
ALPS Tutorial
“Ascent”
Michael Karo

mek@cray.com

Topics
  A look back at “Base Camp”
  ALPS for Cray XT5 systems

  Multisocket nodes
   Accounting and auditing
   Checkpoint / Restart
   Huge pages

  ALPS for Cray XT5h systems
   X2 quadrant support
  MPMD launch
   Context switching

  BASIL 1.1
  ALPS troubleshooting
  CSA

May 08 Cray Inc. Proprietary Slide 2

ALPS Overview
  ALPS = Application Level Placement Scheduler
  BASIL = Batch Application Scheduler Interface Layer

May 08 Cray Inc. Proprietary Slide 3

ALPS

Grid

Batch

OS

Hardware

Compiler

Application

Debugger

Libraries

BASIL

Terminology
  Node

   All resources managed by a single Cray Linux Environment (CLE)
instance

  Processing Element (PE)
   ALPS launched binary invocation on a compute node

  Width (aprun -n)
   Number of PEs to Launch

  Depth (aprun -d)
   Number of threads per PE (OpenMP)

  PEs Per Node / PPN (aprun -N)
   Number of PEs per CNL instance (multiple MPI ranks per node)

  Node List (aprun -L)
   A user supplied list of candidate nodes to constrain placement

  Node Attributes
   Characteristics of a node described in the SDB

May 08 Cray Inc. Proprietary Slide 4

ALPS for Cray XT5 Systems
  Support for multisocket nodes

   NUMA domains
   Processor core affinity
  Memory affinity

  Application Checkpoint / Restart (CPR)

May 08 Cray Inc. Proprietary Slide 5

NUMA Domains
  Increased processor core density per node

  Multiple sockets per node
  Multiple dies per socket

  Increasingly complex intranode topology
   XT3/XT4 – One NUMA domain per OS instance
   XT5 – Two NUMA domains per OS instance
   Beyond XT5 – Expect density to increase

  NUMA domains provide a mechanism to:
   increase machine utilization
   assign multiple applications per node
   utilize OS features to shield processes from one another

  The batch system decides when to use the mechanisms
  Linux cpusets provide the underlying OS implementation

May 08 Cray Inc. Proprietary Slide 6

SDB Segment Table
  node_id – Node identifier mapping to processor table
  socket_id – Processor socket ordinal
  die_id – Processor die ordinal
  coremask – Processor core mask
  mempgs – number of pages local to memory controller

May 08 Cray Inc. Proprietary Slide 7

mysql> describe segment;
+-----------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+---------------------+------+-----+---------+-------+
node_id	int(10) unsigned	NO	MUL		
socket_id	tinyint(3) unsigned	NO			
die_id	tinyint(3) unsigned	NO		0	
coremask	int(10) unsigned	NO			
mempgs	int(10) unsigned	NO			
+-----------+---------------------+------+-----+---------+-------+
5 rows in set (0.01 sec)

NUMA Domain Support
  One application per NUMA domain

  Multiple NUMA domains per node allow multiple applications per
node

   Pro: Potentially higher overall resource utilization
   Con: Cannot mitigate contention for SeaStar bandwidth

  Quality of service guarantees
   Process aggregates (paggs) provide inescapable container
   CPU affinity enforced by the kernel
  Memory affinity enforced by cpusets

May 08 Cray Inc. Proprietary Slide 8

Test System Configuration
  Heterogeneous mix of XT4 and XT5 compute nodes

May 08 Cray Inc. Proprietary Slide 9

$ apstat -nv
 NID Arch State HW Rv Pl PgSz Avl Conf Placed PEs Apids
...
 52 XT UP I 4 - - 4K 2048000 0 0 0
 53 XT UP I 4 - - 4K 2048000 0 0 0
 54 XT UP I 4 - - 4K 2048000 0 0 0
 55 XT UP I 4 - - 4K 2048000 0 0 0
 56 XT UP I 8 - - 4K 4096000 0 0 0
 57 XT UP I 8 - - 4K 4096000 0 0 0
 58 XT UP I 8 - - 4K 4096000 0 0 0
 59 XT DN I 8 - - 4K 4096000 0 0 0
...
Compute node summary
 arch config up use held avail down
 XT 19 18 0 0 18 1
$

Updated hello.c (1 of 3)
  Similar to hello.c from “Base Camp”
  Reports for each process:

  MPI rank
   OpenMP thread
   hostname of compute node
   CPU affinity list

  Three parts: front matter, support function, main function

May 08 Cray Inc. Proprietary Slide 10

#define _GNU_SOURCE

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sched.h>
#include <mpi.h>
#include <omp.h>

Updated hello.c (2 of 3)

May 08 Cray Inc. Proprietary Slide 11

/* Borrowed from util-linux-2.13-pre7/schedutils/taskset.c */
static char *cpuset_to_cstr(cpu_set_t *mask, char *str)
{
 char *ptr = str;
 int i, j, entry_made = 0;
 for (i = 0; i < CPU_SETSIZE; i++) {
 if (CPU_ISSET(i, mask)) {
 int run = 0;
 entry_made = 1;
 for (j = i + 1; j < CPU_SETSIZE; j++) {
 if (CPU_ISSET(j, mask)) run++;
 else break;
 }
 if (!run)
 sprintf(ptr, "%d,", i);
 else if (run == 1) {
 sprintf(ptr, "%d,%d,", i, i + 1);
 i++;
 } else {
 sprintf(ptr, "%d-%d,", i, i + run);
 i += run;
 }
 while (*ptr != 0) ptr++;
 }
 }
 ptr -= entry_made;
 *ptr = 0;
 return(str);
}

Updated hello.c (3 of 3)

May 08 Cray Inc. Proprietary Slide 12

int main(int argc, char *argv[])
{
 int rank, thread;
 cpu_set_t coremask;
 char clbuf[7 * CPU_SETSIZE], hnbuf[64];

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 memset(clbuf, 0, sizeof(clbuf));
 memset(hnbuf, 0, sizeof(hnbuf));
 (void)gethostname(hnbuf, sizeof(hnbuf));
 #pragma omp parallel private(thread, coremask, clbuf)
 {
 thread = omp_get_thread_num();
 (void)sched_getaffinity(0, sizeof(coremask), &coremask);
 cpuset_to_cstr(&coremask, clbuf);
 #pragma omp barrier
 printf("Hello from rank %d, thread %d, on %s. (core affinity = %s)\n",
 rank, thread, hnbuf, clbuf);
 }
 MPI_Finalize();
 return(0);
}

