

CUG 2008 Proceedings 1 of 9

Performance Analysis and Optimization of the Trilinos Epetra
Package on the Quad-Core AMD Opteron Processor

Brent Leback
The Portland Group (PGI) – a wholly-owned subsidiary of

STMicroelectronics
Douglas Doerfler and Michael Heroux

Sandia National Laboratories

ABSTRACT: At CUG 2007, we presented a paper describing optimizations applied to
the Alegra C++ application which included allowing packed, consecutive-element
storage of vectors, some restructuring of loops containing neighborhood operations, and
adding type qualifiers to some C++ pointer declarations to improve performance.
Additionally, improvements to the PGI 7.1 C++ compiler were implemented to enable
better C++ vectorization. In this paper we investigate the performance of Sandia’s
Trilinos Solver, and specifically its performance on the latest Quad-Core processors from
AMD. By implementing a different sparse storage format and tuning a key kernel we
are able to demonstrate a 44% to 91% improvement in performance.

KEYWORDS: Compiler, C, C++, Optimization, Vectorization, Performance Analysis,
AMD Opteron™, Intel Core™ 2

1. Introduction
The emergence of multi-core microprocessor

architectures is forcing application library developers to
re-evaluate coding techniques, data structures and the
impact of compiler optimizations to ensure efficient
performance.

For current and future massively parallel high
performance computing systems, a key factor limiting
overall performance and scalability is the ability to move
data between subsystems. System performance is dictated
by the ability to move data between nodes and the I/O
subsystem. Data movement between the memory
subsystem and its associated CPU dictates node
performance, which is the focus of this paper. We have
entered an era in which for many CPUs, FLOPS are free,
and extracting performance from the CPU is a function of
optimizing the data movement to best utilize the
computational resources. The application writer must be
cognizant of optimal algorithms and data structure storage
techniques. As a result, given proper data layout in main
memory, an optimizing compiler can then be uninhibited
to extract high performance for a given CPU.

However, these two necessary conditions cannot be

performed independently and it is necessary to involve

application knowledge and compiler expertise
simultaneously to maximize results. The PGI compiler
suite has been the mainstream compilation environment at
Sandia National Laboratories for several years in its high
performance computing initiatives. PGI compiler suites
were deployed on the 32-bit Intel x86 processor-based
ASCI Red supercomputer in 1997, in addition to Sandia’s
2nd generation capability class ASC Red Storm, a 64-bit
AMD Opteron processor-based platform deployed in
2004 and still operational. PGI compilers are also
deployed on Sandia’s many computational clusters, the
most recent being the Opteron based ASC Tri-Lab
Capacity Computing (TLCC) clusters, being deployed in
2008. Throughout this period, there has been a continual
effort to ensure that optimal performance is extracted and
utilized on these platforms.

Sandia’s Scalable Architectures Group is continually
evaluating new technologies and technological trends to
determine the impact on its application base. One such
trend is the increasing width of SIMD units to increase
peak floating-point rates in general purpose processors. At
CUG 2007, a paper was presented on optimizing the
performance for a kernel from Sandia’s Alegra
application [1]. This paper is a follow-on effort
investigating performance for sparse matrix-vector
kernels from the Trilinos solver package.

CUG 2008 Proceedings 2 of 9

Packages employed in the Trilinos framework, and in
particular the Epetra package, must support the transition
to multi-core timely and efficiently. This paper evaluates
the performance of Epetra on the AMD Barcelona
processor and investigates optimizations to exploit the
performance potential of multiple cores and the double-
wide SIMD unit.

2. Architecture Considerations on x64
 Processors

Recent X64 processors from AMD and Intel have
followed a similar, well-documented track. While the
speed of the processors seems to have reached a plateau,
the number of cores on a socket has increased from one,
to two, to four, over the last several years.

It is important when running on newer systems to be
clear in the presentation of performance data.
Performance obtained running on 1 core of a quad-core
system may or may not be sustainable when running the
same or similar code on all four cores at the same time.
Even running multiple instances of the code, on multiple
socket systems, can be misleading. As Figure 1 shows, it
is important to lock threads or processes onto all cores of
the same socket. A term used for this principle is running
"fully subscribed". Taskset is a Linux utility that can set a
processes’s CPU affinity and the ampersand and wait
command are shell job control utilities.

Diagram 1. Performance of the same binary can vary
from 435 MFlops to 260 MFlops depending on where
and how many.

