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ABSTRACT: Sorting of lists is required by many scientific applications. To do so 
efficiently raises many questions. Is it faster to sort many lists concurrently using a slow 
sequential algorithm, or a small number of lists sequentially using a fast parallel 
algorithm? How large a list can be sorted using various data structures and what is the 

relative performance? The focus of this study is parallel algorithms, including parallel 
bubblesort, mergesort, counting sort, and novel combinations of these algorithms. Several 
implementations are described in detail using the Mitrion-C programming language. 
Appreciable speedup is observed and results are reported from running programs on a 
core of a Cray XD1 node with a Xilinx Virtex-4 LX FPGA as a coprocessor sorting data 
generated by a symmetric multiprocessor (SMP). 

KEYWORDS: XD1, FPGA, Mitrion-C, VHDL, HPC, SMP 

1. Introduction 

A Cray XD1 system is one of the high performance 
computing (HPC) resources at the Naval Research 

Laboratory [1]. The field programmable gate arrays 
(FPGAs) in a Cray XD1 system are intended as 
application acceleration processors (AAPs), which 
improve performance by performing operations in parallel 
and pipelining. Sorting is among the target applications 
for acceleration [3].  

 

A list of n elements is sorted in optimal sequential 
time O(n log n). There exist O(log n) parallel algorithms 
for sorting (for example, see [6]). If an FPGA coprocessor 
must initially access every element one at a time to sort a 
list, then at least  (n) time is needed to sort a list of n 
elements using a single external memory bank; whence, 
the maximum speedup is limited to O(log n). 

  
The speedup is diminished due to the overhead of 

transferring data (lists to be sorted) and loading a binary 
file with the configuration bit stream to the target FPGA 
device. This overhead may significantly impact 
performance unless it is possible to execute an application 
logic many times without reconfiguration.  Sorting is 

carried out repeatedly for some HPC applications (see, for 
example [2], p. 2791).  For these applications, the 
overhead of loading the application logic is reduced. To 
reduce overhead further, at least one of the two-way 
symmetric multiprocessor (SMPs) executes concurrently 
instead of waiting while an FPGA coprocessor is running. 

 

Under investigation are various implementations in 
which an SMP “calls” upon a Xilinx Virtex-4 LX FPGA 
coprocessor to carry out a stable sort on a list of keys and 
to return the locations for the keys after sorting (instead of 
returning only a sorted list). For example, given the list 

<7,1,6,3,4,5,2,8>, the task is to find the corresponding list 
<1,6,3,4,5,2,0,7> that specifies the locations of the sorted 
keys (counting from zero). The keys are arbitrary 16-bit 
nonnegative integers k, 0  k  65534. The number of 

sequences and the length of all sequences are fixed in 
advance. After execution on a coprocessor, an SMP uses 
the returned lists to perform further processing on the 
fields (of records). In a stable sort, two records maintain 
their relative order when the keys are the same. 

To compare different implementations, the measure 

chosen is to compute the speedup using only the time 
spent sorting on an FPGA versus the time spent sorting on 
an SMP (AMD Opteron processor) by calling the C 



 

CUG 2008 Proceedings 2 of 12 

Standard Library function qsort(), which is widely 
implemented. Define 

 

 
 
Although there is some additional overhead that is not 
taken into account, such a measure is nonetheless valid to 

compare the relative performance of different 
implementations. This measure underestimates the 
speedup because qsort() does not carry out a stable sort.  
 

The measure is useful to compare various 
implementations that sort lists independent of the type of 
algorithms employed. The speedup is not independent of 

the input because the time to run qsort() depends upon the 
input, although the time spent running on an FPGA does 
not depend on the input for the same problem size.  

 
To obtain more reliable results, the input for testing 

consists of as many pseudorandom permutations as fit 
into the FPGA’s external memory (subject to program 

constraints). The following linear congruential generator 
compatible with the Cray MATLIB routine RANF is used 
to generate pseudorandom permutations on an SMP [5]: 

x
n+1 = 4485709377909 x

n
mod 2

48
. 

Using this method, consistent results were observed. 
 
A goal of this work is to explore different algorithmic 

solutions that are suitable for implementation on an 
FPGA. The plan is to exploit the architecture of an FPGA 
device in every implementation. By experimentation with 

different programming constructs and features, it is 
possible to discover which choices yield the best 
performance. Ultimately, the aim is to write 
implementations for which the speedup is appreciable. 