Compiling and running hello.c

May 08 Cray Inc. Proprietary Slide 13

$ cd /tmp
$ cc -mp -g -o hello hello.c ; strip hello
/opt/xt-asyncpe/1.0/bin/cc: INFO: linux target is being used
hello.c:
$ aprun -N 1 -n 18 -cc none ./hello
Hello from rank 0, thread 0, on nid00044. (core affinity = 0,1)
Hello from rank 1, thread 0, on nid00045. (core affinity = 0,1)
Hello from rank 2, thread 0, on nid00046. (core affinity = 0,1)
Hello from rank 3, thread 0, on nid00048. (core affinity = 0,1)
Hello from rank 4, thread 0, on nid00049. (core affinity = 0,1)
Hello from rank 5, thread 0, on nid00050. (core affinity = 0,1)
Hello from rank 6, thread 0, on nid00051. (core affinity = 0,1)
Hello from rank 7, thread 0, on nid00052. (core affinity = 0-3)
Hello from rank 8, thread 0, on nid00053. (core affinity = 0-3)
Hello from rank 9, thread 0, on nid00054. (core affinity = 0-3)
Hello from rank 10, thread 0, on nid00055. (core affinity = 0-3)
Hello from rank 11, thread 0, on nid00056. (core affinity = 0-7)
Hello from rank 12, thread 0, on nid00057. (core affinity = 0-7)
Hello from rank 13, thread 0, on nid00058. (core affinity = 0-7)
Hello from rank 14, thread 0, on nid00060. (core affinity = 0-7)
Hello from rank 15, thread 0, on nid00061. (core affinity = 0-7)
Hello from rank 16, thread 0, on nid00062. (core affinity = 0-7)
Hello from rank 17, thread 0, on nid00063. (core affinity = 0-7)
Application 43132 resources: utime 0, stime 0
$

New NUMA Domain Parameters
  aprun -S pes_per_numa_domain

   Specifies PEs per NUMA domain (must be ≤ PEs per node)
   Up to four with quad core

  aprun -sn numa_domains_per_node
   Limits number of NUMA domains per node
   Only one for XT3/XT4; one or two for XT5

  aprun -sl list_of_numa_domains
   Specifies restricted list of NUMA domains for placement
   comma separated list or dash separated range

  aprun -ss
   Specifies strict memory affinity per NUMA domain
   Affinity policy is local NUMA domain only
   Alternative is node exclusive

  Specified per binary for MPMD launch

May 08 Cray Inc. Proprietary Slide 14

aprun -S pes_per_numa_domain (1 of 2)

May 08 Cray Inc. Proprietary Slide 15

$ aprun -S 1 -n 8 -L 56-63 -q ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 1, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 2, thread 0, on nid00057. (core affinity = 0-3)
Hello from rank 3, thread 0, on nid00057. (core affinity = 4-7)
Hello from rank 4, thread 0, on nid00058. (core affinity = 0-3)
Hello from rank 5, thread 0, on nid00058. (core affinity = 4-7)
Hello from rank 6, thread 0, on nid00060. (core affinity = 0-3)
Hello from rank 7, thread 0, on nid00060. (core affinity = 4-7)
$

nid00056
0 1
2 3

4 5
6 7

nid00057
0 1
2 3

4 5
6 7

nid00058
0 1
2 3

4 5
6 7

nid00060
0 1
2 3

4 5
6 7

aprun -S pes_per_numa_domain (2 of 2)

May 08 Cray Inc. Proprietary Slide 16

$ aprun -S 4 -n 8 -L 56-63 -q ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 1, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 2, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 3, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 4, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 5, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 6, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 7, thread 0, on nid00056. (core affinity = 4-7)
$

nid00056

0 1
2 3

4 5
6 7

aprun -sn numa_domains_per_node (1 of 2)

May 08 Cray Inc. Proprietary Slide 17

$ aprun -sn 1 -n 8 -L 56-63 -q ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 1, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 2, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 3, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 4, thread 0, on nid00057. (core affinity = 0-3)
Hello from rank 5, thread 0, on nid00057. (core affinity = 0-3)
Hello from rank 6, thread 0, on nid00057. (core affinity = 0-3)
Hello from rank 7, thread 0, on nid00057. (core affinity = 0-3)
$

nid00056

0 1
2 3

4 5
6 7

nid00057

0 1
2 3

4 5
6 7

aprun -sn numa_domains_per_node (2 of 2)

May 08 Cray Inc. Proprietary Slide 18

$ aprun -sn 2 -n 8 -L 56-63 -q ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 1, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 2, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 3, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 4, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 5, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 6, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 7, thread 0, on nid00056. (core affinity = 4-7)
$

nid00056

0 1
2 3

4 5
6 7

nid00057

0 1
2 3

4 5
6 7

aprun -sl list_of_numa_domains (1 of 3)

May 08 Cray Inc. Proprietary Slide 19

$ aprun -sl 0 -n 8 -L 56-63 -q ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 1, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 2, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 3, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 4, thread 0, on nid00057. (core affinity = 0-3)
Hello from rank 5, thread 0, on nid00057. (core affinity = 0-3)
Hello from rank 6, thread 0, on nid00057. (core affinity = 0-3)
Hello from rank 7, thread 0, on nid00057. (core affinity = 0-3)
$

nid00056

0 1
2 3

4 5
6 7

nid00057

0 1
2 3

4 5
6 7

aprun -sl list_of_numa_domains (2 of 3)

May 08 Cray Inc. Proprietary Slide 20

$ aprun -sl 1 -n 8 -L 56-63 -q ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 1, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 2, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 3, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 4, thread 0, on nid00057. (core affinity = 4-7)
Hello from rank 5, thread 0, on nid00057. (core affinity = 4-7)
Hello from rank 6, thread 0, on nid00057. (core affinity = 4-7)
Hello from rank 7, thread 0, on nid00057. (core affinity = 4-7)
$

nid00056

0 1
2 3

4 5
6 7

nid00057

0 1
2 3

4 5
6 7

aprun -sl list_of_numa_domains (3 of 3)