As we documented in the CUG 2007 paper, the width

of the SSE computational units, for obtaining peak
floating point performance, has increased from 64 bits
wide to 128 bits wide in the last year. A recent
announcement from Intel states they are extending the
SSE units to 256 bits wide in a future design[2] . AMD
has plans to use fused-multiply-add (FMA) ops in a future
product[3]. Both of these architectural changes have the

potential to again double the peak floating point
performance.

One performance feature which has not seen this
"doubling phenomenon" is the memory hierarchy. In fact,
given the increase in the number of cores and the SSE
width, memory bandwidth as a percentage of peak
performance has actually decreased over the last 5 years.

Diagram 2 shows the peak data transfer bandwidth as
a percentage of the peak floating point performance for a
number of X64 processors which have been available
over the last 5 years. These numbers were measured on a
number of different types of machines, from laptops to
servers, and from single-core-per-socket processors to
quad-core. All measurements are with fully-subscribed
cores.

Peak Transfer Rate divided by Peak FP Performance

0.1%

1.0%

10.0%

100.0%

FP

Registers

L1 Loads L1 Stores L2 Loads L2 Stores Memory

Loads

Memory NT

Stores

Memory

Stores

Athlon 64 Q1 '03
1.6 GHz

Opteron Q4 '03
1.6 GHz

Athlon 64 Q3 '04
2.2 GHz

Opteron Q3 '04
2.2 GHz

EM64T Q4 '05
3.6 GHz

Opteron Q1 '05
2.2 GHz

Pentium D Q2 '05

3.2 GHz

Woodcrest Q3 '06

3.0 GHz

Core2 Duo Q4 '06

2.0 GHz

Opteron Q2 '07

2.4 GHz

Penryn Q4 '07

3.0 GHz

Barcelona Q4 '07

2.0 GHz

Future-1 Q4 '08
2.5 GHz

Future-2 Q4 '09
2.5 GHz

Diagram 2. The decline of the peak rate of data
transfer compared to peak floating point performance.
Note the logarithmic scale.

The Future-1 and Future-2 processors are

hypothetical. The Future-1 processor from Diagram 2
assumes hardware updates which doubles the peak
floating point performance (either through FMA or wider
SSE units), runs at 2.5 GHz, and has a 25% memory
bandwidth improvement. The Future-2 processor also has
the Future-1 SSE units and speed, but with eight cores per
socket, and an additional 25% memory bandwidth
improvement over Future-1.

Diagram 3 shows the sustainable compute intensity
for each level of the memory hierarchy. Computational
intensity is defined as the number of arithmetic operations
(floating point operations, normally) performed per
memory transfer. [4]

Today's X64 architectures can perform 2x the number of
single precision computations as double precision in their

Compute Intensity =
Number of Input/Output Data Points

Total Number of Operations

CUG 2008 Proceedings 3 of 9

SSE units, where each data operand is 1/2 the size.
Therefore compute intensity is independent of data type.

So, for example, a simple dot product:

 for (i = 0; i<N; i++)
 sum = sum + a[i] * b[i];

requires 2*N loads and performs 2*N arithmetic
operations, for a compute intensity of 1. For simplicity, it
is usually assumed the N factors cancel out, but this can
become more complicated in nested loops. Also, it is
assumed in the intensity calculation that reuse is handled
perfectly by the compiler, i.e. for each data element, one
load or store counts, the rest are for free.

Compute Intensity Required to Sustain Floating-Point Speed

0.1

1

10

100

1000

FP

Registers

L1 Loads L1 Stores L2 Loads L2 Stores Memory

Loads

Memory NT

Stores

Memory

Stores

Athlon 64 Q1 '03
1.6 GHz

Opteron Q4 '03
1.6 GHz

Athlon 64 Q3 '04

2.2 GHz

Opteron Q3 '04
2.2 GHz

EM64T Q4 '05

3.6 GHz

Opteron Q1 '05
2.2 GHz

Pentium D Q2 '05
3.2 GHz

Woodcrest Q3 '06

3.0 GHz

Core2 Duo Q4 '06
2.0 GHz

Opteron Q2 '07

2.4 GHz

Penryn Q4 '07
3.0 GHz

Barcelona Q4 '07
2.0 GHz

Future-1 Q4 '08

2.5 GHz

Future-2 Q4 '09
2.5 GHz

Diagram 3. Inverse of Diagram 2 gives a rough
estimate of the compute intensity that can be sustained
from each memory level and operation.

