
CUG 2008 Proceedings 1 of 11

Managing Cray XT MPI Runtime
Environment Variables to Optimize

and Scale Applications

Geir Johansen, Cray Inc.

ABSTRACT: The Cray XT implementation of MPI provides configurable runtime
environment variables that can be used to further optimize the performance of an
application. The environment variables are also used to configure MPI event queues and
message buffers to increase the scalability of the application. The paper will outline the
available MPI environment variables and how they have been used to optimize and scale
applications.

KEYWORDS: Cray XT3, Cray XT4, Programming Environment, MPI

1.0 Introduction

The goal of this paper is provide guidance to
application analysts when porting MPI applications to the
Cray XT system. Specifically, the paper will discuss the
use of MPI runtime environment variables and how these
variables can be used to further optimize and increase the
scale of the application. The intent of the paper is not to
be a reference for each of the 35 available MPI
environment variables, but rather to share experiences of
how these variables have been used.

The paper uses the Cray Message Passing Toolkit
(MPT) 3.0 version of MPI to describe the options
available to optimize and scale a MPI application.
Differences between the MPT 3.0 environment variables
and earlier MPT releases will be discussed. Also, MPI
environment variable features introduced in MPT 3.0 will
be presented. An important caveat to this paper is that it
represents a current snapshot and the information
provided is subject to change.

2.0 Cray XT MPI Implementation

The Cray Message Passing Toolkit (MPT) release
contains the Cray implementation of MPI and SHMEM.
The version of MPI released in MPT 3.0 is based on
MPICH2 1.0.4p from Argonne National Laboratory. The
Cray implementation of MPI supports most of the
functionality of the MPI-2 standard. One feature of MPI-2
that is not currently supported in Cray MPI is the dynamic
process creation and management feature.

Cray XT implementation of MPI supports the Portals
abstract device interfaces (ADI3) to perform message
communication between nodes. MPT 3.0 has added the
support of the SMP ADI3 to perform on-node MPI

communication. MPT 3.0 is supported on the Cray XT
CNL system, but does not run on Cray XT Catamount
systems. Cray MPI supports running the Portals and SMP
devices concurrently. Each process of an MPI job will
automatically choose the most optimal messaging path to
every other process in the job.

2.1 Portals Abstract Device Interface
 Portals is a software interface for communication
between nodes of the Cray XT system. The main design
focus of Portals was to perform MPI communication. In
this section, a very brief description will be given of how
Portals handles MPI communication. This information is
useful in understanding how the Portals MPI environment
variables are used. More details on the Cray MPI
implementation of the Portals abstract device interface can
be found in reference [2].

 Portals uses an eager protocol for sending short
messages. The size of a short message can be configured
by the user and has a default message size of 128000 bytes.
The sender in the short message eager protocol sends the
message and assumes the receiver has sufficient resources
to receive the message. If the message to be sent is 1024
bytes or less, the message is considered to be a vshort (very
short) message. The handling of vshort messages allows
blocking send calls to return to the sender more quickly.

On the receive side, if a receive has been pre-posted
for the message, then the data will be transferred to the
application’s buffer allocated for the message. If a receive
for the incoming message has not been pre-posted, the data
will be placed in the unexpected buffer and two entries
(one to indicate the start of message and another to indicate
that the data transfer has completed) will be placed in the
unexpected event queue. When the receiver has posted a
receive for this message, the data will be copied out of the

CUG 2008 Proceedings 2 of 11

unexpected buffer and the entries in the unexpected event
queue will be cleared.

Portals has two methods for sending long messages.
The default method is the receiver-pull long message
protocol. In this method the sender will notify the
intended receiver that is has long message to send. When
the receiver is ready to accept the data, it will send a
request to get the data. The other method is the eager
long message protocol. This method is similar to the
short message eager protocol, except the receiver will not
store incoming data if a receive has not been pre-posted.
This method should only be used if the application can
ensure that receives will be pre-posted.

2.2 SMP Abstract Device Interface
 The SMP abstract device interface was introduced in
MPT 3.0 to provide communication for on-node
messaging. The SMP device provides much faster latency
and higher bandwidth than the Portals device. As a result,
most codes running on a multi-core Cray XT system will
likely see a performance gain when switching from MPT
2.0 to MPT 3.0. The graph in figure 1 shows an example
of the effect of the intra-node latency improvements when
using the MPT 3.0 SMP device versus the MPT 2.0
Portals device.

 Figure 1. MPT 3.0 Latency Improvement Example

 In MPT 3.0, the MPI collectives have been optimized
to be SMP aware. Figure 2 shows the difference seen in
the IMB MPI1 Allreduce test when using MPT 3.0 on a
quadcore Cray XT system versus using MPT 2.0.