May 08 Cray Inc. Proprietary Slide 21

$ aprun -sl 0,1 -n 8 -L 56-63 -q ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 1, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 2, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 3, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 4, thread 0, on nid00057. (core affinity = 4-7)
Hello from rank 5, thread 0, on nid00057. (core affinity = 4-7)
Hello from rank 6, thread 0, on nid00057. (core affinity = 4-7)
Hello from rank 7, thread 0, on nid00057. (core affinity = 4-7)
$

nid00056

0 1
2 3

4 5
6 7

nid00057

0 1
2 3

4 5
6 7

aprun -ss (1 of 3)

May 08 Cray Inc. Proprietary Slide 22

$ aprun -ss -sl 0 -n 8 -L 56-63 -q ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 1, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 2, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 3, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 4, thread 0, on nid00057. (core affinity = 0-3)
Hello from rank 5, thread 0, on nid00057. (core affinity = 0-3)
Hello from rank 6, thread 0, on nid00057. (core affinity = 0-3)
Hello from rank 7, thread 0, on nid00057. (core affinity = 0-3)
$

nid00056

0 1
2 3

4 5
6 7

mem mem

nid00057

0 1
2 3

4 5
6 7

mem mem

aprun -ss (2 of 3)

May 08 Cray Inc. Proprietary Slide 23

$ aprun -ss -sl 1 -n 8 -L 56-63 -q ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 1, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 2, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 3, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 4, thread 0, on nid00057. (core affinity = 4-7)
Hello from rank 5, thread 0, on nid00057. (core affinity = 4-7)
Hello from rank 6, thread 0, on nid00057. (core affinity = 4-7)
Hello from rank 7, thread 0, on nid00057. (core affinity = 4-7)
$

nid00056

0 1
2 3

4 5
6 7

mem mem

nid00057

0 1
2 3

4 5
6 7

mem mem

aprun -ss (3 of 3)

May 08 Cray Inc. Proprietary Slide 24

$ aprun -ss -sl 0,1 -n 8 -L 56-63 -q ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 1, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 2, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 3, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 4, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 5, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 6, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 7, thread 0, on nid00056. (core affinity = 4-7)
$

nid00056

0 1
2 3

4 5
6 7

mem mem

nid00057

0 1
2 3

4 5
6 7

mem mem

New Core Affinity Parameters
  aprun -cc {segment | cpu | none | 0,1,2}

   Bind processes to one or more cores
   Restricts behavior of Linux process scheduler
   Default is NUMA domain (segment)

  aprun -cp cpu_placement_file_name
   Used for more complex specifications
   File must be accessible from the compute nodes
   Deferred implementation

  Specified per binary for MPMD launch

May 08 Cray Inc. Proprietary Slide 25

aprun -cc segment

May 08 Cray Inc. Proprietary Slide 26

$ aprun -cc segment -n 8 -L 56-63 -q ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 1, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 2, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 3, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 4, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 5, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 6, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 7, thread 0, on nid00056. (core affinity = 4-7)
$

nid00056

0 1
2 3

4 5
6 7

aprun -cc cpu

May 08 Cray Inc. Proprietary Slide 27

$ aprun -cc cpu -n 8 -L 56-63 -q ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 0)
Hello from rank 1, thread 0, on nid00056. (core affinity = 1)
Hello from rank 2, thread 0, on nid00056. (core affinity = 2)
Hello from rank 3, thread 0, on nid00056. (core affinity = 3)
Hello from rank 4, thread 0, on nid00056. (core affinity = 4)
Hello from rank 5, thread 0, on nid00056. (core affinity = 5)
Hello from rank 6, thread 0, on nid00056. (core affinity = 6)
Hello from rank 7, thread 0, on nid00056. (core affinity = 7)
$

nid00056

0 1
2 3

4 5
6 7

aprun -cc none

May 08 Cray Inc. Proprietary Slide 28

$ aprun -cc none -n 8 -L 56-63 -q ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 0-7)
Hello from rank 1, thread 0, on nid00056. (core affinity = 0-7)
Hello from rank 2, thread 0, on nid00056. (core affinity = 0-7)
Hello from rank 3, thread 0, on nid00056. (core affinity = 0-7)
Hello from rank 4, thread 0, on nid00056. (core affinity = 0-7)
Hello from rank 5, thread 0, on nid00056. (core affinity = 0-7)
Hello from rank 6, thread 0, on nid00056. (core affinity = 0-7)
Hello from rank 7, thread 0, on nid00056. (core affinity = 0-7)
$

nid00056

0 1
2 3

4 5
6 7

aprun -cc list

May 08 Cray Inc. Proprietary Slide 29

$ aprun -cc 2,4,6 -n 8 -L 56-63 -q ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 2)
Hello from rank 1, thread 0, on nid00056. (core affinity = 4)
Hello from rank 2, thread 0, on nid00056. (core affinity = 6)
Hello from rank 3, thread 0, on nid00056. (core affinity = 2)
Hello from rank 4, thread 0, on nid00056. (core affinity = 4)
Hello from rank 5, thread 0, on nid00056. (core affinity = 6)
Hello from rank 6, thread 0, on nid00056. (core affinity = 2)
Hello from rank 7, thread 0, on nid00056. (core affinity = 4)
$

nid00056

0 1
2 3

4 5
6 7

New Verbose Status Information

May 08 Cray Inc. Proprietary Slide 30

$ apstat -rvvv
 ResId ApId From Arch PEs N d Memory State
 4369 47722 batch:0 XT 8 0 1 1000 conf

Reservation detail
Res[0]: apid 47722, pagg 0, resId 4369, user crayadm,
 gid 14901, account 12795, time 0, normal
 Number of commands 1, control network fanout 32
 Cmd[0]: BASIL -n 8 -d 1 -N 0 -S 0 -sn 0 -sl 0x2 -a XT, mem
1000MB, nodes 2
 Reservation list entries: 8
 PE 0, cmd 0, nid 56, CPU 0xf0
 PE 1, cmd 0, nid 56, CPU 0xf0
 PE 2, cmd 0, nid 56, CPU 0xf0
 PE 3, cmd 0, nid 56, CPU 0xf0
 PE 4, cmd 0, nid 57, CPU 0xf0
 PE 5, cmd 0, nid 57, CPU 0xf0
 PE 6, cmd 0, nid 57, CPU 0xf0
 PE 7, cmd 0, nid 57, CPU 0xf0
$