Starting with the 7.2 release of the PGI compilers,

you can get –Minfo output of the computational intensity
of innermost loops (nested loops will follow in PGI 8.0).
Here are some examples from simple implementations of
vector add, daxpy, and ddot:

dvadd:
 3, Intensity = 0.333
 double add:1 ld:2 st:1
daxpy:
 11, Intensity = 0.667
 double add:1 mul:1 ld:2 st:1
ddot:
 21, Intensity = 1.000
 double add:1 mul:1 ld:2

As can be seen by Diagram 3, to obtain near peak

floating point performance when the data set is too large
to reside in the data caches, the compute intensity must be
very large (~100). In some cases this can be achieved
due to the structure of the calculations. There may be lots
of time being spent in math functions such as log(),
pow(), exp() or extended precision arithmetic. Perhaps
the calculations are an order of N or log(N) higher in

magnitude than the data transfers required, as is the case
with matrix multiply or FFTs. To find the intensity in
these cases, it is necessary to look at the reuse over the
non-innermost loops, and again assume the 2nd-through-
nth memory accesses are free or nearly free.

A technique employed by compilers and
programmers to improve data reuse is termed tiling,
blocking (2-d) and/or strip mining (1-d). The goal of this
technique is to restructure long nested loops to get finer
reuse on data resident in the L1 or L2 caches. Often, by
breaking one long loop into 2 blocked or strip-mined
loops, the number of streams of data to or from memory
in the innermost loop can be reduced from many to one.
More complicated techniques, but having the same
general idea, have been presented by Sandia authors at
CUG [5] before and are termed "cache-oblivious"
algorithms. [9][10]

In previous papers [11] we have discussed the
benefits of vectorization. It should be noted that on newer
processors, vectorization can provide a 2x speedup on
double precision loops, and 4x speedup on single
precision loops, assuming the data is cache-resident. This
is hardly insignificant, but in this paper, we expand on the
previous work and attempt to address issues which arise
as we move our focus further from the processor core.

In the remainder of this paper we discuss results
generated in a cooperative effort between The Portland
Group and Sandia’s Scalable Architectures Group.. We
specifically looked at the Trilinos Epetra package of
sparse solvers, and some similar Sandia sparse solver
benchmarks. The Trilinos package is a critical
component of many of the codes that run at Sandia and
other DOE sites, and performance of this package can
make a large impact on the overall job throughput of the
DOE systems.

3. Targeting Trilinos Epetra Performance
Epetra [6] is a collection of distributed data objects

for sparse and dense matrices, vectors and graphs. It is
the most heavily used package in Trilinos because it
provides matrix and vector services for all other Trilinos
packages. Epetra is written for real-valued double-
precision scalar field data only, and restricts itself to a
stable core of the C++ language standard. As such,
Epetra is very portable and stable, and is accessible to
Fortran and C users. Epetra combines in a single package
(i) support for generic parallel machine descriptions, (ii)
extensive use of standard numerical libraries including
BLAS and LAPACK, (iii) use of object-oriented C++
programming and (iv) parallel data redistribution. The
availability of Epetra has facilitated rapid development of
numerous applications and solvers because many of the
complicated issues of working on a parallel distributed
memory machine are handled by Epetra.

CUG 2008 Proceedings 4 of 9

Application developers can use Epetra to construct
and manipulate matrices and vectors, and then pass these
objects to other Trilinos solver packages. Furthermore,
solver developers can develop new algorithms using
Epetra classes to handle the intricacies of parallel
execution. Epetra also has extensive parallel data
redistribution capabilities, including an interface to the
Zoltan load-balancing library [7]. Epetra linear operators
and matrices are written as concrete implementations of
abstract linear operator and matrix bases classes. The
most heavily used matrix class is Epetra_CrsMatrix,
which stores the user matrix in a compressed sparse row
format.

Other Trilinos packages access Epetra services via
the base class interfaces and do not rely on the specific
way in which matrix data is stored. Therefore, users and
Epetra developers can develop new matrix classes, such
as classes that use different data structures, and
seamlessly use these new classes with the rest of Trilinos,
as long as the new classes are accessible via the base class
interfaces. We use this extensibility of Epetra in this
paper to test the performance of sparse diagonal data
structures for matrices that have sparsity structures
amenable to this representation.

Some of the results generated in this paper,
specifically those related to the sparse diagonal format,
are from the Mantevo [8] benchmark code pHPCCG,
which captures the performance-impacting features of
Epetra sparse matrix kernels, but is much smaller in size
than Epetra and easier to use for focused performance
studies.

Sparse matrices come in many varieties, and
numerous data formats are used to store sparse matrix
data for the purpose of computing basic operations. The
most common sparse matrix operation by far is sparse
matrix times a dense vector, sometimes referred to as
SpMV, and usually formulated as y = A*x. In this paper
we considered three data formats: compressed row
storage (CRS), jagged diagonal storage (JDS) and sparse
diagonal storage (SDS). Each format is appropriate in
important situations.