 
 

Source Destination Read Write 

FPGA FPGA QDR  Fast 

(3.2 GB/s) 

Fast 

(3.2 GB/s) 

FPGA Host RAM Unavailable 

 

Slow 

(0.7 GB/s) 

Host FPGA QDR  Slow 

(10 KB/s) 

Fast 

(3.2 GB/s) 

Host Host RAM Fast (GB/s) Fast (GB/s) 

Table 1  Approximate Bandwidth of I/O Operations 

 

To exploit the architecture, an FPGA device reads 
from and writes to its external memory in every 
implementation. The speed of I/O operations is vastly 
asymmetrical. Table 1 summarizes the I/O channels and 

their speeds [7]. In the case of reads and writes by an 
FPGA to its four external Quad Data Rate (QDR) II static 
RAM (SRAM) cores, actual bandwidth depends directly 
on the number of I/O operations performed in parallel. 

To enhance software development, high-level 

languages (HLLs) are used to study various ways of 
sorting on an FPGA coprocessor. Although there is some 
degradation in performance and chip utilization compared 
to programming in a hardware description language 
(HDLs) such as Verilog and VHDL, or even another 
HLL, it is reasonable to expect that the relative 
performance of different implementations would depend 

more on the design techniques and algorithms employed 
and less on the programming environment. El-Araby et. 
al. offer a comparative analysis of DSPLogic, Impulse-C 
and Mitrion-C in a Cray XD1 environment [4]. The scope 
of their work  (wavelet transforms and encryption 
algorithms)  does not  include sorting algorithms.  

Mitrion-C is a novel HLL for the so-called Mitrion 
Virtual Processor (MVP) [8]. This soft core may be seen 
as a virtual machine for which special programming 
constructs are mapped to custom VHDL code for a 
particular FPGA chip. The MVP is a massively parallel 

computer that permits the type of fine-grain parallelism 
that characterizes FPGAs. This virtual machine 
implements speculative evaluation of if statements.  

 
The MVP is part of the overhead that incorporates the 

Mitrion-C code and actually runs on an FPGA. A 
disadvantage of using Mitrion-C is that the MVP uses 

resources so that only a fraction of the FPGAs resources 
are available to the programmer. Another weakness is the 
fact that the MVP runs at a slower clock frequency than 
current FPGAs permit. As technology changes rapidly, it 
is not feasible to fully, or to continue to, support every 
chip unless there is strong market demand. Currently, the 
MVP does not fully implement all of the functionality 

supported by the Cray API for Virtex-4 FPGAs.  
 
In subsequent sections, several different 

implementations that carry out a stable sort are described 
using Mitrion-C version 1.3, which is the latest version 
available for the Cray XD1. For each implementation, the 
observed speedup for various runs on a Cray XD1 node is 

reported. The next section briefly introduces the data 
types available in Mitrion-C [8][9][10]. 

speedup =
time running qsort() on SMP

time running FPGA
.
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2. Data Types 

A compiler is able to automatically infer types and bit-

widths. If the programmer has additional information that 
permits the bit-width to be reduced, then it is 
advantageous to specify the bit-width to reduce program 
complexity. In some cases it is necessary to specify the bit 
width, e.g., when shifting left. 

 

Mitrion-C replaces arrays in C by three different so-
called “collections:” lists, streams and vectors. Lists and 
streams are suitable for LISP programming (LISt 
Processing) whereas vectors suit parallel programming. 
The base type can be integer, floating point or Boolean.  

 
Unlike arrays in C, collections are immutable objects 

that cannot be modified once defined. Loops in Mitrion-C 
provide the chief tool to form new collections from 
existing ones of the same type. In particular, only lists and 
vectors (not streams) can be redefined using this tool. 
However, redefining is possible only if the size is 
unchanged since the length of lists and vectors is fixed. 

 

Although not considered a collection, a tuple is 
essentially a small sequence. Unlike collections, tuples 
may contain different types (and instance tokens). The 
base type in memory cannot be a collection or a tuple. 
Collections may contain tuples, provided each entry has 
the same sequence of types.  

 

The for and foreach expressions are loops over a 
collection. To run blocks of code in parallel, a 
programmer uses vectors in a foreach loop to 
automatically unroll the code, i.e., to make copies of the 
loop body. To implement pipelining in the context of a 
loop, a programmer writes a for loop over vectors. In 
practice, only small vectors may be used due to the 

limited availability of resources and the duplicate 
configuration for every iteration.  