Use Case 1
  MPI application
  Allow placement on any node
  Default CPU binding is per NUMA domain

May 08 Cray Inc. Proprietary Slide 31

$ aprun -q -n 8 ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 1, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 2, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 3, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 4, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 5, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 6, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 7, thread 0, on nid00056. (core affinity = 4-7)
$

Use Case 2
  Alter the CPU affinity to be per core

May 08 Cray Inc. Proprietary Slide 32

$ aprun -q -n 8 -cc cpu ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 0)
Hello from rank 1, thread 0, on nid00056. (core affinity = 1)
Hello from rank 2, thread 0, on nid00056. (core affinity = 2)
Hello from rank 3, thread 0, on nid00056. (core affinity = 3)
Hello from rank 4, thread 0, on nid00056. (core affinity = 4)
Hello from rank 5, thread 0, on nid00056. (core affinity = 5)
Hello from rank 6, thread 0, on nid00056. (core affinity = 6)
Hello from rank 7, thread 0, on nid00056. (core affinity = 7)
$

Use Case 3
  Allow Linux to migrate processes between CPUs

May 08 Cray Inc. Proprietary Slide 33

$ aprun -q -n 8 -cc none ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 0-7)
Hello from rank 1, thread 0, on nid00056. (core affinity = 0-7)
Hello from rank 2, thread 0, on nid00056. (core affinity = 0-7)
Hello from rank 3, thread 0, on nid00056. (core affinity = 0-7)
Hello from rank 4, thread 0, on nid00056. (core affinity = 0-7)
Hello from rank 5, thread 0, on nid00056. (core affinity = 0-7)
Hello from rank 6, thread 0, on nid00056. (core affinity = 0-7)
Hello from rank 7, thread 0, on nid00056. (core affinity = 0-7)
$

Use Case 4
  MPI application
  Four PEs per node
  May be XT4 or XT5 nodes
  Memory affinity is local NUMA domain

May 08 Cray Inc. Proprietary Slide 34

$ aprun -q -n 8 -N 4 -cc segment ./hello | sort
Hello from rank 0, thread 0, on nid00052. (core affinity = 0-3)
Hello from rank 1, thread 0, on nid00052. (core affinity = 0-3)
Hello from rank 2, thread 0, on nid00052. (core affinity = 0-3)
Hello from rank 3, thread 0, on nid00052. (core affinity = 0-3)
Hello from rank 4, thread 0, on nid00053. (core affinity = 0-3)
Hello from rank 5, thread 0, on nid00053. (core affinity = 0-3)
Hello from rank 6, thread 0, on nid00053. (core affinity = 0-3)
Hello from rank 7, thread 0, on nid00053. (core affinity = 0-3)
$

Use Case 5
  MPI application
  Four PEs per node
  Two PEs per NUMA domain
  Must be XT5 nodes

May 08 Cray Inc. Proprietary Slide 35

$ aprun -q -n 8 -N 4 -S 2 ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 1, thread 0, on nid00056. (core affinity = 0-3)
Hello from rank 2, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 3, thread 0, on nid00056. (core affinity = 4-7)
Hello from rank 4, thread 0, on nid00057. (core affinity = 0-3)
Hello from rank 5, thread 0, on nid00057. (core affinity = 0-3)
Hello from rank 6, thread 0, on nid00057. (core affinity = 4-7)
Hello from rank 7, thread 0, on nid00057. (core affinity = 4-7)
$

Use Case 6
  MPI application
  Two PEs per NUMA domain
  Stay off CPUs 0 and 1 of each NUMA domain

May 08 Cray Inc. Proprietary Slide 36

$ aprun -q -n 8 -S 2 -cc 2,3,6,7 ./hello | sort
Hello from rank 0, thread 0, on nid00056. (core affinity = 2)
Hello from rank 1, thread 0, on nid00056. (core affinity = 3)
Hello from rank 2, thread 0, on nid00056. (core affinity = 6)
Hello from rank 3, thread 0, on nid00056. (core affinity = 7)
Hello from rank 4, thread 0, on nid00057. (core affinity = 2)
Hello from rank 5, thread 0, on nid00057. (core affinity = 3)
Hello from rank 6, thread 0, on nid00057. (core affinity = 6)
Hello from rank 7, thread 0, on nid00057. (core affinity = 7)
$

ALPS Tool Helper
  Provides mechanism to launch a helper process
  One helper launched per node of an application
  Controlling (login node) process provided with

   ALPS application ID
   Placement list

  Helper (compute node) processes provided with
   ALPS fanout tree data
   Local process IDs associated with application

  Helper processes establish their own communication paths
  Private interface used for integration with

   Application debuggers
   Checkpoint / Restart

May 08 Cray Inc. Proprietary Slide 37

Checkpoint / Restart Overview
  ALPS integration with BLCR

   Berkeley Labs Checkpoint Restart

  Enhances recoverability when nodes fail
  Allows for preemptive scheduling

   System maintenance
   High priority jobs

  Relies on Lustre as backing store
  Utilizes ALPS tool helper interface
  Supported on XT compute nodes running CLE

   No X2 support
   No Catamount support

  Limited availability summer 2008

May 08 Cray Inc. Proprietary Slide 38

Checkpoint Tasks
  aprun modifications

   Checkpoint capable
  Multithreaded (main and handler threads)
  Register BLCR checkpoint handler

   BLCR checkpoint handler
  Called when checkpoint requested, determines if periodic or kill
  ALPSMSG_CHKPNT begin sent to apsys, status updated
  Tool helper launched to perform compute node checkpoint
  aprun waits for compute node checkpoints to complete
  ALPSMSG_CHKPNT end sent to apsys, status updated

  Checkpoint helper
   Triggers and coordinates checkpoint activities on compute nodes
   Returns status to checkpoint handler in aprun