 Figure 2. Improvements using SMP aware MPT 3.0

Another benefit of the MPT 3.0 implementation of the
SMP device is that the performance of Portals has
improved by being able to focus on inter-node
communication. In summary, the SMP device will likely
provide performance gains for codes in MPT 3.0.

3.0 Cray XT MPI Environment Variables

The Cray XT implementation of MPI has configurable
runtime environment variables that are used to change the
default behavior of the MPI library. The MPI environment
variables perform various functions, such as displaying
MPI related information, specifying an optimization to be
used, and adjusting the size of message queues and data
buffers. The default settings are set based on the best
performance that can be achieved for most codes.

MPI environment variables are used to increase the
performance of a code when they can provide knowledge
of application behavior to the MPI library. For example, if
it is known that the application uses long message sizes,
the MPI environment variables can be used to specify
specific optimizations that work well with long messages.
 MPI environment variables also allow the user to
decide between performance versus memory size tradeoffs.
The performance of some codes may be improved by
allocating more space for internal MPI buffers; however,
this will result in less memory available for the application.
Another type of tradeoff option for the user is to decide
whether to use a flow control mechanism to help the code
scale to higher PE counts, but can have a negative effect on
performance. In addition, MPI environment variables give
the user the flexibility of choosing message size cutoff
values that are used to determine which algorithm is used
for a specific MPI collective operation.

The Cray XT MPI environment variables are
documented in the intro_mpi man page. The following
sections will list the available MPI environment variables.
Descriptions and examples of practical use will be

CUG 2008 Proceedings 3 of 11

provided for those environment variables that have been
shown to be useful in optimizing and scaling MPI
applications on the Cray XT.

3.1 General MPI Environment Variables

MPICH_VERSION_DISPLAY – rank 0 displays the
version of Cray MPI being used (Default=0)
MPICH_ENV_DISPLAY – displays MPI environment
variables and their values (Default=0)
MPICH_ABORT_ON_ERROR – causes program to
abort and produce a core dump when an internal MPI-
related error occurs (Default=0)
MPICH_CPU_YIELD – causes MPI process to call the
sched_yield routine to relinquish the processor
(Default=0, unless MPI detects oversubscription of CPUs.
PMI_EXIT_QUIET – inhibit PMI from displaying
information about each rank (Default=0)

 Table 1. General MPI Environment Variables

MPT 3.0 introduced new environment variables to
display the version of the Cray XT MPI library being used
(MPICH_VERSION_DISPLAY) and the settings of the
MPI environment variables (MPICH_ENV_DISPLAY).
Using the environment variable MPICH_ENV_DISPLAY
has proven to be helpful when performing experiments to
test the performance of various MPI environment variable
settings. An example of the display of these variables is
provided in Appendix A.

The MPICH_ABORT_ON_ERROR environment
variable has been enhanced in MPT 3.0 to incorporate the
functionality of the MPICH_DMASK=0x200 option from
MPT 2.0. When this variable is enabled, a core file will
be created when an internal MPI related error occurs,
whether it is in the Portals code or MPICH2 code.
Another important enhancement made in MPT 3.0 is that
many MPI error messages contain more information on
how to resolve the error. For example, if a buffer is being
overflowed, the error message will output the current
value of the relevant MPI environment variable and will
suggest an action to resolve the problem.

A difference between Catamount and CNL is that
CNL will allow the oversubscription of CPUs. Cray MPI
will detect if CPUs have been oversubscribed and will
have the process call sched_yield while in the MPI
progress engine. A specific case where the
MPICH_CPU_YIELD environment variable needs to be
used is when CPU affinity is set. The PathScale compiler
on OpenMP codes will set CPU affinity if the number of
OpenMP threads is set to more than one. A user will need
to enable MPICH_CPU_YIELD in this case.

A new feature of MPT 3.0 is the use of the Process
Manager Interface (PMI) to launch MPI processes on the

node. A PMI daemon is started on each node. If a MPI
process aborts, it will sends a signal to the PMI daemon
and the daemon will print out a message. For jobs running
on many nodes, the user may want to enable
PMI_QUIET_EXIT to suppress these messages. The
option will not prevent Cray MPI errors from being
displayed.

3.2 Rank Reorder MPI Environment Variables

MPICH_RANK_REORDER_DISPLAY – displays the
node where each MPI rank is executing (Default=0)
MPICH_RANK_REORDER_METHOD – sets the
MPI rank placement scheme (Default determined by job
launcher, yod or aprun)
 0 -> Round robin placement
 1 -> SMP-style placement
 2 -> Folded rank placement
 3 -> Custom rank placement

 Table 2. Rank Reorder MPI Environment Variables

The rank reorder feature allows the user to specify
how PE ranks should be distributed on the compute nodes.
Appendix B shows an example of each of the four rank
reorder methods and how the ranks are distributed across
8 dual core nodes. The new MPT 3.0 environment variable
MPICH_RANK_REORDER_DISPLAY is used to enable
the display of the rank placement. The default rank
placement is determined by the job launcher. For
Catamount, yod will default to the round-robin placement,
while CNL aprun has SMP-style placement as its default.