 
A common technique is to reshape a list into a 

multidimensional list of vectors. It is then possible to 
iterate over the smaller vectors using a foreach inner 
loop. In this way, a programmer reduces the resource 

requirements and still achieves a degree of parallelism. 
This approach is relevant if the problem can be 
decomposed in a suitable way. Matrix multiplication is a 
good example that permits such decomposition. 

 
A list or a vector defined outside a loop, can be 

referenced in the body of the loop, which is not possible 

with streams. Lists and vectors (not streams) can also be 
built-up or taken apart via the concatenation (><), take 
(</) and drop (/<) operators. Although not documented, 
the operands should be one-dimensional, which is not 
checked by the compiler.  

3. Performing Sorts Concurrently 

 The speedup in sorting a single list of n elements is 

limited to O(log n). A way to improve performance is to 
perform many sorts at the same time. The number of sorts 
that can be performed concurrently depends both on the 
amount of resources required to perform a single sort and 
the amount of resources available on the FPGA. 

 

To take advantage of the architecture and minimize 
the time spent on I/O, a simple strategy is proposed. For 
each memory bank in parallel, iteratively read lists, sort 
them and write the resulting lists back at corresponding 
locations. For the Cray XD1 node with a Virtex-4 FPGA, 
this strategy leads to a fourfold improvement in 
performance (since there are four QRD IIs), provided 

sufficient resources are available. The external memories 
(QDR IIs) are dual ported, allowing simultaneous reads 
and writes.  

 
Another way to improve performance is to overlap I/O 

activity with useful work. I/O takes O(n) time to read a 
list of n elements. Although this time cannot be reduced, 

ideally the coprocessor is busy performing other useful 
work so that the cost of I/O is small. Pipelining is one 
way to overlap computations and I/O operations. Another 
strategy is to perform many non-pipelined sorts 
concurrently for each external memory bank. Both cases 
may be implemented using function calls. 

 

Consider many concurrent sorts using a slow 
algorithm. As sorting is a relatively slow process, many 
lists may be read and written while sorting takes place. 
The challenge is to write efficient Mitrion-C code that 
runs on the Cray XD1 and that reads or writes many lists 
using separate function calls without any memory access 
conflicts.  

 
A solution is to perform I/O operations in a round-

robin fashion and commence a sort as soon as a list is 
read.  Hence, many sorts are scheduled in a “circular 
pipeline” using function calls. A foreach “block 
expression” is suitable to implement such a circular 
queue. The programming challenge is to make function 

calls back to back. 
 

4. Parallel Bubblesort 

A parallel version of bubblesort is commonly known 
as “odd-even sort.” The name parallel bubblesort is 
preferred because it emphasizes the implicit parallelism. 
For convenience, define for any finite list, say  
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L = <a0, a1, …, ap, aq, …, an-1>, 

 
 

with L = n  elements, any pair of consecutive elements, 

say (ap, aq), is said to be even or odd if the position p of 
the first element of the pair is even or odd, respectively, 
e.g., (a0, a1) is an even pair while (a1, a2) is an odd pair. 
An algorithm is stated next.  

 
     Algorithm Parallel Bubblesort ( L ) 

 Input:     L    a list 
 Output:  J     indices for sorted list 
 Requirement: The length of L is even. 

1. Sort all even pairs in parallel. 
2. Sort all odd pairs in parallel. 

3. Repeat steps 1-2 sequentially exactly L

2

 

times. 

Example. Consider how parallel bubblesort works on the 

list 1,3,8,5,6,7,2,5. Label duplicates using subscripts so 
that ak indicates the element a appears for the k

th
 time in 

the original sequence. Comparisons of odd pairs are 
indicated using arrows after every “even” pass (step 1) in 
the next illustration. 

 
 
 
 
 
 
 
 
 
 
 
 

The algorithm requires L

2

 passes in case a maximum 

or minimum of a finite set of distinct elements appears 
furthest from its location after sorting. Such an extreme 
value necessarily must be moved after every comparison 
except for the last odd pair, which yields  

 
 

2
L

2
1

 

 
 

 

 
 +1= L 1

 

 
moves. This sorting algorithm is stable provided equal 

elements are never swapped. 

  
Which of the three types of collections is a suitable 

choice for implementation?  Actually the only choice is a 
vector. Neither lists nor streams permit iteration over 
more than one element at a time. Using multiple internal 
memory banks, it is possible to perform multiple memory 
accesses in parallel. Since it is not possible to create a 
collection whose base type is an instance token (which are 
memory references), it follows that considerable 

resources would be needed to manage many internal 
memory banks.  