May 08 Cray Inc. Proprietary Slide 39

Checkpoint Illustration

May 08 Cray Inc. Proprietary Slide 40

Restart Tasks
  aprun checkpoint handler thread resumes execution

   Obtain restart command from BLCR
   Set bypass transfer bit (restart command present on compute node)
   Set restart bit indicating a restart is underway
   Yield control back to main thread

  aprun main thread resumes execution
   Check the restart bit and prepare for restart
   aprun files a new placement request indicating restart
   apsched assigns a new application ID and placement list
   aprun restarts stdin handler
   launch of restart command proceeds
   restart command waits for child to complete

May 08 Cray Inc. Proprietary Slide 41

Restart Illustration

May 08 Cray Inc. Proprietary Slide 42

ALPS for Cray XT5h Systems
  Quadrant support

   Allows up to four node spanning applications per node
   Allows oversubscription of CPUs, but not memory
   Applications are context switched by ALPS

  Context switching
   Supports CPU oversubscription
   No gang scheduling interval (this is not gang scheduling)
   Not supported for XT, processor to memory ratio is too high

May 08 Cray Inc. Proprietary Slide 43

ALPS for X2 (1 of 2)
  PEs utilize DM for IPC
  Platform specific apinit daemon

   DM placement support (NTT, RTT, processor/node granularity)
  NTT maps virtual PE to physical endpoint
  RTT similar to TLB, maps incoming requests

   Uses apstart for application initialization
  Allows ALPS to remain agnostic to programming environment
  MPI and shmem both supported with no changes to ALPS

  Placement scheduler (apsched) enhancements
   Architecture specific placement for DM
   High radix fat tree reduces placement restrictions

  Client specific enhancements
   Launch client (aprun) recognizes binary format
   Status client (apstat) distinguishes between architectures

May 08 Cray Inc. Proprietary Slide 44

ALPS for X2 (2 of 2)
  Multiple architecture support

   Support existing (XT/X2) and future architectures
   Bridge gathers configuration data from SDB, Mazama, etc.
   Heterogeneous and extensible by design
   Interactive use automatically determines binary format
   Batch use requires user/queue to specify architecture
   User may override architecture with aprun -a parameter

  Multiple applications may currently communicate via
   files
   pipes
   sockets

  aprun -n 16 my_bw_app | aprun -n 32 my_xt_app

May 08 Cray Inc. Proprietary Slide 45

Application Initialization for X2 (1 of 2)
  apinit forks a shepherd for the application
  apshepherd uses libdmapp to prepare DM tables

   RTT handles incoming DM references
   NTT handles external DM references

  apshepherd does fork/exec of target binary

May 08 Cray Inc. Proprietary Slide 46

apinit

apshepherd

Application
Binary (PE Ø) apstart PE 1

libdmapp

RTT
(incoming)

NTT
(outgoing)

Application Initialization for X2 (2 of 2)
  Linker references apstart routine

   Performs clone for remaining PEs on node
   Reparents PEs to apshepherd
  Maps huge page memory for application
   These steps do not happen for commands, only applications

  Application begins execution

May 08 Cray Inc. Proprietary Slide 47

apinit

apshepherd

Application
Binary (PE Ø) apstart PE 1

libdmapp

RTT
(incoming)

NTT
(outgoing)

Compiling an X2 Application
  Load appropriate modules
  Compile the application
  Strip the binary

May 08 Cray Inc. Proprietary Slide 48

$ module purge
$ module use /opt/ctl/modulefiles
$ module load PrgEnv-x2
$ cc -h omp -g -o hello_x2 hello.c
CC-7907 cc: WARNING File = hello.c, Line = 1
 The "-hscalar" level has been changed from 0 to 1 for OpenMP
processing in one
 or more functions.
$ strip hello_x2
$

MPMD Application Launch

May 08 Cray Inc. Proprietary Slide 49

$ aprun -n 4 ./hello_xt
Hello from rank 0, thread 0, on nid00016. (core affinity = 0)
Hello from rank 1, thread 0, on nid00017. (core affinity = 0)
Hello from rank 2, thread 0, on nid00018. (core affinity = 0)
Hello from rank 3, thread 0, on nid00019. (core affinity = 0)
Application 409799 resources: utime 0, stime 0
$ aprun -n 4 ./hello_x2
Hello from rank 0, thread 0, on nid02048. (core affinity = 0-3)
Hello from rank 3, thread 0, on nid02048. (core affinity = 0-3)
Hello from rank 2, thread 0, on nid02048. (core affinity = 0-3)
Hello from rank 1, thread 0, on nid02048. (core affinity = 0-3)
Application 409800 resources: utime 9, stime 6
$ aprun -n 4 ./hello_xt : -n 4 ./hello_x2
Hello from rank 0, thread 0, on nid00016. (core affinity = 0)
Hello from rank 1, thread 0, on nid00017. (core affinity = 0)
Hello from rank 2, thread 0, on nid00018. (core affinity = 0)
Hello from rank 3, thread 0, on nid00019. (core affinity = 0)
Hello from rank 4, thread 0, on nid02048. (core affinity = 0-3)
Hello from rank 7, thread 0, on nid02048. (core affinity = 0-3)
Hello from rank 6, thread 0, on nid02048. (core affinity = 0-3)
Hello from rank 5, thread 0, on nid02048. (core affinity = 0-3)
Application 409801 resources: utime 9, stime 6
$

BASIL 1.1
  Changes to

   Inventory method
   Reservation creation (batch_id added)
   Reservation confirmation (job_name removed)

May 08 Cray Inc. Proprietary Slide 50

BASIL 1.1 Inventory Request
  Updated protocol version in request

  Backward compatibility
   1.1 requests return 1.1 responses
   1.0 requests return 1.0 responses

  Response includes
   Additional node data

  SegmentArray and Segment elements
   Additional reservation information

  CommandArray and Command elements
  batch_id

May 08 Cray Inc. Proprietary Slide 51

<?xml version="1.0"?>
<BasilRequest protocol="1.1" method="QUERY" type="INVENTORY"/>