To illustrate these data structures, consider the
following matrix:

A =

11 12 0 14 15

21 22 0 0 25

0 32 33 34 0

41 0 0 44 0

0 52 0 0 55

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

 .

Using the CRS format, the matrix is stored in three arrays
as follows (the colons are not part of the format):

values = 11,12,14,15 : 21,22,25 : 32, 33,34 : 41, 44 : 52,55[]
indices = 0,1,3, 4 : 0,1,4 :1,2,3 : 0, 3 :1,4[]
offsets = 0,4,7,10,12,14[]

.

Nonzero elements of each row in the matrix A are

"compressed" or packed, row-by-row in a single array.
The indices array is the same length as values and
contains the corresponding column indices (using zero
based indexing). The offsets array contains offsets into
the values and indices arrays such that offsets[i] is the
first matrix entry of row i. The last value of offsets is set
to the number of nonzero entries in the matrix. The CRS
format is an excellent general-purpose data structure and
is the most popular format in many linear algebra
libraries.

Given this default format, a simplified version of the
SpMV operation y = A * x is then coded like this:

 for (i=0; i< nrow; i++) {

 double sum = 0.0;
 double * A_vals = A->ptr_to_vals_in_row[i];
 int * inds = A->ptr_to_inds_in_row[i];
 int cur_nnz = A->nnz_in_row[i];
 for (j=0; j< cur_nnz; j++)
 sum += A_vals[j]*x[inds[j]];
 y[i] = sum;
}

When compiled with PGI 7.2, we get this information

output:

 67, Intensity = 1.000
 double add:1 mul:1 ld:2
 integer add:2 ld:1

 Generated vector sse code for inner loop
 Generated 1 prefetch instructions for this loop

For other operations in the solver process, the loop

may be transposed and appear something like this, and get
this –Minfo output:

 xtmp = x[i];
 for (j=0; j< cur_nnz; j++)
 y[inds[j]] -= A_vals[j]*xtmp;

 93, Intensity = 0.667
 double add:1 mul:1 ld:2 st:1
 integer add:2 ld:1

 Loop not vectorized: data dependency
 Loop unrolled 2 times

Although it is not apparent in this code, a problem on

X64 architectures with the compressed row structure is
that generally the inner loop counts are small: for certain
benchmark datasets, they range from two to twelve, and
for typical problems only between 10-30. Adding

CUG 2008 Proceedings 5 of 9

overhead to vectorize the loop may be counter-productive.
Since there is no software-pipeline via register renaming
or other techniques on the X64 architecture, the only
method to hide the latency involved in indirect addressing
is to unroll the loop an abnormally high number of
iterations, which can lead to other register allocation
issues within a compiler, and may additionally lead to
code bloat when the loop count is less than the unroll
factor and the vectorized or unrolled loops are never
taken.

As an experiment, we added directives or modified
the code to assume that the values in the inds array were
safe, i.e. unique in the innermost loop, and that the code
could vectorize. We found that had no significant affect
on performance. Since the indices and A matrix are very
large, with no reuse within these nested loops, the
performance of the function was bounded by the memory
bandwidth required to load 12 bytes of data (8 from
A_vals and 4 from inds) per each multiply-add.

For instance, from Diagram 2, if we find that our
peak transfer rate of memory loads for a given
architecture is 5% of peak FP performance, which is 8
GFlops, we can expect memory-bound loops with a
compute intensity near 1 to run at roughly 8 GFlops * 5%
= 400 MFlops. Note how much of a difference in FP
performance can be gained or lost with a 1% increase or
decrease in the values in Diagram 2!

Similar estimates can be made on other loops with
proper assumptions about the location of the data being
operated on. These assumptions can be based on either
programmer knowledge, based on the size of the data, or
obtained from real profile-generated hardware counter
information.

To further fine-tune our estimates, consider the two
loops from the CRS format above. We know from years
of experience, and from the size of the data, that the
performance is dominated by the time to load the A
matrix and the index array. If the data is double
precision, and the indices are ints, we can state that the
compute intensity "from memory" is 2 FP ops per 1.5
memory loads, which is a value of 1.33. A peak transfer
rate of %5 of peak fp performance corresponds to a
compute intensity of 20 that is sustainable. So our peak
FP performance is bounded by 8 Gflops * (1.33 / 20.0) or
533 MFlops. Again, we can see how much of a
difference in FP performance can be gained or lost with a
small increase or decrease in compute intensity.