Codes have seen significant performance gains from
switching from one rank reorder method to another. In
general, programs tend to perform better using the SMP-
style method. The reason for this is that SMP-style
placement usually maps well with codes communicating
with their nearest neighbor. As a result, users of Cray XT
Catamount systems will want to try the SMP-style reorder
method on their codes.

The use of rank reorder can be very helpful in
performing load balancing. Figure 3 shows a graph of
CPU utilization for an MPI job. The graph shows higher
ranks having lower CPU utilization. For multi-core
systems, this type of program can benefit from using the
folded-rank reorder method. Using the folded-rank method
would match ranks that have higher CPU utilization with
ranks that have lower CPU utilization. The overall effect
would improve the load balancing of the nodes.

CUG 2008 Proceedings 4 of 11

 Figure 3. Rank Reorder Load Balancing Example

The use of the custom rank reorder method can

provide performance improvement in cases where the
data decomposition of the problem is known. In figure 4,
the left side shows a SMP-style placement where four
cores on a quadcore node have three links that perform
intra-node communication. The right side shows how
custom rank placement can be used to choose the
placement scheme so that the four ranks have four links of
intra-node communication. Using custom rank reorder
placement to increase the number of ranks
communicating on-node, will likely result in performance
gains.

 * Highlighted ranks are cores on the same node

 Figure 4. Custom rank reorder example

 Another example of where rank reorder has shown
performance improvements is in I/O. In figure 5, assume
that four ranks of a 64 rank job are responsible for writing
to a specific file. If the four ranks reside on different
nodes, there will be four separate write requests to the
file. If the four ranks reside on the same node, the four
write requests from the ranks will be buffered by the
Linux system and result in one write request to the file.

 Figure 5. I/O rank reorder example

 The optimal rank reorder method is not always
obvious, as there may be competing performance issues of
communication distance versus load balancing. Cray MPI
allows the user to easily switch from one rank reorder
method to another, so it is worthwhile to experiment with
the different methods.

3.3 SMP MPI Environment Variables

 Table 3. SMP MPI Environment Variables

As discussed in section 2.2, the introduction of the
SMP abstract device interface in MPT 3.0 will likely result
in codes running faster using MPT 3.0 than using MPT 2.0.
The current experience of MPT 3.0 has shown that most
codes have not needed to adjust the SMP related MPI
environment variables to improve performance or increase
scaling. One rare case where using MPICH_SMP_OFF
showed improvement was a benchmark code that pre-
posted receives and benefited from using Portals matching.
Another rare case where a SMP MPI variable needed to be
used was that of environment variable
MPICH_MSGS_PER_PROCS needing to be increased
when scaling an application to a very high number of PEs.

 The variable MPICH_SMP_SINGLE_COPY_SIZE is
used to set the minimum size to be used for SMP single-
copy transfers. The default value of 128K bytes was
determined through testing. For message sizes less than
128K, it was found that the system overhead of a single-
copy exceeded the time to perform the extra copy.

3.4 Portals MPI Environment Variables

The MPI Portals environment variables are used to
provide information to Portals on the nature of the
application’s usage of MPI communication. One specific

MPICH_SMP_OFF – turns off SMP device (Default=0)
MPICH_MSGS_PER_PROCS – maximum number of
internal MPI message headers (Default=16384)
MPICH_SMPDEV_BUFS_PER_PROCS – number of
buffers allocated for the SMP device (Default=32)
MPICH_SMP_SINGLE_COPY_SIZE – minimum
buffer size to use single-copy transfers for on-node
messages (Default=128 kilobytes)
MPICH_SMP_SINGLE_COPY_OFF – disables single-
copy mode (Default=0)

SMP
style

Custom rank
reorder

Linux Kernel

File File

Linux
Kernel

Linux
Kernel

Linux
Kernel

Linux
Kernel

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

9
6

1
9
2

2
8
8

3
8
4

4
8
0

5
7
6

6
7
2

7
6
8

8
6
4

9
6
0

PE rank

C
P

U
 U

ti
li
z
a
ti

o
n

CUG 2008 Proceedings 5 of 11

piece of information that assists in improving
performance of Portals is the size of the messages that are
to be used. As discussed in section 2.1, the short message
eager protocol is faster than the receiver-pulled long
message protocol. If an application’s message size is
known to be larger than the default short message size of
128,000 bytes, the environment variable
MPICH_MAX_SHORT_MSG_SIZE can be increased to
have these larger size message use the short message
eager protocol. The consequence of using this variable is
that the size of the Portals unexpected buffer may need to
be increased by setting the environment variable
MPICH_UNEX_BUFFER_SIZE, which will result in
more memory being used for Portals communication.
Conversely, if an application is not able to increase the
unexpected buffer size large enough to allow an
application to execute, then the
MPICH_MAX_SHORT_MSG_SIZE may need to be
decreased. A smaller value will decrease the number of
messages that use the short message eager protocol and
reduce the size of the unexpected buffer that is needed.