BASIL 1.1 Segment Arrays

May 08 Cray Inc. Proprietary Slide 52

<Node node_id="62" name="c0-0c1s7n2" architecture="XT" role=”BATCH” state="UP">
 <SegmentArray>
 <Segment ordinal="0">
 <ProcessorArray>
 <Processor ordinal="0" architecture="x86_64" clock_mhz="1900"/>
 <Processor ordinal="1" architecture="x86_64" clock_mhz="1900"/>
 <Processor ordinal="2" architecture="x86_64" clock_mhz="1900"/>
 <Processor ordinal="3" architecture="x86_64" clock_mhz="1900"/>
 </ProcessorArray>
 <MemoryArray>
 <Memory type="OS" page_size_kb="4" page_count="2048000"/>
 </MemoryArray>
 <LabelArray/>
 </Segment>
 <Segment ordinal="1">
 <ProcessorArray>
 <Processor ordinal="0" architecture="x86_64" clock_mhz="1900"/>
 <Processor ordinal="1" architecture="x86_64" clock_mhz="1900"/>
 <Processor ordinal="2" architecture="x86_64" clock_mhz="1900"/>
 <Processor ordinal="3" architecture="x86_64" clock_mhz="1900"/>
 </ProcessorArray>
 <MemoryArray>
 <Memory type="OS" page_size_kb="4" page_count="2048000"/>
 </MemoryArray>
 <LabelArray/>
 </Segment>
 </SegmentArray>
</Node>

BASIL 1.1 Application Data

May 08 Cray Inc. Proprietary Slide 53

<ReservationArray>
 <Reservation reservation_id="3" user_name="me" account_name="DEFAULT"
 time_stamp="1209577894" batch_id="4321">
 <ApplicationArray>
 <Application application_id="49398" user_id=”12345" group_id="1049"
 time_stamp="1209577894">
 <CommandArray>
 <Command width="1" depth="8" nppn="0" memory="1000" architecture="XT"
 cmd="BASIL"/>
 </CommandArray>
 </Application>
 <Application application_id="49399" user_id=”12345" group_id="1049"
 time_stamp="1209578763">
 <CommandArray>
 <Command width="1" depth="1" nppn="0" memory="1000" architecture="XT"
 cmd="hello"/>
 </CommandArray>
 </Application>
 </ApplicationArray>
 </Reservation>
</ReservationArray>

BASIL 1.1 Reservation Request
  Required batch_id field

   Replaces job_name from confirm method in BASIL 1.0
   ALPS stores numeric portion
   Batch ID present in inventory to correlate with ALPS reservation ID

  New resource types

May 08 Cray Inc. Proprietary Slide 54

<?xml version="1.0"?>
<BasilRequest protocol="1.1" method="RESERVE">
 <ReserveParamArray user_name="me" batch_id="4321.sdb">
 <ReserveParam architecture="XT" width="2" depth="1" npps="1"/>
 </ReserveParamArray>
</BasilRequest>

aprun BASIL Description
-S npps PEs per NUMA domain
-sn nspn NUMA domains per node
-sl segments NUMA domain list

Troubleshooting ALPS
  Configuration file parameters
  Tracking down problems
  Common problems

May 08 Cray Inc. Proprietary Slide 55

/etc/sysconfig/alps (1 of 2)
  Present in boot root and shared root

May 08 Cray Inc. Proprietary Slide 56

Parameter Description

ALPS_MASTER_NODE (Required) Specifies the node name (uname -n) of the service node that
runs apsched. Cray recommends that the SDB node be used as the
ALPS_MASTER_NODE.
For example: ALPS_MASTER_NODE="nid00003"

ALPS_BRIDGE_NODE (Required) Specifies the node name (uname -n) of the service node that
runs apbridge. This is usually the boot node. If no value is set and there is
network connectivity between the master node and the SMW, the default
value ALPS_MASTER_NODE is used. (Such connectivity is guaranteed to
exist from the boot node.) This default value is enforced in /etc/init.d/alps.
For example: ALPS_BRIDGE_NODE="boot001"

ALPS_MOUNT_SHARED_FS Specifies the shared file system. If a separate file system is mounted at
ALPS startup to hold control data, set to yes. Default is no. Use of separate
file system space is optional for configurations using a single login node.
For configurations using multiple login nodes, a shared file system is
required, and this parameter must be set to yes.
For example: ALPS_MOUNT_SHARED_FS="yes"

/etc/sysconfig/alps (2 of 2)

May 08 Cray Inc. Proprietary Slide 57

Parameter Description

ALPS_SHARED_DIR_PATH (Required) Specifies the directory path to the file that
contains ALPS control data. If ALPS_MOUNT_SHARED_FS is set
to yes, this is assumed to be a mount point. Default is /ufs/
alps_shared.
For example: ALPS_SHARED_DIR_PATH="/ufs/alps_shared"

ALPS_SHARED_DEV_NAME Specifies the device to mount at ALPS start-up. If it is null and
ALPS_MOUNT_SHARED_FS is yes, the device is determined by /
etc/fstab. This parameter is not used unless yes is specified for
ALPS_MOUNT_SHARED_FS.
For example: ALPS_SHARED_DEV_NAME="ufs:/ufs/alps_shared"

ALPS_SHARED_MOUNT_OPTIONS Specifies the shared mount options. Set this parameter only if
ALPS_MOUNT_SHARED_FS is yes and
ALPS_SHARED_DEV_NAME is not null.
For example: ALPS_SHARED_MOUNT_OPTIONS="-t nfs -o tcp,rw"

ALPS_IP_PREFIX Specifies the first two octets for IP addresses on the high-speed
network (HSN). These are internal addresses within the HSN.
For example: ALPS_IP_PREFIX="192.168”

/etc/alps.conf (1 of 2)
  Present in the ALPS shared root

May 08 Cray Inc. Proprietary Slide 58

Parameter Description

bridge Enables the apbridge daemon to provide dynamic rather than static
information about the system node configuration to apsched. Cray strongly
recommends setting the bridge parameter to use the apbridge daemon. By
default, it is set to 1 (enabled).

alloc If 0 or not specified, the distinction between batch and interactive nodes is
enforced; if nonzero, no distinction is made. By default, it is set to 0.

debug This field is set to a default level of 1 for both apsched and apsys. For
information about valid values, see the apsched(8) and apsys(8) man pages.

fanout This field is set to a default level of 32. This value controls the width of the
ALPS TCP/IP network fan-out tree used by apinit on the compute nodes for
ALPS application launch, transfer, and control messages.