The next storage class we looked at was the jagged
diagonal or JDS. Using the JDS format, the matrix is
stored in three arrays as follows:

values = 11,21,32,41,52 :12,22, 33,44,55 :14,25,34 :15[]
indices = 0,0,1,0,1 :1,1,2,3,4 : 3, 4, 3 : 4[]
offsets = 0,5,10,13,14[]
.
The values array again contains all nonzero matrix values,
but now they are ordered so that the first non-zero value
from each row is listed in order (a so-called jagged
diagonal), followed by the second non-zero value from
each row, and so on. Since the nonzero count per row is
not uniform, the length of the jagged diagonals will
become smaller, assuming that the rows are first permuted
from most dense to least dense. The matrix shown here is
already ordered this way. The indices array is similar to
the CRS format, containing the column indices
corresponding to the values array. The JDS format is
certainly more complicated than CRS but has the
important property that the jagged diagonals for realistic
problems, and therefore the for-loop lengths in matrix
operations such as SpMV, are typically of length
proportional to the dimension of the matrix which will be
of dimension thousands to millions. This is in stark
contrast to CRS where the for-loop length is the number
of non-zero values per row, which as mentioned above is
typically a very small value and independent of matrix
dimension.

The JadMatrix code for SpMV originally looked

something like this:

 if (!TransA) {
 for (int i=0; i<jaggedDiagonalLength; i++) {

 int ix = curIndices[i];
 int iy = RowPerm[i];
 double val = curValues[i];
 y[iy] += val*x[ix];
}

 } else {
 for (int i=0; i<jaggedDiagonalLength; i++) {

 int iy = curIndices[i];
 int ix = RowPerm[i];
 double val = curValues[i];
 y[iy] += val*x[ix];
}

 }

Note that the loop now runs the length of
jaggedDiagonalLength, which can be up to a million
points or more. But, also note that in the general case, it
now requires two index arrays, which are also long, hence
the actual total data requirements from memory has
somewhat increased.

CUG 2008 Proceedings 6 of 9

The epetra code contains optimized code for this
format which computes on multiple right-hand-sides
(RHS). The most-used loop is unrolled by 5 and looks
something like this:

 for (int i=0; i<jaggedDiagonalLength; i++) {

int ix = curIndices[i];
int iy = RowPerm[i];
double val = curValues[i];
y[iy] += val*x[ix];
iy+=ldy; ix+=ldx;
y[iy] += val*x[ix];
iy+=ldy; ix+=ldx;
y[iy] += val*x[ix];
iy+=ldy; ix+=ldx;
y[iy] += val*x[ix];
iy+=ldy; ix+=ldx;
y[iy] += val*x[ix];

 }

The idea behind this was to get reuse on the matrix A

and also on the index arrays. Which is a good idea and
may help on many architectures. It turns out that it did
not seem to help on the X64 architectures we tried.
Probably this is due to the fact that ldx and ldy are larger
than the L2 cache size. We are just adding multiple
streams to and from memory, so the hardware and
software prefetch mechanism is also less effective. And
any possible reuse from a single column of y or x in the 1
RHS case is probably lost with 5 RHS.

One trick which became apparent with the JDS
format was that for typical data sets, both the curIndices
and RowPerm arrays contain long sequences of sequential
(+1) accesses. We implemented an experiment to test the
performance if we took advantage of this knowledge,
which looked like this:

 if (icnt > 0) {
 ilen = icnt;
 int ir = irun;
 int ix = curIndices[ir];
 int iy = RowPerm[ir];
 double * __restrict xx1 = x+ix;
 double * __restrict yy1 = y+iy;
 for (int i=0; i<ilen; i++) {

 double val = curValues[ir];
 yy1[i] += val*xx1[i];
 ir++;
 }

 } else {
 ilen = -icnt;
 int ir = irun;
 for (int i=0; i<ilen; i++) {

 int ix = curIndices[ir];
 int iy = RowPerm[ir];
 double val = curValues[ir];
 y[iy] += val*x[ix];
 ir++;
 }
}

So, when we were in a run, we reset the starting

addresses for the x and y columns, and the innermost loop
turns into a vector-multiply-add without any indirect

addressing. Over the course of all processing in this
routine, it turns out that almost 99% of the elements are
handled in the first loop for a typical benchmark dataset.

While the results were overall favorable, the speedup
achieved on AMD and Intel platforms was somewhat
inconsistent. The largest speedup we saw was on a single
threaded run on a Woodcrest with both this technique, and
by reducing the default number of RHS to 1, it netted us a
1.76x speedup. More typical was around 1.2x.

