
Parallel 3D-FFTs for multi-core nodes on a mesh communication

network.

Joachim Hein1,2, Heike Jagode3,4, Ulrich Sigrist2, Alan Simpson1,2, Arthur Trew1,2

1HPCX Consortium
2EPCC, The University of Edinburgh, James Clerk Maxwell Building,

Mayfield Road, Edinburgh, EH9 3JZ, UK
3The University of Tennessee in Knoxville
4Oak Ridge National Laboratory (ORNL)

Abstract

Parallel fast Fourier transformations are important for many scientific applications and are difficult to
parallelise efficiently on large numbers of processors due to the all-to-all nature of the communications.
We will discuss how the topology of a mesh communication network can affect the communication
performance and explore how nodes offering several processing cores can be exploited to improve the
communication performance. We present benchmarking results from the UK’s national supercomputing
services HECToR (Cray XT4 with dual core Opterons) and HPCx (IBM p575 cluster with 16-way SMP
nodes and HPS interconnect) as well as the University of Edinburgh’s IBM BlueGene/L.

1 Introduction

Fast Fourier transformations (FFT) are an important computational kernel used in many scientific appli-
cations. FFTs are unfortunately very hard to parallelise efficiently on large numbers of processors. Since
individual FFTs can only be parallelised with reasonable efficiency on a small number of processors [1],
arrays of dimension D are typically transformed by employing a virtual processor grid of dimension D−1 or
smaller. Using a processor grid in more than one dimension requires All-to-All type communications within
subgroups.

To keep the number of communication operations small, a one dimensional processor grid is typically
best, since a single global All-to-All communication is all that is required. However this seriously limits
the total number of processors which can be employed to the second largest array extent. It has been
demonstrated that on a modern HPC architecture, modest sized arrays in three dimensions can be efficiently
transformed on a thousand processors using a two dimensional processor grid [3, 4, 5], without the costs of
the communication part becoming excessive.

Today’s modern HPC architectures typically feature inhomogeneous communication networks, in the
sense that individual processing cores can communicate more efficiently with some processing cores than
they can do with others. Examples include hierarchical switches, meshed communication networks, SMP
nodes and multicore chips. Many modern machines combine several of these features. In this report we
investigate the performance impact of the mapping of a two dimensional virtual processor grid onto the
physical machine when used to parallelise an FFT in three dimensions. The performance impact of the
meshed network of the University of Edinburgh’s IBM BlueGene/L server has been investigated in [5, 6],
while [7] studied the effects of the network of the UK’s national service HPCx, which is based on 16-way
SMP nodes. This report will mostly focus on the UK’s latest national service HECToR, based on Cray XT4

CUG 2008 Proceedings 1 of 15



hardware. The article by F. Reid et al, gives and overview over the performance of a number of scientific
applications on HECToR [8].

2 Computer systems

We start with a short description of the key features, most relevant for this study, of the three super computer
systems used for this report.

2.1 HPCx

The HPCx system, one of two UK national supercomputer services, offers 160 IBM eServer p575 computing
nodes. These are connected with a communication network, based on IBM’s High Performance Switch
(HPS), also known as Federation. The entire system offers 2560 processors and delivers a theoretical peak
performance of 15.4 Tflops/s and a sustained performance of 12.9 Tflops/s on Linpack. Each eServer p575
node has 16 IBM Power5 processors with a clock frequency of 1.5 GHz. The nodes have 32 GB of main
memory installed, shared between their 16 processors.

The nodes on HPCx are connected with a switch network using IBM’s HPS. To improve the bandwidth
of the network, HPCx features two independent planes, which are essentially two independent networks.
Each node can use either plane to communicate with any other node of the machine.

2.2 HECToR

HECToR is the latest national supercomputer service in the UK. The system is based on Cray XT4 hardware,
utilising 5664 dual core Opteron processors, with a clock frequency of 2.8 GHz. HECToR offers a theoretical
peak performance of 63.4 Tflops/s and a sustained performance of 54.6 Tflop/s on Linpack. The processors
are arranged on a meshed network of dimension 20 × 12 × 24, which offers toroidal connections in the two
longest dimensions only. The network is based on Cray’s SeaStar technology offering a hardware link speed
of 7.6 GB/s [9], which translates into a bi-sectional bandwidth of about 3.6 TB/s. The machine is operated
under UNICOS/LC and offers SMP capability within a dual core node. Using the standard systems software,
the user is only offered minimal control over the placement of the tasks on the machine. The environment
variable MPICH_RANK_REORDER_METHOD allows the user to control how the tasks are grouped into pairs of
two, which are then mapped onto the same dual core node.

