons every iteration. The reason is after
discovering a minimum among the four lists, only one

item is removed from one of the lists; whence the
minimum of one pair of lists does not need to be
recomputed. Therefore only two comparisons are needed
per iteration: one to find the minimum from a pair of lists,
and one to find the minimum of two pre-computed
minimums.

How does the complexity of 4-way merge compare to
2-way merge? Suppose there exist four sorted lists, each
having, say m, elements. Using 2-way merge, at most 2m-
1 comparisons are needed to merge each pair of lists since
after each comparison one element is removed (from 2m
elements). Up to 4m-1 comparisons are needed to
combine the merged pairs, which yields a total of

2 2m 1() + 4m 1= 8m 3

comparisons. Using 4-way merge, two initial comparisons
plus two additional comparisons per iteration for every
removal, which yields

 2 + 2 4m() = 8m + 2

comparisons.

Hence, 2-way and 4-way merge carry out nearly the

same number of basic operations (comparisons).
Figure 3 shows C code that implements 4-way

merging. This code demonstrates that it is possible to
avoid many array accesses, i.e., fewer reads are required,
another advantage of 4-way merging.

While reducing the number of I/O operations is in

general advantageous, some I/O operations can be
performed in parallel, which negates the advantage. More
importantly, 4-way merge is disadvantageous in a pipeline
since merges take twice as long. Notwithstanding, an
optimized implementation that sorts lists of exactly four
elements using 4-way merge yields speedup of 13.1 on a
Virtex-4 FPGA compared to calling the C standard library

function qsort() on an AMD processor.

6. Counting Sort

Counting sort finds the position of an element by

counting the number of smaller elements. If all elements
are distinct, then the position is exactly the number of
elements smaller than e. For example, the minimum and
maximum appear in the first and last positions. In the case
of duplicates, count also those identical elements that
appear earlier in the original list so that the algorithm is

stable.

The sequential time complexity of counting sort is

comparable to selection sort. Selection sort works like
bubblesort except the former does a single swap after
each pass in which another element “bubbles” its way to
its final position. Counting sort requires additional space

to calculate positions. For this reason, counting sort is not
used in practice. However, a Virtex-4 FPGA coprocessor
offers greater resources and potential for speedup.

Figure 3 C Code for 4-Way Merge

CUG 2008 Proceedings 8 of 12

Algorithm Counting Sort (L)
 Input: L a list

 Output: J indices for sorted list

1. In parallel for each position in the list L,

sequentially count the total number of elements

less than the element appearing at this position

plus the number of identical elements appearing

before this position in L.

2. Return the sums.

Example. Consider the list 1,3,8,5,6,7,2,5. Calculate the
position of any element by scanning the list and counting
all smaller elements as well as any duplicates that appear

earlier in the list. The computed positions of
corresponding elements are 0,2,7,3,5,6,1, and 4.

Figure 4 Counting Sort Function

The parallel part of this algorithm is implemented by

iteration in a foreach loop over a vector. The sequential
part is implemented by iteration over a list in a for loop.

There is little advantage in using a vector to unroll this
for loop, which wastes resources. Figure 4 displays a
counting sort function in Mitrion-C, which is succinct. An
implementation iteratively sorts lists with up to 50
elements using a function call in a foreach loop. The
main() function makes four calls, one per memory bank,
to the function that carries out the iteration.

Table 4 shows results of runs on the Cray XD1. The

relatively low speedup in a couple cases (length = 13,14)
indicates a weakness of the MVP in the current version
1.3.

Length
of List

Number
of Lists

Approximate
Speedup vs. qsort()

3 699048 12.0

4 524288 13.2

5 419428 16.3

6 349524 17.0

7 299592 18.8

8 262144 19.9

9 233016 21.5

10 209712 21.3

11 190648 22.6

12 174760 22.9

13 161316 12.4

14 149796 12.6

16 131072 24.8

20 104856 26.0

24 87380 27.2

32 65536 29.1

36 58252 30.3

40 52428 30.0

46 45588 30.7

47 44620 31.4

48 43688 31.3

49 42796 31.7

50 41940 32.0

Table 4 Counting Sort

Instead of computing the sums using a single for loop,

consider breaking the list into two nearly equal halves and
writing two for statements, which are executed in parallel,
to compute the sum. There are sufficient resources to sort
lists with up to 40 elements. This modification yields an
appreciable improvement in performance in only those
couple instances for which the previously observed

speedup was surprisingly low as shown in Table 5.
Performing additions faster is not effective. The time
required to read n elements is about the same as the time
needed to perform n additions sequentially.

Because the lists are partitioned into two parts, it is

natural to write a loop in which two reads are executed
per iteration. Hence, the number of iterations is balanced
for performing reads and computing sums. Yet, Table 5
shows that this strategy does not yield performance
improvement in many cases. If the length is odd, then
there are not sufficient resources to perform two read
operations per iteration plus an extra read for lists with

more than twenty elements (using the same techniques).
In such cases, it is efficient to perform a single read per
iteration and then partition using the take and drop
operators.