 
How is the basic operation (sort pairs in parallel) 

efficiently implemented using vectors? Using indices is 
too costly. Lists may be partitioned into two vectors 
containing the even and odd elements. It is then possible 

to iterate over such pairs of vectors in a foreach loop to 
access all elements in parallel. 

 
The stages are different as there is one less 

comparison to carry out during the “odd” stage because 
the number of odd pairs is one less than the number of 
even pairs. The elements that are not used need to be 

dropped and later added back. The concatenation, take 
and drop operators are useful to manage these operations. 
Figure 1 shows a suitable Mitrion-C code fragment. 

 

Figure 1 Parallel Bubblesort in Mitrion-C 

 
 

This partitioning into evens and odds is easily done 
when a list is read from external memory. In particular, 
iterate over the list of indices in a foreach loop and then 
reformat the returned lists into vectors. Reading via 
iteration over a vector in a for loop surprisingly yields 
worst performance in the vast majority of test cases.  
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If the number of elements is odd, then use an if 
statement to assign a large value for the last odd element; 

otherwise, read elements from external memory. Such 
large values are not written at the end. Use the take 
operator (</) in a foreach loop to write all of the elements 
except the last even and odd elements. Then write the last 
even element. 

 
Consider the number of operations performed  on lists 

with eight elements using four memory banks. A total of 
28 comparisons are performed each iteration. Sixteen 
comparisons are performed in parallel during the “even” 
pass because there are four lists (one per external memory 
bank) and four pairs for which the position of the first 
element is even. Twelve comparisons are performed in 
parallel during the “odd” pass because there are four lists 

and three pairs for which the position of the first element 
is odd. 

 
Length 
of List 

Number 
of Lists 

Approximate 
Speedup vs. qsort() 

3 699048 12.0 

4 524288 13.2 

5 419428 16.4 

6 349524 17.1 

7 299592 18.9 

8 262144 19.8 

9 233016 21.5 

10 209712 21.2 

11 190648 22.6 

12 174760 22.8 

13 161316 23.9 

14 149796 24.2 

15 139808 24.9 

16 131072 24.6 

17 123360 25.4 

18 116508 26.2 

20 104856 25.9 

24 87380 27.3 

26 80656 28.4 

32 65536 29.1 

34 61680 29.8 

36 58252 30.2 

38 55188 30.3 

39 53772 30.3 

40 52428 30.0 

Table 2 Performance of Parallel Bubblesort 

The observed speedup for various runs on the Cray 
XD1 is shown in Table 2. If there are fewer than four 
elements, then there is at most one even or odd pair, 

which is a degenerate case. There are not sufficient 
resources to sort lists with more than forty elements using 
the same implementation. 

 

5. Mergesort 

Mergesort is a classical sorting algorithm that is 

typically regarded as a recursive algorithm. Such “top-
down” algorithms are suitable for sequential computers. 
Yet this algorithm may be viewed as a “bottom-up” 
algorithm with the number of merging phases being 
logarithmic in the length of the list. 
 

In sequential programming, the merging procedure 
terminates by copying the shorter of the two lists that 
remain (one of which is the partially merged list) as soon 
as one of the lists is emptied. In this way, the sequential 
time complexity of merging is minimized. Such 
processing is not relevant for FPGA programming for 
which more regular program flow is needed. 

 
A merge operation is linear in the length of the 

merged list, which is a consequence of the fact that an 
element is removed from one of the two lists after each 
comparison (there are only so many elements to remove). 
Hence, a for loop is suitable to implement each merge 
operation. 

 
There are different programming techniques to handle 

the case when one of the lists becomes empty. A sentinel 
can be used to handle the special cases. Storing the 
sentinel at the end of the list in memory using a brute 
force approach is costly. There are strategies to reduce 
such costs. Notwithstanding, tests using sentinels did not 

yield better performance. 
 
Another method involves counting the elements 

remaining in each sublist. When one of the lists becomes 
empty, copy the elements from the other list to the end of 
the merged list. Writing such code is slightly more 
complicated. Good performance has been observed using 

this approach.   
 
A common trick is to scan pairs of lists in opposite 

directions and iterate until the indices cross, instead of 
scanning in the same direction. Using this method, the 
special case when one of the lists becomes empty is 
avoided. To do so, reverse the right list and merge with 

the left list scanning from the “outside.” 