2.3 BlueSky

The University of Edinburgh’s BlueSky system is based on IBM BlueGene/L technology. The system offers
1024 IBM PowerPC 440 dual core processors, with a clock frequency of 700 MHz. The peak performance of
the system is 5.7 Tflop/s and the sustained Linpack performance is 4.7 Tflop/s. The processors are arranged
on a torus network of dimension 8× 8× 16, which can be subdivided into two tori of dimension 8× 8× 8 or
even smaller partitions with open meshes. An individual partition can not be shared between several users.
The meshed communication network offers a hardware link speed of 175 MB/s. Taking all overheads into
account, a bandwidth of 148 MB/s is available to the application [10, 11]. This gives 18.5 GB/s for the
bi-sectional bandwidth of the 512 and 1024 node partitions. In contrast to the Cray XT architecture, the
BlueGene/L offers the user full control over how the tasks are placed onto the mesh network.

3 All-to-all performance

3.1 Insertion bandwidth

As we will explain in the next section, in a typical implementation the performance of a parallel FFT
is directly linked to the performance of all-to-all type communications. We begin with a study of the

CUG 2008 Proceedings 2 of 15



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Message size [bytes]

0.1

1

10

100

1000

In
se

rt
io

n 
B

an
dw

id
th

 p
er

 ta
sk

 [M
B

/s
]

2 tasks, 1 node
4 tasks
8 tasks
16 tasks
32 tasks
64 tasks
128 tasks
256 tasks
512 tasks
1024 tasks
2048 tasks
4096 tasks
8192 tasks
2 pairs Ping−Ping

Figure 1: Performance of the all-to-all communication on the HECToR system

MPI_Alltoall call, using version 3.0 of the Intel MPI benchmarks (formerly known as Pallas MPI bench-
marks) [12].

In Figure 1 we display the results for a large number of different task counts and a wide range of message
sizes. All results are for two active tasks per node. In the figure we report the insertion bandwidth It per
task, under the assumption that the data to stay on the processor does not get inserted into the network

It =
m(n − 1)

tav
. (1)

Here n denotes the number of tasks, m the message size and tav the average time as reported by the
benchmark code. The results reported are the best out of number of runs, most of them performed when
the machine was draining prior to maintenance but was still scheduling short jobs, which definitely reduced
interference by other users jobs. We see three different regimes. For messages below 1 kB of data, we see
the performance improving for increasing task count, while for messages above 1 kB of data the performance
decreases with increasing task count. The third regime starts at a message size of 128 kB. For message of
128 kB and larger, the plateau values are slightly larger than they are below 128 kB. We also took data with
a single task per node. The step is at 128 kB is even more pronounced for one task per node.

When using two tasks, both tasks are placed on the same node and intra-node communication can be
used instead of network communication. The measurements for two tasks show an almost linear performance
rise up to a message size of about 16 kB. For larger messages the bandwidth saturates. The performance
advantage over utilising four task, which is the smallest measurement, that has to utilise the network, is
small.

For a comparison, we also include the bandwidth measured for a multi Ping-Ping benchmark. For this
we choose two dual core nodes, and placed two pairs on them. Per pair one partner is located on each node.
The insertion bandwidth measured with the multi Ping-Ping is again comparable to the result for the four
task all-to-all call.

3.2 Bi-sectional bandwidth

We tried to understand why, for messages of 8 kB and larger, the insertion bandwidth of the all-to-all
communication drops so dramatically with increasing task count. A potential bottleneck for the performance

CUG 2008 Proceedings 3 of 15



Bi-section Insertion point

Link speed: Datasheet value 7.6 GB/s 6.4 GB/s
Link speed: Ping-Ping 2 tasks/node 1.4 GB/s 1.4 GB/s
Link speed: Ping-Ping 1 tasks/node 1.4 GB/s 1.4 GB/s
Number of links: 20 × 24 4096
theoretical bandwidth from datasheet: 3.6 TB/s 25.6 TB/s
scaled bandwidth from Ping-Ping, 2 t/n: 0.66 TB/s 5.6 TB/s
scaled bandwidth from Ping-Ping, 1 t/n: 0.66 TB/s 5.6 TB/s
bandwidth from alltoall, 2 task per node: 0.13 TB/s 0.51 TB/s
bandwidth from all-to-all, 1 task per node: 0.21 TB/s 0.85 TB/s

Table 1: Comparing the bi-sectional bandwidth and the total insertion bandwidth of the HECToR system.

of the all-to-all communication is the bi-sectional bandwidth.
If the processors of (a partition of) a parallel computer are divided into two groups of equal size, the

bi-sectional bandwidth denotes the total bandwidth available to transfer data from one half into the other.
When considering an all-to-all communication, half of the data is on one side of the bi-section, the other half
on the other side. During the communication, each side has to transfer half of its data, which is a quarter
of the total, onto the other side. Hence communications can not finish faster than

tav ≥
DT

4B
=

mn2

4B
(2)

DT denotes the total amount of data, B the bi-sectional bandwidth, tav the average time for the commu-
nication, m the message size and n the task count. Eq. (2) can be used to define an effective bi-sectional
bandwidth Beff from the measured all-to-all times

Beff =
DT

4tav
(3)

On a parallel machine with a meshed communication network, such as the Cray XT4 architecture, the bi-
sectional bandwidth is the bandwidth of an individual link, multiplied with the number of links cut by the
bi-section. It is interesting to compare the performance results for the all-to-all with the Cray datasheet
values and Ping-Ping results for the bandwidth of the network link and the insertion bandwidth when using
2 nodes. We use the performance results obtained on 4096 nodes using one or two tasks per node. 4096 nodes
is the largest partition HECToR users can routinely get access to, and equates to 73 % of the machine. The
comparison is shown in Tab. 1.