While these were interesting, it is clear that instead of
changing the solver code looking for patterns, a better
approach is to choose a format that fits the opportunity.
Thus we moved on to SDS.

Using the SDS format, the matrix is assumed to have
a strongly diagonal pattern, where nonzero entries occur
in only a few of the diagonals of the matrix. Many sparse
matrices have this property at least locally, even if the
underlying problem is globally unstructured. If a matrix
does not have this property, then zeros may be inserted to
allow diagonal storage, or diagonals that have just a few
nonzero entries can be stored separately in a more
general-purpose data format such as CRS. In our
example, we will store all nonzero entries in SDS format.
The arrays are as follows:

values[0] = 41,52[]
values[1] = 21,32,0,0[]
values[2] = 11,22,33,44,55[]
values[3] = 12,0,34,0[]
values[4] = 14,25[]
values[5] = 15[]
offsets = !3,!1,0,1,3,4[]

The values arrays are used to store matrix entries

diagonal-by-diagonal, with some zero fill for this
example. The value of offsets[i] indicates which diagonal
values[i] contains, where negative, zero and positive
offset values refers to diagonals below, on and above the
main diagonal, respectively. The advantage of the SDS
format, if a matrix has strongly diagonal patterns is that
there is no indices array and no indirect addressing is
required for operations such as SpMV. This reduces
memory bandwidth requirements, and memory references
are done with unit stride, something that compilers and
processors can often optimize via pre-fetching techniques.
Also, as with JDS, for-loop lengths are proportional to
matrix dimension.

CUG 2008 Proceedings 7 of 9

Here is the loop structure to perform the SpMV
operation given the SDS format:

for (int i=0; i<numDiags; i++) {
 curValues = ptr_to_diags[i];
 curDiagOffset = diagonal_offsets[i];
 if (curDiagOffset < 0)
 y = rvector-curDiagOffset;

 else
 y = rvector;

 if (curDiagOffset < 0)
 x = dvector;

 else
 x = dvector+curDiagOffset;
 diagLength = diagonal_lengths[i];
 for (int j=0; j<diagLength; j++) {
 y[j] += curValues[j] * x[j];
 }
}

As the code was originally written, the performance

of this routine was poor. A complete CG solver, on a 100
x 100 x 100 problem, running fully subscribed on 4 cores,
was performing at only 128 MFlops per core, compared to
271 MFlops for the same problem running on CRS. The
first thing we noticed was that the code, although now
simplified, was not vectorizing. The first step in tuning
C/C++ code should always be to make appropriate use of
the restrict type qualifiers. In C++, they take this form:

 double * __restrict curValues = 0;
 double * __restrict y = 0;
 double * __restrict x = 0;

You can verify that code vectorizes by using the

–Minfo switch on PGI compilers:

148, Generated 3 alternate loops for the inner loop
 Generated vector sse code for inner loop
 Generated 3 prefetch instructions for this loop
 Generated vector sse code for inner loop
 Generated 3 prefetch instructions for this loop
 Generated vector sse code for inner loop
 Generated 3 prefetch instructions for this loop
 Generated vector sse code for inner loop
 Generated 3 prefetch instructions for this loop

Alternate loops, or "altcode", is generated by the PGI

compiler, based on array alignment and loop lengths
which are executed at runtime. It is controllable with the
-Mvect=altcode switch. Vectorizing this loop gave us a
tiny bump in performance, but not what was expected.

A benefit of removing the indirect addressing in the
SDS format was it became clear what the next step in
optimization should be. The inner loop count is long,
longer than the size of the cache, yet in the outer loop, the
y and x vectors basically start over again at or near the
same point each time. This lends itself to strip-mining.
We added an extra loop to the processing, to work in

smaller, less-than-L2-cache-sized strips of y and x. It
looks something like this:

#define STRIPVAL 16384
 for (int k=0; k<maxDiagLength; k+=STRIPVAL) {
 for (int i=0; i<numDiags; i++) {

 curValues = ptr_to_diags[i];
 curDiagOffset = diagonal_offsets[i];
 y = …;
 x = …;
 diagLength = diagonal_lengths[i];
 curValues += k;
 y += k;
 x += k;
 diagLength -= k;
 if (diagLength > STRIPVAL)
 diagLength = STRIPVAL;
 for (int j=0; j<diagLength; j++) {
 y[j] += curValues[j] * x[j];
 }
}

 }

After this change, we started to see some movement

in the performance results. The GNU g++ performance
was up to 349 MFlops per core. However, the PGI
performance was still only 146 MFlops per core. Why?