 
Example. Suppose the left list is 1,2 and the right list is 
3,4. Reverse the right list and concatenate to obtain the 
new list 1,2,4,3. Set the left index i = 0 and the right index 

j = 3. 
i j Merged List 

0 3       1  

1 3       12 

2 3       123 

2 2       1234 
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The alternating method, however, requires special 
handling to implement a stable algorithm. The reason is 

that when a list on the left is emptied and the right list 
contains duplicates, they are not in the original order. 
Additional steps are required to force the algorithm to be 
stable. The following invariant is proposed:  

The left list is sorted in nondecreasing order with 
duplicates in original order and the right list is sorted 
in nonincreasing order with duplicates in reverse of 
their original order.  

A stable merging algorithm based on this invariant is 
stated next. 
 

Algorithm Alternating Stable Mergesort ( L ) 

 Input:      L    a list 
 Output:   J     indices for sorted list 

 Requirement: L = 2
k
m, for some k and m. 

1. Merge lists of length m into lists of length 2m 

in alternating non-decreasing and 
nonincreasing orders. When comparing 
elements from a left and right list, choose the 
smaller element and in the case of equality, 
choose the element from the left list. If the 
right index has crossed into the left list, 
choose the leftmost element, which is the 

only choice by the invariant. If the left index 
has crossed into the right list, then choose the 
rightmost element by the invariant. 

2.  Double m and repeat step 2 as long as 

2m L . 

Example. Below is an illustration how mergesort operates 
on the list 1,3,5,8,6,7,2,5. Subscript k in ak indicates the 

element a appears for the k
th

 time in the original 
sequence.  

 

 
 
 
What data structure should be used to implement the 

mergesort algorithm? Collections are useful to iterate over 

elements. The mergesort algorithm does not prescribe 
such iteration as an element may or may not be removed 
during any iteration. A solution is to use the equivalent of 
an array in local memory so that elements can be accessed 
repeatedly. 

Viewing mergesort as a bottom-up tree, each merge 
operation at the same level can be performed sequentially. 

In this way, successive merges at different levels take the 
same amount of time. A pipelined solution is then easy to 
implement. 

 
In order to pipeline the stages of the mergesort 

algorithm, a separate internal memory bank is created for 
each stage. If these banks were only large enough to hold 

a single list, then there can be unacceptable delays in the 
pipeline. In order to allow a stage to operate continuously, 
larger banks are created so that different stages can use 
the same bank concurrently. To do so, the internal 
memory banks are treated as circular queues. 

   
A pipelined implementation of mergesort using 

function calls in a foreach loop yields good performance 
for intermediate size lists. Table 3 shows results from runs 
on the Cray XD1 using counters to carry out the merge 
operations. The observed speedup decreases as the lengths 
of the lists become smaller. 

 
Length 
of List 

Number of 
Lists 

Approximate 
Speedup vs. qsort() 

64 32768 16.2 

128 16384 18.5 

256 8192 20.0 

Table 3 Mergesort Performance 

 
A bottom-up approach offers a high degree of implicit 

parallelism. Each successive merge (row) can be executed 
in a pipeline. All pairs (in a row) can also be merged 
concurrently. However, the former type of parallelism is 
more efficient. Pipelining without concurrently merging 
pairs implies each merge operation requires 

approximately the same amount of work and time, which 
allows most of the configured hardware to remain 
operational most of the time.  

 
If each successive stage merged pairs concurrently, 

then later stages would take longer time; whence, a 
bottleneck would be created. Besides merging all pairs 

concurrently would quickly exhaust all resources. In 
particular, extra internal memory banks would be needed 
to perform all of the required concurrent reads and writes. 
Regardless, read and write operations must be carried out 
sequentially for both the original list and the results. 
Hence there is little to be gained by concurrent merging 
since the pipeline is only as fast as the slowest link in the 

chain. 

 
Is it practical to merge four lists instead of just two? 

Consider merging four sorted lists using an efficient for 
loop so that an element is removed during every iteration. 

To do so requires finding the minimum of four elements. 

1

1,3

3
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1
,8

5
1
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1

8
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1
,5
2
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6
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7
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Finding the minimum can be done using only three 
comparisons as demonstrated in Figure 2. 

 

 

Figure 2 Minimum of Four Sorted Lists 

Actually, it is unnecessary to perform all three 
comparisons every iteration. The reason is after 
discovering a minimum among the four lists, only one 

item is removed from one of the lists; whence the 
minimum of one pair of lists does not need to be 
recomputed. Therefore only two comparisons are needed 
per iteration: one to find the minimum from a pair of lists, 
and one to find the minimum of two pre-computed 
minimums.    