The results show that significantly higher bandwidth results can be realised when using only 1 task per
node. However the bandwidth utilisation is substantially smaller than that from the Ping-Ping test scaled
with the relevant number of links. It is more than an order of magnitude smaller compared to what the Cray
datasheet appears to be promising.

3.3 Comparison between different machines

Having analysed the all-to-all performance on HECToR, it is very interesting to investigate how this compares
to the other machines. In Figure 2 we compare the effective bi-sectional bandwidth of HECToR to HPCx
and the BlueGene/L system, for 1024 tasks on fully populated nodes. On each machine a few repeat runs
have been performed. For each of the machines, we choose the run which gave the best result. We note that
in particular the HPCx runs are extremely noisy for message sizes up to about 128 bytes. Below 16 bytes,
which is typically not of interest for parallel FFTs, poor runs displayed a performance decay of a factor of
about four. Neither of the other systems showed fluctuations on this scale. For messages of 2 kB and larger
the fluctuations displayed by HPCx are similar to the other systems.

CUG 2008 Proceedings 4 of 15



1 10 100 1000 10000 1e+05 1e+06
size of individual message [byte]

0.1

1

10

ef
fe

ct
iv

e 
bi

−
se

ct
io

na
l b

an
dw

id
th

 [G
B

/s
]

HECToR (2task/node)
HPCx (16 tasks/node)
BlueGene/L (2tasks/node)

Figure 2: Comparison of the all2all performance using 1024 tasks on fully populated nodes

Ignoring these fluctuations for small messages, HECToR and HPCx show similar performance. Starting
from about 64 byte to 2048 byte, the BlueGene/L system shows the best performance. For large messages,
HECToR shows the best performance, despite the system not living up to its potential as discussed above.
The best result for the effective bi-sectional bandwidth on HECToR is 27.5 GB/s, while on HPCx we observe
up to 21.3 GB/s and on the BG/L we see 18.1 GB/s. Considering the discussion of subsection 3.2, we would
like to emphasise how close the BlueGene/L operates to its specification of 18.5 GB/s.

4 Parallel FFT algorithms using multidimensional processor grids

We start this section with a short overview on parallel fast Fourier transformations using multi dimensional
processor grids.

4.1 Basic algorithm

To explain the algorithm, we focus on transformations of arrays in three dimensions. The Fourier transfor-
mation X̃ of an array X in three dimensions is defined as

X̃(kx, ky, kz) :=

Nx−1
∑

x=0





Ny−1
∑

y=0

(

Nz−1
∑

z=0

X(x, y, z) exp
(

2πi

Nz

kzz
)

)

exp
(

2πi

Ny

kyy
)



 exp
(

2πi

Nx

kxx
)

(4)

When interested in a numerical solution, each of the three sums in eq. (4) is typically evaluated by using
the fast Fourier transform algorithm (FFT) in one dimension. Unless Nx, Ny and Nz are very large it is
presently not efficient to distribute an FFT in one dimension onto more than one processor and even for large
N -values it is not possible to employ very many processors [1]. On a parallel machine offering thousands of
processors, we are interested in utilising hundreds or thousands of processors for a single multidimensional
FFT.

To achieve a decent parallel speedup of the 3D FFT, the array X(x, y, z) is best distributed onto a one
or two dimensional processor grid, leaving at least one dimension of the array local to the processor. This

CUG 2008 Proceedings 5 of 15



allows the first one or two sets of FFTs to be evaluated locally without any communication. Before further
FFTs in the originally distributed directions can be evaluated, the processor grid needs to be rearranged.
When using a one dimensional processor grid, this can be accomplished in a single All-to-All communication
over the entire processor grid. When using a two dimensional processor grid, two groups of All-to-All type
communications are required. Assuming the data array is already distributed onto the two dimensional
processor grid of dimension nc × nr, with the z-direction being local to the processors, the basic algorithm
looks as follows:

• Each task performs the 1-dimensional FFTs in the z-direction on its data.

• Perform an all-to-all communication within each of the rows of the processor grid, to get the y-direction
processor local. These nr all-to-all communications are performed simultaneously, each in a disjoint
communicator.

• Each task performs the 1-dimensional FFTs in the y-direction on its data.