/etc/alps.conf (2 of 2)
  Configuration example

May 08 Cray Inc. Proprietary Slide 59

$ cat /etc/alps.conf
ALPS configuration file
See the system admin guide for more information
on possible settings and values

apsched
 alloc 0
 bridge 1
 fanout 32
 debug 1
/apsched

apsys
 debug 1
/apsys
$

Tracking Problems
  ALPS log files

   /var/log/alps/apschedMMDD on the SDB node
   /var/log/alps/apbridgeMMDD on the boot node
   /var/log/alps/apsysMMDD on the login nodes
   /var/log/alps/apinitMMDD.NID on compute nodes

  Event logs
  Console logs
  HSS logs
  System dumps

May 08 Cray Inc. Proprietary Slide 60

Common Problem 1
  Scenario: apstat is taking a long time to respond
  Probable cause: HSN or ALPS shared file system problems
  Discussion: ALPS utilizes memory mapped files over NFS to

store reservation and application data. ALPS clients such as
apstat may read data from these files without having to query
an ALPS daemon. However, problems with the network or
the underlying file system can lead to significant delays or
failures when invoking apstat.

  Solution: Address the underlying HSN or NFS issues

May 08 Cray Inc. Proprietary Slide 61

Common Problem 2
  Scenario: apstat shows a node up, but applications fail to

launch claiming the node is unavailable
  Probable cause: HSN or apwatch problems
  Discussion: The ALPS apwatch daemon runs on the boot

node and subscribes to events indicating node failure,
forwarding them to apsched. If apwatch is down, these
events will not be seen by apsched. Alternatively, problems
with the HSN can lead to hung system calls on the compute
nodes. This can lead to nodes becoming unresponsive as
they wait for network requests to complete.

  Solution: Restart ALPS on the boot node or diagnose and
address HSN issues

May 08 Cray Inc. Proprietary Slide 62

Common Problem 3
  Scenario: aprun failure "before app startup barrier"
  Probable cause: Programming environment failure
  Discussion: ALPS shares information with the programming

environment through an API called the ALPS Low Level
Interface (ALPS LLI). This message is seen when there is a
problem with this exchange of data. The main() function has
not yet been called. The problem is most likely the result of
an unhealthy node or HSN problems.

  Solution: Try using a different set of nodes to launch your
application.

May 08 Cray Inc. Proprietary Slide 63

Common Problem 4
  Scenario: aprun failure "No such file or directory"
  Probable cause: aprun invoked from non-Lustre file system
  Discussion: As part of application initialization, ALPS

initializes the user’s environment on the compute node to
match that of the login node where aprun was invoked. This
includes per-process limits, environment variables, and the
current working directory. If aprun is invoked from a directory
that is not visible on the compute nodes, this failure will
occur.

  Solution: Launch the application from a Lustre mounted file
system that is visible on the compute nodes. Alternatively,
launching an application from /tmp will also work.

May 08 Cray Inc. Proprietary Slide 64

Common Problem 5
  Scenario: node counts from apstat don't seem to add up
  Probable cause: Simple misunderstanding
  Discussion: Only placed applications with a claim against a

reservation show up in the apstat -nv display. ALPS
reservations created for batch jobs may not have claims
against them. These reservations can be seen using the
apstat -r display.

  Solution: Use apstat –r to see reserved resources

May 08 Cray Inc. Proprietary Slide 65

Common Problem 6
  Scenario: ALPS not starting properly
  Probable cause: portmapper conflict
  Discussion: At Linux boot time, privileged ports are assigned

by the portmapper daemon in consecutive order starting with
port 600. This can cause a conflict when ALPS tries to bind
to ports at startup.

  Solution: Configure the portmapper blacklist file…

May 08 Cray Inc. Proprietary Slide 66

$ cat /etc/bindresvport.blacklist
This file contains a list of port numbers between 600 and 1024,
which should not be used by bindresvport. bindresvport is mostly
called by RPC services. This mostly solves the problem, that a
RPC service uses a well known port of another service.
606 # ALPS
607 # ALPS
608 # ALPS
631 # cups
636 # ldaps
774 # rpasswd
921 # lwresd
993 # imaps
995 # pops
$

Comprehensive System Accounting (CSA)
  Customized open source implementation
  Kernel patches expand data collection beyond BSD 4
  Linux process aggregates (paggs) and jobs
  Features:

   Project based accounting
   ALPS integration
   Batch system integration
   Shared file system for collection/reporting
   Report generation

May 08 Cray Inc. Proprietary Slide 67

Cray Enhancements to CSA
  Additional fields for process accounting records:

   ALPS application ID
   Node location (cname) and NID
   Node architecture
   Controlling terminal
   Parent job ID (aprun pagg job ID from login node)

  Additional fields for start/end of job records:
   Node location (cname) and NID
   Node architecture
   Parent job ID

  Additional fields for accounting configuration records:
   Node location (cname)
   Node architecture

May 08 Cray Inc. Proprietary Slide 68

CSA at Application Launch
  Service nodes

   ALPS collects pagg job ID and account ID, defines application ID
  Pagg job ID acquired by batch system or PAM module
  Account ID may be changed using account(1) command

   Data forwarded to compute nodes during application launch

  Compute nodes
   apshepherd ioctl() calls via libjob…

  Set pagg job ID and parent job ID
  Set account ID
  Set ALPS application ID

   Process accounting records written to local /var/csa/day/pacct file

May 08 Cray Inc. Proprietary Slide 69

CSA at Application Exit
  apinit calls csanodeacct(8) indirectly
  csanodeacct(8) does the following:

   calls csaswitch(8) to rotate current accounting file
   Determine path to destination file based on cname
   Evaluates COMPUTE_NODE_PROC_ACCT

  Create application summary record OR
  Transfers all accounting records

   csanodesum(8) is called with pathname and summary option
  validates all accounting records
  forms summary records if specified
  transfers records to shared file system

May 08 Cray Inc. Proprietary Slide 70

CSA Service Node Requirements
  Prerequisites

   Persistent /var must be configured on service nodes
   /etc/csa.conf must be edited for compute and service nodes

  Operational
   Each login node

  Uses cron to periodically run csanodeacct(8)
• csanodeacct(8) calls csanodesum(8) to move the data