 

How does the complexity of 4-way merge compare to 
2-way merge? Suppose there exist four sorted lists, each 
having, say m, elements. Using 2-way merge, at most 2m-
1 comparisons are needed to merge each pair of lists since 
after each comparison one element is removed (from 2m 
elements). Up to 4m-1 comparisons are needed to 
combine the merged pairs, which yields a total of  

 

2 2m 1( ) + 4m 1= 8m 3  

 

comparisons. Using 4-way merge, two initial comparisons 
plus two additional comparisons per iteration for every 
removal, which yields 

 
  2 + 2 4m( ) = 8m + 2  

 
comparisons. 

 
Hence, 2-way and 4-way merge carry out nearly the 

same number of basic operations (comparisons).  
Figure 3 shows C code that implements 4-way 

merging. This code demonstrates that it is possible to 
avoid many array accesses, i.e., fewer reads are required, 
another advantage of 4-way merging.  

 
While reducing the number of I/O operations is in 

general advantageous, some I/O operations can be 
performed in parallel, which negates the advantage. More 
importantly, 4-way merge is disadvantageous in a pipeline 
since merges take twice as long. Notwithstanding, an 
optimized implementation that sorts lists of exactly four 
elements using 4-way merge yields speedup of 13.1 on a 
Virtex-4 FPGA compared to calling the C standard library 

function qsort() on an AMD processor. 

6. Counting Sort 

Counting sort finds the position of an element by 

counting the number of smaller elements. If all elements 
are distinct, then the position is exactly the number of 
elements smaller than e. For example, the minimum and 
maximum appear in the first and last positions. In the case 
of duplicates, count also those identical elements that 
appear earlier in the original list so that the algorithm is 

stable.  
 
The sequential time complexity of counting sort is 

comparable to selection sort. Selection sort works like 
bubblesort except the former does a single swap after 
each pass in which another element “bubbles” its way to 
its final position. Counting sort requires additional space 

to calculate positions. For this reason, counting sort is not 
used in practice. However, a Virtex-4 FPGA coprocessor 
offers greater resources and potential for speedup. 

 

 
 

 
 

Figure 3 C Code for 4-Way Merge 
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Algorithm Counting Sort ( L ) 
 Input:  L    a list 

 Output:  J    indices for sorted list 

1. In parallel for each position in the list L, 

sequentially count the total number of elements 

less than the element appearing at this position 

plus the number of identical elements appearing 

before this position in L. 

2. Return the sums. 

 
Example. Consider the list 1,3,8,5,6,7,2,5. Calculate the 
position of any element by scanning the list and counting 
all smaller elements as well as any duplicates that appear 

earlier in the list. The computed positions of 
corresponding elements are 0,2,7,3,5,6,1, and 4. 

 
 
 

Figure 4 Counting Sort Function 
 
 
The parallel part of this algorithm is implemented by 

iteration in a foreach loop over a vector. The sequential 
part is implemented by iteration over a list in a for loop. 

There is little advantage in using a vector to unroll this 
for loop, which wastes resources. Figure 4 displays a 
counting sort function in Mitrion-C, which is succinct. An 
implementation iteratively sorts lists with up to 50 
elements using a function call in a foreach loop. The 
main() function makes four calls, one per memory bank, 
to the function that carries out the iteration.  

 
Table 4 shows results of runs on the Cray XD1. The 

relatively low speedup in a couple cases (length = 13,14) 
indicates a weakness of the MVP in the current version 
1.3. 

 

Length 
of List 

Number 
of Lists 

Approximate 
Speedup vs. qsort() 

3 699048 12.0 

4 524288 13.2 

5 419428 16.3 

6 349524 17.0 

7 299592 18.8 

8 262144 19.9 

9 233016 21.5 

10 209712 21.3 

11 190648 22.6 

12 174760 22.9 

13 161316 12.4 

14 149796 12.6 

16 131072 24.8 

20 104856 26.0 

24 87380 27.2 

32 65536 29.1 

36 58252 30.3 

40 52428 30.0 

46 45588 30.7 

47 44620 31.4 

48 43688 31.3 

49 42796 31.7 

50 41940 32.0 

Table 4 Counting Sort 

Instead of computing the sums using a single for loop, 

consider breaking the list into two nearly equal halves and 
writing two for statements, which are executed in parallel, 
to compute the sum. There are sufficient resources to sort 
lists with up to 40 elements. This modification yields an 
appreciable improvement in performance in only those 
couple instances for which the previously observed 

speedup was surprisingly low as shown in Table 5. 
Performing additions faster is not effective. The time 
required to read n elements is about the same as the time 
needed to perform n additions sequentially. 