There is a hint about the PGI performance in the

Minfo output: prefetching. With the strip-mining
modifications, the y and x vectors are resident in cache.
Prefetching data that is in cache can be costly (sometimes,
as in this case, extremely costly). When we added the
Mnoprefetch flag to the PGI compile line, the
performance was recovered, at 352 MFlops, roughly
equivalent to the g++ performance.

The memory tuning was still not optimal. We would
actually like to prefetch the A matrix values, but not
prefetch the y and x vectors. This has been possible with
previous versions of PGI compilers, but we are making it
easier in version 7.2. This is now the recommended
pragma form:

 for (int j=0; j<diagLength; j++) {
#pragma mem prefetch curValues[j+8]
 y[j] += curValues[j] * x[j];
 }

which specifies a target and a distance. The prefetch

pragma will override the default prefetch rules on any
target processor. With this final change, the performance
increased to 395 MFlops total, per core, and 460 MFlops
in this SpMV kernel (Table 1b). When run on a single
core of a quad core socket, the performance was 607 and
675 MFlops, respectively (Table 1a). Since 395 * 4, for
each of the four cores, is 1.58 GFlops, this certainly
makes a case for running even "memory bandwidth
limited" codes fully subscribed, rather than on one or two
cores of the processor, as long as they have been tuned.

CUG 2008 Proceedings 8 of 9

Finally, getting back to our transfer rate vs. peak
floating point performance graphs, for the fully
subscribed Barcelona, we measured a memory load
transfer rate of 3.7% of peak, and could sustain a compute
intensity of 27. The compute intensity from memory of
the SDS loop, assuming y and x are in cache, is 2. So, 8
GFlops * (2.0 / 27.0) = 593 MFlops. We've attained
77.6% (460/593) of our memory limiting peak
performance, and the rest is attributed to the L2 load and
store transfer rates which must be added at the compute
intensity level of (2 FP Ops) / (2 FP loads from L2 + 1 FP
Store to L2) = 0.667. The actual combinatorial method is
left as an exercise for the reader.

4. Results
Table 1a and 1b contain performance data on a 2.0

GHz AMD Barcelona, running on 1 core of a Quad-Core,
and also running fully subscribed. Four datasets are
shown: the largest results in a matrix dimension of one
million. The smallest shows signs of fitting into the L2
cache on some systems. Both the CRS and SDS data
formats are used, and values are in MFlops for the total
solve, not just SpMV.

Compared to the original CRS implementation, by
implementing and tuning the SDS approach, we were able
to improve performance by between 44% and 91% on a
fully subscribed Quad-Core.

Problem Size 24**3 48**3 72**3 100**3
g++ original
code, CRS 512 486 466 469
g++ original
code, SDS 512 350 267 285
pgCC original
code, CRS 487 461 451 430
pgCC original
code, SDS 541 360 279 292
pgCC SDS, +
restrict 389 343 334 326
g++, SDS,
restrict +
Strip-mine 540 486 482 493
pgCC SDS,
restrict +
Strip-mine 389 341 336 346
pgCC same,
+Mnoprefetch 572 459 465 481
pgCC, same
+ prefetch
pragma 695 632 563 607

Table 1a. Performance of a single core running on an
otherwise idle socket of an AMD Quad-Core
processor. Values are in MFlops for the entire solver.

Problem Size 24**3 48**3 72**3 100**3
g++ original
code, CRS 314 275 270 271
g++ original
code, SDS 442 125 125 128

pgCC original
code, CRS 291 271 263 264
pgCC original
code, SDS 438 125 126 129
pgCC SDS, +
restrict 177 149 135 133
g++, SDS,
restrict +
Strip-mine 469 353 349 349
pgCC SDS,
restrict +
Strip-mine 172 148 145 146
pgCC same,
+Mnoprefetch 476 351 351 352
pgCC, same
+ prefetch
pragma 599 422 388 395

Table 1b. Performance of each core of a fully
subscribed AMD Quad-Core processor. Values are in
MFlops for the entire solver.

5. Conclusions
Although the Quad-Core processors from AMD and

Intel have been out for some time, we are still learning
how best to take advantage of the characteristics of
hardware resources available. Working on Trilinos and
other codes, a few general guidelines have become
apparent:

Every fully-subscribed code is likely memory
bandwidth limited. The available memory bandwidth, as
a percentage of peak floating point performance, has
been steadily declining since the X64 architecture was
introduced.

Tuning for data movement optimizations can be far
more important than tuning for vectorization, though
many optimizations may only kick in most effectively
when the code is vectorized. Also, vectorization, as we
have stated in previous papers, is the key to obtaining a
large fraction of peak performance when there is good
reuse of data in cache.