• Perform an all-to-all communication within each of the columns of the processor grid, to get the x-
direction processor local. These nc all-to-all communications are performed simultaneously, each in a
disjoint communicator.

• Each task performs the 1-dimensional FFTs in the x-direction on its data.

Please see [2, 3, 5, 7] for a more detailed description of the algorithm. Due to the second communication
step, this is typically slower than using a one dimensional processor grid, when using the same number of
processors [2, 5]. However the second processor grid dimension allows for more processors to be utilised than
a simple one dimensional processors grid.

For our investigations we use two benchmark suites, written in C, which use version 2.1.5 of FFTW
[13]. The communication is performed by calling MPI_Alltoall of the relevant MPI library. Both bench-
marks utilise explicit buffer packing in the application space instead of MPI derived data types. We use
MPI_Cart_create and MPI_Cart_sub to generate the processor grid and split communicators.

The key aim of this report is to investigate whether the performance of this algorithm on HECToR can be
improved by changing the processor grid and whether the placement with respect to the dual cores matters.

4.2 Basic Performance

To obtain an overview on the basic performance of the benchmark on HECToR, we used a processor grid as
suggested by MPI_Dims_create and investigated over a range starting from 2 tasks up to 8192 tasks, when
using two tasks per node. We used symmetric problem sizes in a range from 163 to 5123. See Figure 3 for
the results.

Starting from a task count of two, we see an initial performance improvement when increasing the task
count. For most problem sizes, there is an intermediate point, when the benchmark ceases to go faster when
increasing the task count. Interestingly, when increasing the task count further, the benchmark speeds up
again. Studying the message sizes, it turns out that this intermediate point of poor performance occurs when
messages of 1 kB are sent. This is the point in Figure 1 where the performance is essentially independent
from the task count.

5 Task placement, processor grid dimensions and performance

In this section we will look into the scope for performance improvement by changing the processor grid and
changing the placement of the tasks with respect to the dual core processors.

CUG 2008 Proceedings 6 of 15



1 10 100 1000 10000
Tasks

1e−05

0.0001

0.001

0.01

0.1

1

10

T
im

e 
fo

r 
F

F
T

 [s
ec

]

512^3
256^3
128^3
64^3
32^3
16^3

Figure 3: Basic performance of the parallel FFT algorithm on the HECToR system. Full symbols give the time
spend in the entire algorithm (communication, buffer copies and communication), while open symbols represent the
time spend in communication only.

5.1 Processor grids and dual core nodes on HECToR

For two of the task counts, 256 tasks and 4096 tasks, we looked in detail how the performance for different
problem sizes is affected when the processor grid is changed, and the effect of placing two task from different
communication groups on a single dual core node.

The communication results, again corrected for the fact that data for the same processor doesn’t need to
be inserted into the network, are shown in Figure 4 for 256 task and Figure 5 for 4096 tasks. Each test of
benchmark runs the problem repeatedly and averages the results over these repeats. Depending on problem
size, the benchmark varies the number of repeats, from sixteen for 643 to two for 5123. For each problem size
and MPICH_RANK_REORDER_METHOD value, we perform at least five tests. The results on the graphs are from
the test which offered the shortest time for the entire FFT. Typically these results were in good agreement
with the averages over the repeat runs, with the exception of the results for 1283 on 256 tasks. For this test
we show the results from the fastest FFT and the averages. The latter are shown by the small symbols in
Figure 4. For the 256 tasks run, there is a significant effect of the MPICH_RANK_REORDER_METHOD and hence
we show both results. For 4096 tasks these difference was insignificant and hence to make the figure less
busy, we only give the results for MPICH_RANK_REORDER_METHOD=0. Both figures show the results for the
first communication only, since the results and findings from the second communication are very similar.
The figures also include a subset of the results from Figure 1 to allow an easy comparison.

For 256 processors, we varied the processor grid from 2× 128 to 128× 2 and for 4096 processors, the grid
was varied from 8 × 512 to 512 × 8. Obviously, for the small problem sizes, the end-points of this variation
could not be reached. The processor grid variation gives a corresponding change in message size. Messages
become larger if the grid is smaller in this direction. In the figures the individual measurements are plotted
against their message size.

When considering the first all-to-all communication, for MPICH_RANK_REORDER_METHOD=0 two tasks from
the same communication group are placed on each dual core node. For MPICH_RANK_REORDER_METHOD=1
two tasks from different communication groups are placed on a node, again with respect to the first commu-
nication call. For the second all-to-all the roles are reversed.