MPICH_MAX_SHORT_MSG_SIZE – maximum size
of a message to be sent using eager short message
protocol (Default=128000 bytes)
MPICH_UNEX_BUFFER_SIZE – size of the Portals
unexpected message buffer (Default=60 megabytes)
MPICH_PTL_UNEX_EVENTS – number of event
queue entries for unexpected messages (Default = 20480)
MPICH_PTL_OTHER_EVENTS – number of event
queue entries for messages other than unexpected
messages (Default=2048)
MPICH_VSHORT_OFF – disables vshort path
optimization (Default=0)
MPICH_MAX_VSHORT_MSG_SIZE – maximum
message size to be used for Vshort messages
(Default=1024)
MPICH_VSHORT_BUFFERS – number of vshort
buffers (Default=32)
MPICH_PTL_EAGER_LONG – enables eager long
message protocol (Default=0)
MPICH_PTL_MATCH_OFF – disables registration of
receive requests with portals (Default=0)
MPICH_PTL_SEND_CREDITS – enables flow control
to prevent the Portals event queue from being overflowed
(Default=0)

 Table 4. Portals MPI Environment Variables

The long message eager protocol is rarely used for
codes, because the application must insure that it pre-post
receives in order to benefit performance. For those
applications that always pre-post receives, then turning on
MPICH_PTL_EAGER_LONG will improve

performance. The IMB Sendrecv benchmark is an example
of a code that benefits by using the eager long message
protocol.

Applications that frequently use messages of size
greater than 1K and less than 16K may benefit by making
these vshort messages. This optimization is enabled by
setting the MPICH_MAX_VSHORT_MSG_SIZE
environment variable accordingly.

Latency sensitive applications may be able to improve
performance by setting the environment variable
MPICH_PTL_MATCH_OFF. Setting this variable
disables the registration of receive requests with Portals,
which eliminates a Portals system call and the Portals lock
that occurs during the system call. The receive requests
will be handled by the MPI layer, which will result in an
extra copy of the data. The extra copy adds significant
overhead for larger message sizes, so disabling portals
receive matching is only beneficial for message sizes of 4K
or smaller.

 The Portals MPI environment variables may need to
be modified as the program grows in scale. The default
number of entries in the unexpected event queue is 20480.
Since two entries are needed for each receive, the number
of unexpected event queue entries will likely need to be
increased when using 10,000 or more PEs. In addition,
there are several MPI applications that exhaust the
unexpected event queue even at smaller number of PEs.
The user is able to increase the number of unexpected event
queue entries by modifying the
MPICH_PTL_UNEX_EVENTS environment variable.
The increase of the unexpected event queue may require a
corresponding increase of the unexpected buffer, which is
achieved by modifying the environment variable
MPICH_UNEX_BUFFER_SIZE.

Some MPI applications have cases where the number
of sends run well ahead of the number of receives, and the
size of the unexpected receive queue can not be increased
enough to handle this situation. In this case, a flow control
mechanism can be enabled to prevent the unexpected event
queue from being exhausted. The
MPICH_PTL_SEND_CREDITS environment variable is
used to enable this flow control mechanism. Setting this
variable to ‘-1’ should prevent the unexpected receive
queue from overflowing in any situation

The other event queue handles events such as the
sending of data, pre-posted receives, and RMA requests.
Like the unexpected receive queue, the number of entries
in the other event queue can also be exhausted. The
overflow of the other event queue generally occurs less
frequently than issues with the unexpected event queue.
The MPICH_PTL_OTHER_EVENT environment variable
is used to modify the size of the other event queue. It
should be noted that in MPT 2.0, the total number of
entries in the unexpected event queue and other event
queue were limited to approximately 95000 entries. This
restriction no longer exists in MPT 3.0.

CUG 2008 Proceedings 6 of 11

 The Cray XT system at Oak Ridge National
Laboratory has run MPI test programs using 30,000 PEs.
The following steps were taken to execute the IMB
MPI_Alltoall program on 30,000 PEs:

• Total memory that is required just for MPI_alltoall

communication: 2 * 30000 * <message-size>
Used a maximum message size of 16K, as this will use
almost 1GB of memory (running on a machine with
2GB per CPU)

• The number of unexpected event queue entries should

be at least 2 times the number of PEs. Environment
variable MPICH_PTL_UNEX_EVENTS was set to
70000.