   One login node
  Invokes csarun(8) to prepare pacct files for processing
  csarun(8) runs csanodemerg(8) to consolidate data

• csanodemerg(8) calls csanodesum(8) to move the data
  csaperiod(8) used to generate periodic accounting reports

  Reports are generated based on data in Lustre

May 08 Cray Inc. Proprietary Slide 71

CSA Data Files
  XT example

  X2 example

May 08 Cray Inc. Proprietary Slide 72

/lus/nid00135/csa/XT/cab0/row0/cage2/slot6/mcomp3

SYSTEM_CSA_PATH Arch c-name

/lus/nid00135/csa/X2/rank1/x0/y11/chassis7/slot6/node3

SYSTEM_CSA_PATH Arch r-name

CSA Configuration for /etc/csa.conf

May 08 Cray Inc. Proprietary Slide 73

Name Value Description
COMPUTE_NODE_PROC_ACCOUNT ON | OFF Enables collection of individual process accounting

records. Can be set differently for shared root and
compute node images.

ACCT_SIO_NODES 1-99 Defines number of mount points for accounting file
systems.

ACCT_FILE_SYSTEM_## _lus_nid00007 Must be one ACCT_FILE_SYSTEM_## defined for
each ACCT_SIO_NODE that is configured. Each one
defines an account file system mount point. Note: "_"
must be used to represent "/" in pathname. This
example defines a mount point on /lus/nid00007.

_lus_nid00007_csa_XT c0-0c0n0s0--
c0-0c2c7c3

Defines a path for Cray XT accounting files described
by the c-name range shown. These files will be
written in subdirectories under the following
pathname: /lus/nid00007/csa/XT

_lus_nid00007_csa_X2 r10-11c0s0n0--
r10-13c2s7n3

Defines a path for Cray X2 accounting files described
by the r-name range shown. These files will be
written in subdirectories under the following
pathname: /lus/nid00007/csa/X2

SYSTEM_CSA_PATH /lus/nid00007/csa Defines the pathname where CSA will maintain its
working directories, and also where the accounting
reports are saved.

Sample /etc/csa.conf (1 of 2)

May 08 Cray Inc. Proprietary Slide 74

Create only Application summary records for compute nodes (Recommended)
Note, it may be desirable to create application summary records for
compute nodes, and to save all process accounting records for service
nodes. This can be done by having different settings for the
COMPUTE_NODE_PROC_ACCOUNT parameter on the shared root versus the
compute node image.

COMPUTE_NODE_PROC_ACCOUNT OFF

Define 3 SIO nodes to handle accounting files

ACCT_SIO_NODES 3

Define the file system mount points for these SIO nodes for the
following 3 SIO nodes:
/lus/nid00011
/lus/nid00128
/lus/nid00335

ACCT_FILE_SYSTEM_00 _lus_nid00011
ACCT_FILE_SYSTEM_01 _lus_nid00128
ACCT_FILE_SYSTEM_02 _lus_nid00335

Sample /etc/csa.conf (2 of 2)

May 08 Cray Inc. Proprietary Slide 75

Write accounting files to these file systems as follows:
All cabinet 0 and 1 files to /lus/nid00011
All cabinet 2 files to /lus/nid00128
All cabinet 3 and 4 files to /lus/nid00135
Make sure all rages of possible node cnames are covered by the
configuration.
Make sure that there is no overlap between the different file systems.

_lus_nid00011_csa_XT c0-0c0s0n0--c1-0c2s7n3
_lus_nid00128_csa_XT c2-0c0s0n0--c2-0c2s7n3
_lus_nid00335_csa_XT c3-0c0s0n0--c4-0c2s7n3

Setup up the system wide CSA accounting file and the CSA working
directories on /lus/nid00128
SYSTEM_CSA_PATH /lus/nid00128/csa

Using csacom
  Searches and prints CSA accounting files
  One entry per process, per node
  Extended options

   -l1 prints NID
   -l2 prints c-name
   -l3 prints NID and c-name

May 08 Cray Inc. Proprietary Slide 76

$ csacom -P -J -l2 pacct
ACCOUNTING RECORDS FROM: Mon Apr 7 13:33:33 2008
COMMAND START END REAL CPU PROJECT NODE PHYSICAL NODE
NAME USER TTY TIME TIME (SECS) (SECS) JOB ID ID LOCATION TYPE
#gunzip root 0 17:39:17 17:39:17 0.23 0.06 0x2437 0 c0-0c1s0n2 1
#cpubound beh 0 17:39:17 17:39:47 30.01 30.00 0x2437 8036 c0-0c1s0n2 1
#apinit root 0 17:39:17 17:39:47 30.14 0.03 0x2437 8036 c0-0c1s0n2 1
#gunzip root 0 17:39:17 17:39:17 0.23 0.07 0x2437 0 c0-0c1s0n3 1
#cpubound beh 0 17:39:17 17:39:47 30.00 30.00 0x2437 8036 c0-0c1s0n3 1
#apinit root 0 17:39:17 17:39:47 30.14 0.00 0x2437 8036 c0-0c1s0n3 1
#gunzip root 0 17:39:16 17:39:16 0.23 0.05 0x2437 0 c0-0c1s1n0 1
#cpubound beh 0 17:39:17 17:39:47 30.00 30.00 0x2437 8036 c0-0c1s1n0 1
#apinit root 0 17:39:16 17:39:46 30.13 0.00 0x2437 8036 c0-0c1s1n0 1
#gunzip root 0 17:39:17 17:39:17 0.23 0.06 0x2437 0 c0-0c1s2n0 1
#cpubound beh 0 17:39:17 17:39:47 30.00 30.00 0x2437 8036 c0-0c1s2n0 1
#apinit root 0 17:39:17 17:39:47 30.13 0.01 0x2437 8036 c0-0c1s2n0 1
...

Thank You!
  The ALPS development team

  Marlys Kohnke
   Carl Albing
   Jim Nordby
   Jason Coverston

  The CSA development team
   Don Hankins

  Group manager
   Blaine Ebeling

  Technical Lead / Chief Procrastinator
  Michael Karo

  Questions, comments, feedback, and discussion…

May 08 Cray Inc. Proprietary Slide 77