One observes the performance in terms of insertion bandwidth per task for groups of all-to-all, as used in

CUG 2008 Proceedings 7 of 15



10
2

10
3

10
4

10
5

10
6

10
7

Message size [bytes]

10

100

1000

In
se

rt
io

n 
B

an
dw

id
th

 p
er

 ta
sk

 [M
B

/s
]

4 tasks
32 tasks
256 tasks
4096 tasks
1st comm 64^3 (Reorder 0)
1st comm 64^3 (Reorder 1)
1st comm 128^3 (Reorder 0)
1st comm 128^3 (Reorder 1)
1st comm 256^3 (Reorder 0)
1st comm 256^3 (Reorder 1)
1st comm 512^3 (Reorder 0)
1st comm 512^3 (Reorder 1) 

Figure 4: Comparing the performance of the individual all-to-all communications for a FFT algorithm using 256
tasks. Closed diamonds use MPICH RANK REORDER METHOD = 0 while open diamonds use MPICH RANK REORDER METHOD

= 1. The circles repeat a subset of the results from Figure 1. For the 1283 problem there is a significant qualitative
difference between the minimum times and the average over all the trials: the average results are shown by smaller
symbols of the same colour and type as the corresponding results from the minimum times.

the FFT algorithm, to be very similar to the performance of a global all-to-all. In particular the behaviour
for 1 kB sized messages seems almost “universal” in the sense that the task count, the number of all-to-all
communication operations running concurrently on neighbouring processors, or even the other core of the
same processor, has very little influence on the performance, which is always around 40 MB/s. Again for
messages up to 256 byte we see a marked performance improvement over the straight line of a global four
processor all-to-all. However the most interesting behaviour is seen for messages of 8 kB, and larger for the 256
task run. For each problem size, the data point corresponding to the larges message size utilises only two task.
Here we see a strong dependence on the MPICH_RANK_REORDER_METHOD. For MPICH_RANK_REORDER_METHOD=0
we have two tasks of a single all-to-all on one node. The data for the second task of the node is not required
to be inserted into the network, but even if the MPI-library is not multi-core aware and does insert this data
into the network, the data does not need to travel far and will not cause severe congestion inside the network.
If the number of nodes involved in an individual all-to-all is small, this significantly reduces the amount of
data inside the network. When using 4096 tasks the data point corresponding to the larges messages size still
involve eight tasks. For eight tasks the scope for reduced congestion due to data staying local is not very large.
It is not surprising that there is no significant dependence on the value of MPICH_RANK_REORDER_METHOD.

When using MPICH_RANK_REORDER_METHOD=1, at least for the two largest problems investigated for 256
tasks, the observed performance with respect to data inserted into the network is comparable between the
FFTs in groups and a global FFT using 256 tasks. The better performance realised for a global all-to-all
communication with a smaller processor count is not obtained when running several all-to-all communications
concurrently.

Overall, the insertion performance for a given message size when using groups of all-to-all transforma-
tions is very similar to the performance observed for a single all-to-all. Throughout this investigation we
did not observe a performance level outside the range marked by the performance of the global all-to-all
transformation.

CUG 2008 Proceedings 8 of 15



10
1

10
2

10
3

10
4

10
5

Message size [bytes]

10

100

1000

In
se

rt
io

n 
B

an
dw

id
th

 p
er

 ta
sk

 [M
B

/s
]

4 tasks
32 tasks
256 tasks
4096 tasks
1st comm 512^3 (Reorder 0)
1st comm 256^3 (Reorder 0)
1st comm 128^3 (Reorder 0)

Figure 5: Comparing the performance of the individual all-to-all communications for a FFT algorithm using 4096
tasks. Closed diamonds use MPICH RANK REORDER METHOD = 0. The circles repeat a subset of the results from Figure 1.

5.2 Communication times

For the results presented in the figures 4 and 5 we have assumed that data remaining on the task does
not get inserted into the network. While this is a good metric in the quest to understand the performance
results, it is not the best metric if one is interested in the time taken for the communication to finish. For
small communicators, that is a small number of tasks working on a row or a column of the virtual processor
grid, the “non-insertion” of data to stay local reduces the amount of data travelling in the network, leading
to additional advantages with respect to a time metric. The discussion of the previous subsection does not
show that clearly enough. For this reason we would like to discuss the timings for the two of the cases, which
we investigated.

Both cases use 256 tasks for the parallel FFT. The first case is for the 1283 sized problem, while the
second case is for the 5123 sized problem. Figure 6 displays the results against the processor grid. The figures
show the time for the first and the second communication phase, the total communication time (which is the
sum of these) and the total time of the algorithm. All results are give for both rank reorderings, showing
the effect of the intra-node communication.

One notices the individual communications are fastest when there are only a few processors assigned
to the communication group. However the two discussed cases have different reasons, which then lead to
opposite conclusions with respect to what is best. For the smaller problem, we operate in the regime where
the available bandwidth is highly dependent on message size. Increasing either communicator occurs a
substantial bandwidth penalty, which can not be compensated for by the other communication phase being
faster. The clear result in this case is that, it is best to use a decomposition as symmetric as possible, which
is 16 × 16 for 256 tasks.