• The size of the Portals unexpected buffer needed to be

increased. Setting the MPI environment variable
MPICH_UNEX_BUFFER_SIZE=100M was found to
be sufficient

 As mentioned in section 3.1, many of the Cray MPI
error messages have been improved in MPT 3.0 to show
more information on how to resolve the error. Table 5
shows some example error messages that may occur when
using an increased number of PEs to execute the program.
In the examples, the preceding number inside the brackets
is the rank number that reported the error.

[12] MPICH PtlEQPoll error (PTL_EQ_DROPPED): An
event was dropped on the UNEX EQ handle. Try increasing the
value of env var MPICH_PTL_UNEX_EVENTS (cur size is
20480).

[241] MPICH has run out of unexpected buffer space.Try
increasing the value of env var MPICH_UNEX_BUFFER_SIZE
(cur value is 62914560), and/or reducing the size of
MPICH_MAX_SHORT_MSG_SIZE (cur value is 128000).

[233] MPICH PtlEQPoll error (PTL_EQ_DROPPED): An
event was dropped on the OTHER EQ handle. Try increasing the
value of env var MPICH_PTL_OTHER_EVENTS (cur size is
2048).

 Table 5. Sample MPT 3.0 Cray XT MPICH errors

3.5 MPI Collectives Environment Variables
 One significant feature of MPT 3.0 is that the
collective optimizations that were available in MPT 2.0
by enabling the MPICH_COLL_OPT_ON environment
variable are now enabled by default in MPT 3.0. The new
MPT 3.0 MPICH_COLL_OPT_OFF environment
variable is now available to turn off collective
optimizations, though there should not be reason to use
this option.
 The MPICH_FAST_MEMCPY environment variable
is a frequently used option to increase performance of

programs that use large message sizes. This feature
instructs the Cray MPI routines to use a different version of
memcpy that works well with message sizes of 256
kilobytes or larger. For buffer sizes less than 256K, the
fast memcpy will work as well as the default memcpy.
The reason this optimization in not enabled by default is
that other factors, such as caching effects, may result in
some applications and benchmarks performing worse when
fast memcpy is used. In general, the
MPICH_FAST_MEMCPY environment variable should be
used when message sizes are greater than 256K.
 In MPT 3.0, the default value for the environment
variable MPICH_ALLTOALL_SHORT_MSG was
changed from 512 to 1024. Experience has shown that
programs will greatly benefit if they can use the Alltoall
store and forward algorithm available for smaller message
sizes. The default MPT 3.0 values of the environment
variables relating to the MPI_Alltoallv and MPI_Alltoallw
collectives were also modified. Testing showed using
smaller values to enable flow control reduced the amount
of network contention and resulted in an overall increase in
performance.

MPICH_FAST_MEMCPY – use optimized memcpy
routine (Default=0)
MPICH_COLL_OPT_OFF – disable collective
optimizations (Default=0)
MPICH_BCAST_ONLY_TREE – set to ‘0’ to enable
the MPI_Bcast ring algorithm for MPI communicators of
nonpower of two (Default = 1)
MPICH_ALLTOALL_SHORT_MSG – cutoff point for
using the store and forward Alltoall algorithm
(Default=1024 bytes)
MPICH_REDUCE_SHORT_MSG – cutoff point for
using a binomial tree algorithm (smaller values) versus a
reduce-scatter algorithm (Default=65536 bytes)

MPICH_ALLRFEDUCE_LARGE_MSG – cutoff point
for the SMP aware MPI_allreduce algorithm
(Default=262144 bytes)
MPICH_ALLTOALLVW_FCSIZE – cutoff size of the
number of communicators when the flow control (“FC”)
MPI_Alltoall[vw] algorithm is used (Default=32)
MPICH_ALLTOALLVW_RECVWIN – the number of
concurrent Irecv operations allowed when the flow
control MPI_Alltoall[vw] algorithm is used (Default=20)
MPICH_ALLTOALLVW_SENDWIN – the number of
concurrent Isend operations allowed when the flow
control MPI_Alltoall[vw] algorithm is used (Default=20)

 Table 6. MPI Collectives Environment Variables

In MPT 3.0, the MPI collectives have been enhanced

to become SMP aware. An example of this is the
MPI_Allreduce function, which was changed in MPT 3.0
to use a SMP-aware algorithm. The SMP-aware algorithm

CUG 2008 Proceedings 7 of 11

performs better than the MPICH2 algorithm for messages
of size 256K or less. The environment variable
MPICH_ALLREDUCE_LARGE_MSG was introduced
to allow the user to adjust this cutoff point. It is expected
that future versions of MPT will have additional SMP
aware collective optimizations.