For small lists, there are enough resources to use a

vector instead of a list and compute the terms in a foreach

expression (instead of computing the sum in a for loop).
It is then possible to compute the sum of the terms in
parallel (inside the outer foreach expression) using a

CUG 2008 Proceedings 9 of 12

binary tree as a model. An example of Mitrion-C code is
given in Figure 5 for lists with eleven elements. There are
sufficient resources to sort lists with up to 14 elements.

Length
of List

Number
of Lists

Approximate
Speedup vs. qsort()

3 699048 12.1

4 524288 13.1

5 419428 16.4

6 349524 17.0

7 299592 18.9

8 262144 19.8

10 209712 21.2

11 190648 22.6

12 174760 22.8

13 161316 23.9

14 149796 24.3

16 131072 24.7

19 110376 26.0

21 99864 26.8

24 87380 27.2

32 65536 29.1

36 58252 30.2

39 53772 30.3

40 52428 30.1

Table 5 Counting Sort - Two Summations

Figure 5 Counting Sort – Sums in Parallel

Testing yielded appreciable speedup only in the

exceptional cases noted earlier. Table 6 shows results

from various runs on the Cray XD1. There is little to be
gained in speedup as the lists become small because there
are few operators that can be applied in parallel and there
are I/O limitations as well.

Length
of List

Number
of Lists

Approximate
Speedup vs. qsort()

3 699048 12.1

4 524288 13.2

5 419428 16.4

6 349524 16.9

7 299592 19.0

8 262144 19.8

9 233016 21.4

10 209712 21.2

11 190648 22.6

12 174760 22.9

13 161316 23.8

14 149796 24.2

Table 6 Counting Sort – Sums in Parallel

In this case, a binary tree is a model that bears little
fruit. Instead of trying to perform additions in parallel,
consider pipelining the summation by unrolling the for

loop. This optimization can only be carried out for small
lists. Table 7 displays results from runs on the Cray XD1.
Again the speedup is not appreciable except in a couple
instances.

Length
of List

Number
of Lists

Approximate
Speedup vs. qsort()

3 699048 12.0

4 524288 13.2

5 419428 16.4

6 349524 17.0

7 299592 18.8

8 262144 19.8

9 233016 21.5

10 209712 21.3

11 190648 22.6

12 174760 23.0

13 161316 23.9

14 149796 24.2

Table 7 Counting Sort – Unrolled Loop

7. Sorting Long Lists

Is it possible to achieve significant speedup for long
lists? A common technique to manage larger problems is
to decompose them into smaller ones. The programming

challenge is to find the right match between the different
stages to avoid bottlenecks.

Counting sort can be applied to large lists. Instead of

computing positions for every element in parallel, a
programmer arranges to compute them in parallel only for

CUG 2008 Proceedings 10 of 12

all elements in a “segment.” Thus the list is divided into
contiguous segments.

Figure 6 Counting Sort for Long Lists

Figure 6 shows a fragment of Mitrion-C code that
performs a sort after partitioning a list into K segments of
length M using reshape(). Vectors are then iteratively

created from the segments using reformat(). An
implementation partitions lists into segments with M=32
elements. Table 8 shows results of runs on the Cray XD1.
There are sufficient resources for intermediate size lists to
divide the lists into segments and calculate the sums for
each segment. Table 8 shows results using a single
summation, except for lists with 64 elements for which

four sums are computed in parallel. Since only M sums
(instead of M K sums) are computed in parallel,

performance is relatively low in all cases.

Length
of List

Number of
Lists

Approximate
Speedup vs. qsort()

64 32768 8.3

128 16384 9.5

512 4096 2.8

768 2728 2.0

1024 2048 1.5

Table 8 Counting Sort for Long Lists

Parallel bubblesort and mergesort do not belong to the
same sequential time complexity class. Parallel bubblesort

takes L() time to sort a list L since there are
1

2
L

alternating stages that take a constant amount of time.

Although mergesort performs a total of L log L()

operations, a single stage of the algorithm takes only

L() sequential time. Thus, parallel bubblesort and

any stage of a pipelined mergesort algorithm do belong to
the same complexity class.

These algorithms can be combined via pipelining. A
programmer partitions each list into segments of equal
length, and creates a pipeline via function calls. The first
stage iteratively applies the parallel bubblesort algorithm
to sort each segment. Each subsequent stage is an
application of the mergesort algorithm to merge all of the
segments.

By experimentation, a programmer finds a suitable

length for each segment to achieve good performance. An
implementation uses four and eight elements in the
segments for lists with 64 and 128 elements, respectively,
and uses the alternating mergesort algorithm. Table 9
shows results of runs on the Cray XD1.

Length
of List

Number of
Lists

Approximate
Speedup vs. qsort()

64 32768 9.9

128 16384 12.5

Table 9 Parallel Bubblesort and Mergesort

The counting sort and mergesort algorithms yield the
best performance on small and long lists, respectively. An
implementation combines the counting sort algorithm and
mergesort algorithms. The first stage sorts sublists with
16 and 32 elements to sort lists with 64 and 128 elements,

respectively. Table 10 shows results of runs on the Cray
XD1.