 
Because the lists are partitioned into two parts, it is 

natural to write a loop in which two reads are executed 
per iteration. Hence, the number of iterations is balanced 
for performing reads and computing sums.  Yet, Table 5 
shows that this strategy does not yield performance 
improvement in many cases. If the length is odd, then 
there are not sufficient resources to perform two read 
operations per iteration plus an extra read for lists with 

more than twenty elements (using the same techniques). 
In such cases, it is efficient to perform a single read per 
iteration and then partition using the take and drop 
operators. 

 
For small lists, there are enough resources to use a 

vector instead of a list and compute the terms in a foreach 

expression (instead of computing the sum in a for loop). 
It is then possible to compute the sum of the terms in 
parallel (inside the outer foreach expression) using a 
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binary tree as a model. An example of Mitrion-C code is 
given in Figure 5 for lists with eleven elements. There are 
sufficient resources to sort lists with up to 14 elements. 

 
Length 
of List 

Number 
of Lists 

Approximate 
Speedup vs. qsort() 

3 699048 12.1 

4 524288 13.1 

5 419428 16.4 

6 349524 17.0 

7 299592 18.9 

8 262144 19.8 

10 209712 21.2 

11 190648 22.6 

12 174760 22.8 

13 161316 23.9 

14 149796 24.3 

16 131072 24.7 

19 110376 26.0 

21 99864 26.8 

24 87380 27.2 

32 65536 29.1 

36 58252 30.2 

39 53772 30.3 

40 52428 30.1 

Table 5 Counting Sort - Two Summations 
 
 
  
 

 
Figure 5 Counting Sort – Sums in Parallel 

 
 
Testing yielded appreciable speedup only in the 

exceptional cases noted earlier. Table 6 shows results 

from various runs on the Cray XD1. There is little to be 
gained in speedup as the lists become small because there 
are few operators that can be applied in parallel and there 
are I/O limitations as well. 

Length 
of List 

Number 
of Lists 

Approximate 
Speedup vs. qsort() 

3 699048 12.1 

4 524288 13.2 

5 419428 16.4 

6 349524 16.9 

7 299592 19.0 

8 262144 19.8 

9 233016 21.4 

10 209712 21.2 

11 190648 22.6 

12 174760 22.9 

13 161316 23.8 

14 149796 24.2 

Table 6 Counting Sort – Sums in Parallel 

 
 

In this case, a binary tree is a model that bears little 
fruit. Instead of trying to perform additions in parallel, 
consider pipelining the summation by unrolling the for 

loop. This optimization can only be carried out for small 
lists. Table 7 displays results from runs on the Cray XD1. 
Again the speedup is not appreciable except in a couple 
instances. 

 
 

Length 
of List 

Number 
of Lists 

Approximate 
Speedup vs. qsort() 

3 699048 12.0 

4 524288 13.2 

5 419428 16.4 

6 349524 17.0 

7 299592 18.8 

8 262144 19.8 

9 233016 21.5 

10 209712 21.3 

11 190648 22.6 

12 174760 23.0 

13 161316 23.9 

14 149796 24.2 

Table 7  Counting Sort – Unrolled Loop 

7. Sorting Long Lists 

Is it possible to achieve significant speedup for long 
lists? A common technique to manage larger problems is 
to decompose them into smaller ones. The programming 

challenge is to find the right match between the different 
stages to avoid bottlenecks. 

 
Counting sort can be applied to large lists. Instead of 

computing positions for every element in parallel, a 
programmer arranges to compute them in parallel only for 
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all elements in a “segment.” Thus the list is divided into 
contiguous segments. 

 

 

Figure 6 Counting Sort for Long Lists 

Figure 6 shows a fragment of Mitrion-C code that 
performs a sort after partitioning a list into K segments of 
length M using reshape(). Vectors are then iteratively 

created from the segments using reformat(). An 
implementation partitions lists into segments with M=32 
elements. Table 8 shows results of runs on the Cray XD1. 
There are sufficient resources for intermediate size lists to 
divide the lists into segments and calculate the sums for 
each segment. Table 8 shows results using a single 
summation, except for lists with 64 elements for which 

four sums are computed in parallel. Since only M sums 
(instead of M K sums) are computed in parallel, 

performance is relatively low in all cases. 
 