For the larger problem (5123) the situation is different. The message sizes are in the range where the
performance is essentially independent of the message size. Hence using more tasks for either the rows or
columns of the virtual processor grid does not incur a significant bandwidth penalty. On the other hand,
reducing the size of either communication group leads to increasingly larger amounts of data staying on the
task. This reduces the data inserted into the network and hence the time required for the communication.
We get a situation when we can gain an advantage on one of the communications by reducing its task
count without penalising the other group due to the necessary increase of its communicator. We see best

CUG 2008 Proceedings 9 of 15



2x128 4x64 8x32 16x16 32x8 64x4 128x2
Processor grid

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

T
im

e 
[s

ec
]

Total time, Reorder=0
Total comm, Reorder=0
1st comm, Reorder=0
2nd comm, Reorder=0
Total time, Reorder=1
Total comm, Reorder=1
1st comm, Reorder=1
2nd comm, Reorder=1

2x128 4x64 8x32 16x16 32x8 64x4 128x2
Processor grid

0

0.05

0.1

0.15

0.2

0.25

0.3

T
im

e 
[s

ec
]

Figure 6: Timings for the parallel FFT algorithm when using 256 tasks for a 1283 sized problem (left hand side)
and a 5123 size problem (right hand side). Full symbols show timings for MPICH RANK REORDER METHOD=0, while open
symbols represent MPICH RANK REORDER METHOD=1.

performance when the grid is chosen as unbalanced as possible.
For the larger 5123 sized problem we see clear effects from internode communication. Whenever both cores

of a node are taking part in the same communication group, this gives better performance than assigning
them to different communication groups. However these effects are small. Overall there appears to be a
small advantage to have both cores of a processor within the smaller communication group.

5.3 Using fat SMP nodes on HPCx

The present HECToR system offers dual core nodes, offering faster intra node communication between only
two tasks. With the present trend to larger core counts per processor, future systems will allow for larger
task counts per processors. To illustrate the effects one might see on a system utilising quad-core or even
octo-core nodes, we re-analyse the results from [7]. In this reference the effect of different virtual processor
grids on the performance of the parallel FFT has been studied on the HPCx system, which is a cluster using
16-way SMP nodes.

In Figure 7 we show the results for a 256 processor run. Unfortunately, for these tests the results proved
to be noisy. This could have a large number of causes, including disturbance by other users’ jobs, since the
measurements have been conducted during normal user operation. The graphs give results for the minimum
observed times and the averages over all measurements.

On HPCx we placed our tasks as follows: Starting with the first row, the tasks have been placed onto the
first 16-way SMP node. If there were fewer than 16 tasks per row, we continued with placing the second row
onto the first node and so on until this node was full. If there were more than 16 tasks per row, we placed
the first 16 task of the row on the first node and the next 16 on the second node and so on until the entire
first row has been placed. This way, intra-node communication is always part of the row communications.
The communications within the columns of the virtual processor grid always contains communication via
the switch network.

On HPCx we notice a very substantial performance difference between intra- and inter-node communica-
tion, marked by the difference between the blue and the green curves of the figure for up to 16 tasks per grid
row. It is interesting to see that once the grid rows exceed 16 tasks, the performance does not directly drop
to the performance level of the inter-node communication. Most likely the all-to-all library is well aware
of the 16-way nodes and does not insert data destined for a different task on the same SMP-node into the

CUG 2008 Proceedings 10 of 15



1 10 100
Processors per grid row

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

T
im

e 
[s

ec
]

1 10 100
Processors per grid row

0.00

0.05

0.10

0.15

0.20

0.25

T
im

e 
[s

ec
]

Row, minimum time
Row, average time
Column, minimum time
Column, average time
Total Comm, minimum time
Total Comm, average time

Figure 7: Timing results for different virtual processor grids on the HPCx system. The left hand side shows results
for a small 643 sized problem, while the right hand side results for a larger 5123 problem. The total task count is 256
tasks. Full symbols are for the best observed times, while open symbols are for the averages.

network. This would save precious insertion bandwidth.
On the other hand we notice that for the columns the performance improves when the number of tasks

(typically located on different nodes) is decreased. We identified two underlying effects, which we have
already discussed for the HECToR system. A decreased task count per grid column leads to an increased
message size. This in turn, can lead to an increased insertion bandwidth, speeding up the communication.
From the two cases discussed this is relevant for the 643 sized problem only. In addition, both problem
sizes, 643 and 5123, appear to benefit from smaller column communicators, for which the data to stay on
the processor becomes sizable. As a result of these effects, we notice that for the small problem it is best to
use a row communicator which is larger than the size of the nodes. This leads to substantially shorter times
for the slow inter-node column communications, while the row communications still show a sizable benefit
from intra-node communication. For the larger problem of 5123 the message is not fully clear, partly due to
the large variations in run time. To a large extent the different effects cancel each other out. This leads to
a performance which is not overly sensitive to different virtual processor grids.