Length
of List

Number of
Lists

Approximate
Speedup vs. qsort()

64 32768 11.0

128 16384 12.6

Table 10 Counting Sort and Mergesort

8. Conclusion

Substantial speedup has been observed compared to

calling the Standard C Library function qsort() on an

AMD processor. Table 11 displays a summary of

observed speedups for different sizes of lists. These
speedups were achieved by exploiting the architecture of
a Xilinx Virtex-4 FPGA, and by taking full advantage of

CUG 2008 Proceedings 11 of 12

Mitrion-C. The task performed on an FPGA coprocessor
is to perform many stable sorts and to return the locations
of sorted keys for further processing by an SMP. The case
studies address difficult issues such as I/O.

Several implementations have been described in

detail. Various programming techniques and algorithms
suitable for implementation on an FPGA, including novel
combinations of algorithms, have been studied to
investigate which programming choices lead to the best
performance. This work shows that counting sort, parallel

bubblesort and mergesort are especially well suited to
FPGA implementation. 2-way selection sort performs
well for lists with four elements.

Length
of List Algorithm

Approximate
Speedup vs. qsort()

3 Counting Sort 12.1

4 2-Way Selection Sort 13.8

5 Counting Sort 16.4

6 Parallel Bubble Sort 17.1

7 Counting Sort 18.9

8 Counting Sort 19.9

9 Counting Sort 21.5

10 Counting Sort 21.3

11 Counting Sort 22.6

12 Counting Sort 22.9

13 Pipelined Counting Sort 24.0

14 Pipelined Counting Sort 24.4

16 Counting Sort 24.8

20 Counting Sort 26.0

21 Counting Sort 26.8

24 Pipelined Counting Sort 27.3

32 Counting Sort 29.1

36 Counting Sort 30.3

39 Counting Sort 30.3

40 Counting Sort 30.1

46 Counting Sort 30.7

47 Counting Sort 31.4

48 Counting Sort 31.3

49 Counting Sort 31.7

50 Counting Sort 32.0

64 Mergesort 16.2

128 Mergesort 18.5

256 Mergesort 20.0

Table 11 Summary of Speedups Observed

Future work will focus on incorporating described
implementations in real-world applications and

investigating other types of problems that can be solved
on FPGAs to speedup applications. In particular, more
significant performance gains might be achieved by
having an FPGA perform computations on the data before
sorting. As FPGA technology advances and especially as
new versions of the tools are released, it will become
possible to accelerate applications in an increasing

number of ways.

Acknowledgments

Dr. Jeanie Osburn, the head of the Operational

Computer Section of CCS, provided valuable input and
user support. Ray Yee, the onsite XD1 Cray engineer,
helped to resolve programming issues. Jace Mogill of
Mitrionics provided customer support. This work was
performed entirely on the Cray XD1 system at NRL-DC
under the auspices of the U. S. Department of Defense
(DoD) High Performance Computer Modernization

Program (HPCMP).

About the Authors

Stephen Bique is Computer Scientist in the Center for
Computational Science (CCS) at the Naval Research
Laboratory, Marco Lanzagorta is Senior Principal
Scientist for ITT Corporation, Robert Rosenberg is

Information Technology Specialist in CCS, and Wendell
Anderson is Mathematician and the head of the Research
Computers Section of CCS.

References

[1] W. Anderson, M. Lanzagorta, R. Rosenberg, and

J. Osburn, Early Experiences with XD1 at the Naval
Research Laboratory, CUG 2006 Proceedings, 2006.

[2] C. M. Bachmann, T. L. Ainsworth, and R. A.

Fusina, Improved Manifold Coordinate
Representations of Large-Scale Hyperspectral
Scenes, IEEE transactions on geoscience and remote
sensing, vol. 44, no. 10, pp. 2786-2803, October
2006.

[3] Cray, Inc, Cray XD1TM FPGA Development, S-
6400-14, May 2006.

[4] E. El-Araby, M. Taher, M. Abouellail, T. El-
Ghazawi, and G.B. Newby, Comparative Analysis
of High Level Programming for Reconfigurable
Computers: Methodology and Empirical Study, in 3rd
Southern Conference on Programmable Logic, Mar
del Plata, Argentina, ISBN 1-4244-0606-4, pp. 99-
106, February 2007.

[5] GSL Team, Other random number generators in
GNU Scientific Library: Reference Manual
[http://www.gnu.org/software/gsl/manual/html_node/
index.html], 2007.

[6] J. JáJá, An introduction to parallel algorithms,
Addison-Wesley Publishing Co., Reading, Mass.,
ISBN 0-201-54856-9, 566 p., 1992.

[7] M. Lanzagorta, and S.Bique, An Introduction to
Reconfigurable Supercomputing, to appear in a
tutorial presentation at the Department of Defense
High Performance Computing Modernization
Program Users Group Conference, Seattle,
Washington, July 2008.

[8] Mitrionics, Running the Mitrion Virtual Processor

on XD1, 1.2-003, 2007.

CUG 2008 Proceedings 12 of 12

[9] Mitrionics, The Mitrion Software Development Kit,

1.3.0-002, 2007.
[10] S. Möhl, The Mitrion-C Programming Language,

Mitrionics, 1.3.0-001, 2007.