3.6 MPI-IO Hints Environment Variables

MPICH_MPIIO_HINTS_DISPLAY – rank 0 displays
the names and values of the MPI-IO hints (Default=0)
MPICH_MPIIO_HINTS – sets the MPIO-IO hints for
files opened with the MPI_File_Open routine

 Table 7. MPI-IO Hints Environment Variables

MPI-IO hints are used to provide information to a
MPI program to assist the performance of the MPI file I/O
routines. A MPI-IO hint is specified in a MPI code in the
following manner:

1. MPI_Info_create used to create an Info Object
2. MPI_Info_set adds hints to the Info Object
3. MPI_File_open passes the Info Object argument

A new feature of MPT 3.0 is the introduction of the

MPICH_MPIIO_HINTS environment variable that passes
the specified MPI-IO hints when the program calls
MPI_File_open. The MPI-IO hints specified by
MPICH_MPIIO_HINTS will override the default MPI-IO
hints or any hints originating in the program by a call to
the MPI_Info_set routine. Using this environment
variable allows the user to test the effect on performance
of various MPI-IO hints without having to modify the
code or rebuild the program. The environment variable
MPICH_MPIIO_HINTS_DISPLAY is helpful in
displaying the hints that are used during testing. Once
optimal hints are determined, they can be added to the
program’s code. Table 8 lists the MPI-IO hints that are
supported on Cray XT systems.

direct_io
romio_cb_read
romio_cb_write
cb_buffer_size

cb_nodes
cb_config_list
romio_no_indep_rw
romio_ds_read

romio_ds_write
ind_rd_buffer_size
ind_wr_buffer_size

 Table 8. Cray XT MPI-IO hints

The MPIO-IO hint direct_io in MPT 3.0 has been

modified in MPT 3.0, so that it verifies that data is page-
aligned. If the data is page-aligned, then direct I/O will
be used; otherwise the I/O will be performed without
using direct I/O. Figure 6 shows a comparison of a
program running with and without the MPI-IO hint
direct_io. Note that direct I/O did not always perform

better than regular buffered I/O, however, the direct I/O
results were consistent between runs. The reason for this is
that buffered I/O performance is more affected by the
availability of the Linux kernel to perform the I/O.
Another example where users have used MPI-IO hints to
improve I/O performance of specific MPI codes is the
enabling of collective buffering on writes
(romio_cb_write). Also, disabling data sieving on writes
(romio_ds_write) has been used effectively to increase I/O
performance of a MPI program.

 Figure 6. Direct I/O and Buffered I/O comparison

3.6 RMA MPI Environment Variables
 The Cray XT implementation supports MPI-2 remote
memory access (RMA) functionality. In Portals, RMA
uses a message buffer that is separate from other MPI
communication. The MPICH_RMA_BUFFER_SIZE
environment variable is used to modify the size of the
message space for RMA messages. In order to resolve
flow control issues that may occur when using remote
memory access communication, the environment variable
MPICH_RMA_MAX_OUTSTANDING_REQS can be
used. Decreasing the value of this variable will allow
programs that encounter RMA overflow problems to
execute. This variable has only known to be used for
RMA benchmark test codes.

MPICH_RMA_BUFFER_SIZE – size of the Portals
RMA message buffer (Default=6M)
MPICH_RMA_MAX_OUTSTANDING_REQS –
maximum number of outstanding RMA requests a process
may have for a given window (Default=64)

 Table 9. RMA MPI Environment Variables

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Percentage

of best rate

Run #1 Run #2 Run #3 Run #4 Run #5

Buffered IO

Direct IO

CUG 2008 Proceedings 8 of 11

4.0 Summary

 The following lists briefly summarize the Cray MPI
environment variables that have been found to be useful
to optimize the performance of a code or to increase the
scale of the code.

MPI Environment Variables to Optimize Performance
• Rank Reorder – Easy to switch rank reordering

methods, may result in performance improvement
o Codes on Cray XT Catamount systems should at

least try SMP-style rank placement
• Latency sensitive codes – Set environment variable

MPICH_PTL MATCH_OFF
o Message sizes should be 4K or less

• Message sizes < 16K – Setting environment variable
MPICH_MAX_VSHORT_SIZE may increase
performance

• Message sizes > 128000 – Increasing environment
variable MPICH_MAX_SHORT_SIZE will allow
more messages to use the faster eager short message
protocol

• Message size > 256K – Enable use of the fast
memcpy routine by setting
MPICH_FAST_MEMCPY

• Using MPT 2.0 – Setting MPICH_COLL_OPT_ON
will turn on collective optimizations that are on by
default in MPT 3.0

MPI Env. Variables to Increase the Scale of the Code
• MPICH_PTL_UNEX_EVENTS - the number of

Portals unexpected event queue entries should be at
least two times the number of PEs being used.