5.4 Processor mesh on BlueGene/L

In subsection 3.2 we discussed that for messages larger than 8 kB the performance of an all-to-all commu-
nication decreases with increasing task count. If this is caused by congestion in the network, the situation
might be improved by clever task placement, if the Cray XT architecture would allow users to do so. We
want to illustrate this with results measured on the BlueSky system and reported in [6].

In contrast to the Cray XT architecture, the IBM BlueGene architecture schedules user jobs on dense
partitions of cuboidal shape, with no holes inside due to service nodes or nodes utilised by other users’ jobs.
It further allows the user to take full control over the placement of the task onto the machine.

We compare the performance of the parallel FFT benchmark on a 512 dual core node partition on the
BlueSky system for the default mapping and a customised mapping. A 512 node partition of a BlueGene/L
system comes with a 8 × 8 × 8 mesh network. The comparison is performed in CO mode, placing a single
compute task on a dual core node, leaving the second core as a communication co-processor, and VN mode,
which places two compute tasks on a node, one on each core.

CUG 2008 Proceedings 11 of 15



Figure 8: Illustration of the mapping of the rows and columns of the virtual processor grid onto the physical hardware
of a BlueGene/L system. The dark parts of the figure shows how a single grid row or column is placed. To place the
remaining rows and columns the entire machine has to be filled with translated versions of the shown basic maps.

In CO-mode, we investigated a 8 × 64 virtual processor grid. By default the machine will map the row-
communicators of size eight onto sticks of eight nodes on the meshed network, while the 64 sized column-
communicators will be mapped onto 8 × 8 planes of the mesh. Based on considerations of the bi-section
bandwidth, reference [6] argues that mapping the rows of size eight onto small cubes of size 2× 2× 2 should
offer a significantly improved performance. When placing the rows of the virtual processor grid onto small
cubes, the images of the columns consist of isolated processors, which fill the entire mesh of the machine in
a regular pattern. The basic images of a single row or column for the default and customised mappings are
shown in Figure 8.

We also investigated similar mappings in VN mode offering 1024 tasks on a 512 node partition. For this
we investigated virtual processor grids of 16 × 64 and 8 × 128. For the processor grid of 16 × 64 we placed
grid rows of 16 tasks onto the small 23-cubes or the sticks of eight nodes in Figure 8, two tasks on each
node of the basic image. For the 8× 128 two rows of eight tasks got placed on each 23-sized cube, two tasks
from different rows on each node of the cube. In all cases the remaining rows and columns get placed on
translated copies of the basic images.

Figure 9 gives an overview on the results. To obtain a more readable figure, the results have been
normalised with the performance obtained with a 64×8 virtual processor grid in CO mode using the default
mapping. The results show that in CO mode, there is only a small advantage to using the customised
mapping. This advantage is substantially smaller than expected. In [6] this was traced to the machine not
being able to saturate the links at the bi-section when using a single task per node for the small 23 sized
cubes. However in VN mode, placing two tasks per node, the system architecture is able to saturate the links
at the bi-section and one obtains a very sizable performance boost of up to 16% from using the customised
mapping when compared to the default mapping.

6 Conclusion

The performance of a multidimensional parallel FFT using a large number of processors relies critically
on the performance of the all-to-all communication available on the computer architecture. For a small
task count, the all-to-all communication operation available as part of the standard system software on the
Cray XT4 shows a performance comparable to the performance level observed with a simple Ping-Ping test.

CUG 2008 Proceedings 12 of 15



Figure 9: Performance results for the full parallel 3D-FFT using different mappings between the virtual processor
grid and the physical meshed communication network on a BlueGene/L system.

When using hundreds or even thousands of tasks for messages of several kilo bytes, this performance level
can not be maintained. In particular, the observed performance does not match expectations raised by the
Cray marketing materials. Despite these shortcomings, for an all-to-all communication of 1024 tasks, the
HECToR system, based on the Cray XT4 architecture, still manages to give a better performance than the
other systems used in this investigation. However this does not hold for every message size.

In order to utilise hundreds or thousands of processors in a parallel FFT of a moderately sized array, the
array has to be decomposed onto a virtual processor grid of dimension two or higher. These virtual processor
grids offer additional parameters, such as the extent of the grid in the different dimensions, which can be
utilised to optimise the performance of the FFT. When using a processor grid of dimension two or higher,
the algorithm has to exchange its data via all-to-all communications, which are executed concurrently on
disjoint sub-communicators of the underlying communicator.

On the HECToR system, we have shown that the performance of many all-to-all communications op-
erating concurrently does not yield a performance outside the range observed for a single global all-to-all
communication. When using thousands of tasks to run hundreds of small task all-to-all operations con-
currently, as required for the parallel FFT algorithm, we observe a performance which is more comparable
to the inferior performance associated with hundreds of tasks than the superior perfomance we observe for
an individual all-to-all communications with a task count matching the size of the subgroup. This might
indicate that the above mentioned performance problems are caused by network congestion.