 
Length 
of List 

Number of 
Lists 

Approximate 
Speedup vs. qsort() 

64 32768 8.3 

128 16384 9.5 

512 4096 2.8 

768 2728 2.0 

1024 2048 1.5 

Table 8 Counting Sort for Long Lists 

Parallel bubblesort and mergesort do not belong to the 
same sequential time complexity class. Parallel bubblesort 

takes L( )  time to sort a list L since there are 
1

2
L  

alternating stages that take a constant amount of time. 

Although mergesort performs a total of L log L( )  

operations, a single stage of the algorithm takes only 

L( )  sequential time. Thus, parallel bubblesort and 

any stage of a pipelined mergesort algorithm do belong to 
the same complexity class.  

 

These algorithms can be combined via pipelining. A 
programmer partitions each list into segments of equal 
length, and creates a pipeline via function calls. The first 
stage iteratively applies the parallel bubblesort algorithm 
to sort each segment. Each subsequent stage is an 
application of the mergesort algorithm to merge all of the 
segments.  

 
By experimentation, a programmer finds a suitable 

length for each segment to achieve good performance. An 
implementation uses four and eight elements in the 
segments for lists with 64 and 128 elements, respectively, 
and uses the alternating mergesort algorithm. Table 9 
shows results of runs on the Cray XD1. 

 
Length 
of List 

Number of 
Lists 

Approximate 
Speedup vs. qsort() 

64 32768 9.9 

128 16384 12.5 

Table 9  Parallel Bubblesort and Mergesort 

The counting sort and mergesort algorithms yield the 
best performance on small and long lists, respectively. An 
implementation combines the counting sort algorithm and 
mergesort algorithms. The first stage sorts sublists with 
16 and 32 elements to sort lists with 64 and 128 elements, 

respectively. Table 10 shows results of runs on the Cray 
XD1. 

 
Length 
of List 

Number of 
Lists 

Approximate 
Speedup vs. qsort() 

64 32768 11.0 

128 16384 12.6 

Table 10 Counting Sort and Mergesort 

8. Conclusion 

Substantial speedup has been observed compared to 

calling the Standard C Library function qsort() on an 

AMD processor. Table 11 displays a summary of 

observed speedups for different sizes of lists. These 
speedups were achieved by exploiting the architecture of 
a Xilinx Virtex-4 FPGA, and by taking full advantage of 
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Mitrion-C. The task performed on an FPGA coprocessor 
is to perform many stable sorts and to return the locations 
of sorted keys for further processing by an SMP. The case 
studies address difficult issues such as I/O.  

 
Several implementations have been described in 

detail. Various programming techniques and algorithms 
suitable for implementation on an FPGA, including novel 
combinations of algorithms, have been studied to 
investigate which programming choices lead to the best 
performance. This work shows that counting sort, parallel 

bubblesort and mergesort are especially well suited to 
FPGA implementation. 2-way selection sort performs 
well for lists with four elements. 

 
Length 
of List Algorithm 

Approximate 
Speedup vs. qsort() 

3 Counting Sort 12.1 

4 2-Way Selection Sort 13.8 

5 Counting Sort 16.4 

6 Parallel Bubble Sort 17.1 

7 Counting Sort 18.9 

8 Counting Sort 19.9 

9 Counting Sort 21.5 

10 Counting Sort 21.3 

11 Counting Sort 22.6 

12 Counting Sort 22.9 

13 Pipelined Counting Sort 24.0 

14 Pipelined Counting Sort 24.4 

16 Counting Sort 24.8 

20 Counting Sort 26.0 

21 Counting Sort 26.8 

24 Pipelined Counting Sort 27.3 

32 Counting Sort 29.1 

36 Counting Sort 30.3 

39 Counting Sort 30.3 

40 Counting Sort 30.1 

46 Counting Sort 30.7 

47 Counting Sort 31.4 

48 Counting Sort 31.3 

49 Counting Sort 31.7 

50 Counting Sort 32.0 

64 Mergesort 16.2 

128 Mergesort 18.5 

256 Mergesort 20.0 

Table 11 Summary of Speedups Observed 

Future work will focus on incorporating described 
implementations in real-world applications and 

investigating other types of problems that can be solved 
on FPGAs to speedup applications. In particular, more 
significant performance gains might be achieved by 
having an FPGA perform computations on the data before 
sorting. As FPGA technology advances and especially as 
new versions of the tools are released, it will become 
possible to accelerate applications in an increasing 

number of ways. 
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