• MPICH_UNEX_BUFFER_SIZE – the size of the
Portals unexpected buffer may need to be increased if
the number of Portals unexpected event queue entries
is increased (MPICH_PTL_UNEX_EVENTS), or if
the size of messages using the short eager protocol is
increased (MPICH_MAX_VSHORT_SIZE).

• MPICH_MAX_SHORT_SIZE – If the unexpected
buffer (MPICH_UNEX_BUFFER_SIZE) can not be
increased enough, then the size of the messages
eligible for the short message eager protocol may
need to be made smaller to reduce the amount of
messages being copied to the unexpected buffer.

• MPICH_PTL_SEND_CREDITS – If Portals
unexpected event queue can not be increased high
enough then a flow control mechanism needs to be
enabled. Setting MPICH_PTL_SEND_CREDITS to
‘-1’ will invoke a flow control algorithm to prevent the
unexpected event queue from being exhausted.

• MPICH_PTL_OTHER_EVENTS – The number of
Portals other event queue entries may need to be

increased as the program is scaled to higher number of
PEs.

• MPICH_MSGS_PER_PROCS – The number of
internal MPI messages may possibly need to be
increased at very high PE counts.

5.0 Conclusion

While the default settings for the Cray XT MPI
environment variables are based to provide the best
performance for most codes, there are situations where the
performance and scalability of a MPI application can be
improved by the use of MPI environment variables.
Examples of situations where setting MPI environment
variables can benefit a code have been provided. Also,
explanations were given of the environment variables that
may need to be modified to increase a code’s scalability.
Additional MPI environment variables and refinements to
existing ones will be added, as Cray Inc. continues to
develop new optimizations and new functionality to the
Cray XT implementation of MPI

Acknowledgments

 The author thanks the Cray Performance team and the
Cray MPT software development group for valuable
technical information and consultation.

About the Author
Geir Johansen works in Software Product Support,

Cray Inc. He is responsible for support of C, C++, libc,
MPI, SHMEM, TotalView and other debuggers, and
performance tools for the Cray X1, Cray XT, Cray X2, and
Cray XMT platforms. He can be reached at Cray Inc.,
1340 Mendota Heights Road, Mendota Heights, MN
55120, USA; Email: geir@cray.com

References
[1] R. Brightwell, A. B. Maccabe, and R. Riesen. Design,
Implementation, and Performance of MPI on Portals 3.0.
In International Journal of High Performance Computing
Applications. Vol. 17, No. 1 (2003).

[2] H. Pritchard, D. Gilmore, M. ten Bruggencate, D.
Knaak, and M. Pagel. Cray Message Passing Toolkit
(MPT) Software on XT3. In Cray User Group 2006
Proceedings.

[3] M. Pagel, H. Pritchard, K. McMahon, and A. Hilleary.
Performance and Functional Improvements in MPT
Software for the Cray XT System. In Cray User Group
2007 Proceedings.

CUG 2008 Proceedings 9 of 11

 Appendix A

MPICH_VERSION_DISPLAY and MPICH_ENV_DISPLAY Example
$ aprun -n 2 ./hello
MPI VERSION : CRAY MPICH2 XT version 3.0.0-pre (ANL base 1.0.4p1)
BUILD INFO : Built Wed Mar 19 5:13:09 2008 (svn rev 6964)
PE 0: MPICH environment settings:
PE 0: MPICH_ENV_DISPLAY = 1
PE 0: MPICH_VERSION_DISPLAY = 1
PE 0: MPICH_ABORT_ON_ERROR = 0
PE 0: MPICH_CPU_YIELD = 0
PE 0: MPICH_RANK_REORDER_METHOD = 1
PE 0: MPICH_RANK_REORDER_DISPLAY = 0
PE 0: MPICH/SMP environment settings:
PE 0: MPICH_SMP_OFF = 0
PE 0: MPICH_MSGS_PER_PROC = 16384
PE 0: MPICH_SMPDEV_BUFS_PER_PROC = 32
PE 0: MPICH_SMP_SINGLE_COPY_SIZE = 131072
PE 0: MPICH_SMP_SINGLE_COPY_OFF = 0
PE 0: MPICH/PORTALS environment settings:
PE 0: MPICH_MAX_SHORT_MSG_SIZE = 128000
PE 0: MPICH_UNEX_BUFFER_SIZE = 62914560
PE 0: MPICH_PTL_UNEX_EVENTS = 20480
PE 0: MPICH_PTL_OTHER_EVENTS = 2048
PE 0: MPICH_VSHORT_OFF = 0
PE 0: MPICH_MAX_VSHORT_MSG_SIZE = 1024
PE 0: MPICH_VSHORT_BUFFERS = 32
PE 0: MPICH_PTL_EAGER_LONG = 0
PE 0: MPICH_PTL_MATCH_OFF = 0
PE 0: MPICH_PTL_SEND_CREDITS = 0
PE 0: MPICH/COLLECTIVE environment settings:
PE 0: MPICH_FAST_MEMCPY = 0
PE 0: MPICH_COLL_OPT_OFF = 0
PE 0: MPICH_BCAST_ONLY_TREE = 1
PE 0: MPICH_ALLTOALL_SHORT_MSG = 1024
PE 0: MPICH_REDUCE_SHORT_MSG = 65536
PE 0: MPICH_ALLREDUCE_LARGE_MESSAGE = 262144
PE 0: MPICH_ALLTOALLVW_FCSIZE = 32
PE 0: MPICH_ALLTOALLVW_SENDWIN = 20
PE 0: MPICH_ALLTOALLVW_RECVWIN = 20
PE 0: MPICH/MPIIO environment settings:
PE 0: MPICH_MPIIO_HINTS = (null)
$