We show that there is no general rule as to whether symmetric or asymmetric virtual processor grids
offer better performance. For messages for which there is a strong dependence of the all-to-all performance
on the size of the messages, it is typically best to use more symmetric processor grids. If the dependence
of the all-to-all performance on the message size is small, it is better to use asymmetric processor grids to
reduce the data volume.

The investigations show that using nodes with SMP capablity (clustered SMP or modern multicore
processors) can be exploited to improve the performance of individual communications. They even show
performance improvements for communication groups involving more tasks than can be placed on a single
node, as long as the number of nodes involved in the communication is a single digit figure. However in
practical experiments, it turns out that the gains for the total performance of the FFT are modest. This is
mostly due to the second communication, which has to utilise the communication network, involving a large
number of tasks and hence having to insert almost all data into the network. Naive expectations of dramatic
performance improvements due to individual communication groups using fast intra-node communication

CUG 2008 Proceedings 13 of 15



did not materialise in our tests. However in special cases, e.g. FFT of a 643 array on 256 nodes on HPCx,
advantages can prevail.

As shown on a BlueGene/L system for a system using a mesh network, mapping communication groups
onto small cubes inside the larger mesh can lead to significant performance advantages. Unfortunately the
standard system software on the Cray XT4, at the time of writing, does not offer the required control to
the user. If this were implemented, it might help with the performance problems we observed when running
many small all-to-all communications concurrently on a very large number of nodes, at least for one of the
communication groups of the FFT algorithm.

6.1 About the Authors

Dr Joachim Hein works as computational architect for the HPCX consortium and EPCC. Heike Jagode is a
Sr. Research Associate at the University of Tennessee in Knoxville and the Oak Ridge National Laboratory.
Ulrich Sigrist was a student in EPCC’s MSc program in High Performance computing. Dr Alan Simpson is
the service director of the HPCX consortium and the technical director of EPCC and Prof Arthur Trew is
senior industry executive of the HPCX consortium and the director of EPCC.

6.2 Acknowledgements

We would like to thank Mark Bull (EPCC) and Stephen Booth (EPCC) for useful discussions. The continued
support from David Tanqueray, Jason Beech-Brandt, Kevin Roy and Martyn Foster from Cray with respect
to our queries on the architecture is gratefully acknowledged.

References

[1] F. Franchetti, Y. Voronenko, M. Püschel, “FFT Program Generation for Shared Memory: SMP and
Multicore”, Paper presented as SC06, Tampa, FL, http://doi.acm.org/10.1145/1188455.1188575

[2] M. Eleftheriou, et al., “A Volumetric FFT for BlueGene/L”, in G. Goos, J. Hartmanis, J. van Leeuwen,
editors, volume 2913 of Lecture Notes in Computer Science, page 194-203. Springer-Verlag, 2003.

[3] M. Eleftheriou, et al., “Scalable framework for 3D FFTs on the Blue Gene/L supercomputer: Imple-
mentation and early performance measurements”, IBM Journal of Research and Development, Vol. 49,
page 457, 2005.

[4] M. Eleftheriou, et al., “Performance Measurements of the 3D FFT on the Blue Gene/L Supercomputer”,
in J.C. Cunha and P.D. Medeiros, editors, volume 3648 of Lecture Notes in Computer Science, page
795. Springer-Verlag, 2005.

[5] H. Jagode, “Fourier Transforms for the BlueGene/L Communication Network”, MSc thesis, The Uni-
versity of Edinburgh, 2006,
http://www.epcc.ed.ac.uk/msc/dissertations/2005-2006/

[6] H. Jagode, J. Hein, A. Trew, “Task placement of parallel FFTs on a mesh communication network”,
Technical Report No. ut-cs-08-613, 2008, http://www.cs.utk.edu/ library/2008.html

[7] U. Sigrist, “Optimizing parallel 3D Fast Fourier Transformations for a cluster of IBM POWER5 SMP
nodes”, MSc thesis, The University of Edinburgh, 2007,
http://www.epcc.ed.ac.uk/msc/dissertations/2006-2007

[8] “Application performance on the UK’s new HECToR service”, Fiona Reid, et al., this volume.

[9] Cray XT4 datasheet, http://www.cray.com/downloads/Cray_XT4_Datasheet.pdf

CUG 2008 Proceedings 14 of 15



[10] X. Martorell at al., “Blue Gene/L performance tools”, IBM Journal of Research and Development,
Volume 49, page 407, 2005.

[11] N. R. Adiga, et al., “Blue Gene/L torus interconnection network”, IBM Journal of Research and De-
velopment, Volume 49, page 265, 2005.

[12] Intel r© MPI Benchmarks, Version 3.0,
http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm

[13] FFTW Homepage, http://www.fftw.org/

CUG 2008 Proceedings 15 of 15