PGI offers a number of switches and pragmas for
fine-grained control of data movement optimizations.
Note that the compiler can't always determine, by itself,
whether data is likely resident in the caches. There is a
performance penalty for prefetching data already in cache,
which was discussed, and there is also a performance

CUG 2008 Proceedings 9 of 9

penalty for using non-temporal stores to data that is in
cache (not discussed in this paper).

Limit the memory bandwidth requirements if
possible. This probably requires code restructuring, such
as the strip-mining method we applied. Take advantage
of the caches. It seems that if you can limit the number
of "streams" of data to and from memory in each loop, the
hardware and software prefetching mechanisms run more
efficiently, especially when the socket is fully subscribed.

6. Future Work
PGI will continue to explore and improve the

tracking and presentation of compute intensity and a
related metric, transferability. Whether to provide hints to
the developer for memory tuning, as we have shown here,
for auto-parallelization, or for farming work off to an
attached GPU, we are working to carry this technology
forward.

We will continue to examine the application
programming and compiler techniques required to support
larger vector operations that are most likely to appear in
future sequential and parallel architectures deployed by
the commercial processor vendors.

Results derived from this work will benefit users of
Trilinos on current and future DOE and DOD computing
resources. The coding practices and compiler
enhancements that we outline will also help other
programmers and users in applying the same techniques
and tools to their codes. The improved performance we
demonstrate may also be beneficial in scheduling resource
utilization and in planning future compute platform
acquisitions. Finally, the cooperation between Sandia’s
Scalable Architectures Group and the Portland Group
product development and support teams is shown to be a
model for future joint endeavours.

About the Authors
Brent Leback is the Applications Engineering

manager for PGI. He has worked in various positions
over the last 20 years in HPC customer support, math
library development, applications engineering and
consulting at QTC, Axian, PGI and STMicroelectronics.
He can be reached by e-mail at
brent.leback@pgroup.com.

Douglas Doerfler is a Principal Member of Technical
Staff at Sandia National Laboratories. He started his
career at Sandia 22 years ago in the field of analog
instrumentation, then migrated to embedded computing,
then to embedded high performance computing, and that
lead to an interest in supercomputing. His current job
interests include scalable computational architectures
research and supercomputing performance analysis. He
can be reached by e-mail at dwdoerf@sandia.gov.

Michael Heroux is a Distinguished Member of
Technical Staff at Sandia national Laboratories. He leads
the Trilinos libraries project and the Mantevo
performance modelling project. Prior to joining Sandia,
he worked for 10 years at Cray Research and Silicon
Graphics in the math libraries and engineering
applications groups. He can be reached by email at
maherou@sandia.gov.

References
1. Doerfler, Hensinger, Miles, and Leback, Tuning

C++ Applications for the Latest Generation x64
Processors with PGI Compilers and Tools, CUG
2007 Proceedings

2. Intel News Fact Sheet, http://www.intel.com/
pressroom/archive/reference/IntelMulticore_factsheet
.pdf

3. AMD Developer Central, http://developer.amd.com
/cpu/SSE5/Pages/default.aspx

4. Roger W. Hockney, The Science of Computer
Benchmarking, Society for Industrial and Applied
Mathematics, 1996.

5. Hensinger, Luchini, Frigo and Strumpen,
Performance Characteristics of Cache Oblivious
Implementation Strategies for Hyperbolic Equations
on Opteron Based Super Computers, CUG 2006
Proceedings.

6. M.A.Heroux, Epetra Home Page, http://trilinos.
sandia.gov/packages/epetra, 2004

7. K.D. Devine, B.A.Hendrickson, E.G. Boman, M. M.
St. John and C. Vaughn, Zoltan: A dynamic load-
balancing library for parallel applications – User’s
Guide, Technical Report, Sandia National
Laboratories, SAND99-1377, 1999

8. M. Heroux, Mantevo Home Page,http://software.
sandia.gov/mantevo, April 2008.

9. Frigo, Leiserson, Prokop and Ramachandran, Cache
Oblivious Algorithms, Proc. 40th Annual Symp.
Foundations of Computer Science (FOCS’99).

10. Frigo and Strumpen, Cache Oblivious Stencil
Computations, Proceedings of the 19th Annual
International Conference on Supercomputing
(ICS’05).

11. D. Miles, B. Leback and D. Norton, Optimizing
Application Performance on Cray Systems with PGI
Compilers and Tools, CUG 2006 Proceedings.

12. Michael Wolfe, High Performance Compilers for
Parallel Computers, Addison-Wesley, 1996.