CUG 2008 Proceedings 10 of 11

 Appendix B
 MPI Rank Reorder Example

$ export MPICH_RANK_REORDER_DISPLAY=1
$ export MPICH_RANK_REORDER_METHOD=0
$ aprun -n 8 ./a.out
[PE_0]: MPI rank order: Using round-robin rank ordering
[PE_0]: rank 0 is on nid00469; originally was on nid00469
[PE_0]: rank 1 is on nid00470; originally was on nid00469
[PE_0]: rank 2 is on nid00471; originally was on nid00470
[PE_0]: rank 3 is on nid00473; originally was on nid00470
[PE_0]: rank 4 is on nid00469; originally was on nid00471
[PE_0]: rank 5 is on nid00470; originally was on nid00471
[PE_0]: rank 6 is on nid00471; originally was on nid00473
[PE_0]: rank 7 is on nid00473; originally was on nid00473
Application 280314 resources: utime 0, stime 0
$ export MPICH_RANK_REORDER_METHOD=1
$ aprun -n 8 ./a.out
[PE_0]: MPI rank order: Using default aprun (SMP) rank ordering
[PE_0]: rank 0 is on nid00469; originally was on nid00469
[PE_0]: rank 1 is on nid00469; originally was on nid00469
[PE_0]: rank 2 is on nid00470; originally was on nid00470
[PE_0]: rank 3 is on nid00470; originally was on nid00470
[PE_0]: rank 4 is on nid00471; originally was on nid00471
[PE_0]: rank 5 is on nid00471; originally was on nid00471
[PE_0]: rank 6 is on nid00473; originally was on nid00473
[PE_0]: rank 7 is on nid00473; originally was on nid00473
Application 280321 resources: utime 0, stime 0
$ export MPICH_RANK_REORDER_METHOD=2
$ aprun -n 8 ./a.out
[PE_0]: MPI rank order: Using folded rank ordering.
[PE_0]: rank 0 is on nid00469; originally was on nid00469
[PE_0]: rank 1 is on nid00470; originally was on nid00469
[PE_0]: rank 2 is on nid00471; originally was on nid00470
[PE_0]: rank 3 is on nid00473; originally was on nid00470
[PE_0]: rank 4 is on nid00473; originally was on nid00471
[PE_0]: rank 5 is on nid00471; originally was on nid00471
[PE_0]: rank 6 is on nid00470; originally was on nid00473
[PE_0]: rank 7 is on nid00469; originally was on nid00473
Application 280326 resources: utime 0, stime 0

CUG 2008 Proceedings 11 of 11

 Appendix B
 MPI Rank Reorder Example

$ cat >MPICH_RANK_ORDER
7,2,5,0,3,6,1,4
$ export MPICH_RANK_REORDER_METHOD=3
$ aprun -n 8 ./a.out
[PE_0]: MPI rank order: Using a custom rank order from file: MPICH_RANK_ORDER
[PE_0]: rank 0 is on nid00470; originally was on nid00469
[PE_0]: rank 1 is on nid00473; originally was on nid00469
[PE_0]: rank 2 is on nid00469; originally was on nid00470
[PE_0]: rank 3 is on nid00471; originally was on nid00470
[PE_0]: rank 4 is on nid00473; originally was on nid00471
[PE_0]: rank 5 is on nid00470; originally was on nid00471
[PE_0]: rank 6 is on nid00471; originally was on nid00473
[PE_0]: rank 7 is on nid00469; originally was on nid00473
Application 280461 resources: utime 0, stime 0
$

