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1.  Introduction 
The emergence of multi-core microprocessor 

architectures is forcing application library developers to 
re-evaluate coding techniques, data structures and the 
impact of compiler optimizations to ensure efficient 
performance. 

For current and future massively parallel high 
performance computing systems, a key factor limiting 
overall performance and scalability is the ability to move 
data between subsystems.  System performance is dictated 
by the ability to move data between nodes and the I/O 
subsystem.  Data movement between the memory 
subsystem and its associated CPU dictates node 
performance, which is the focus of this paper. We have 
entered an era in which for many CPUs, FLOPS are free, 
and extracting performance from the CPU is a function of 
optimizing the data movement to best utilize the 
computational resources. The application writer must be 
cognizant of optimal algorithms and data structure storage 
techniques.  As a result, given proper data layout in main 
memory, an optimizing compiler can then be uninhibited 
to extract high performance for a given CPU. 

 
However, these two necessary conditions cannot be 

performed independently and it is necessary to involve 

application knowledge and compiler expertise  
simultaneously to maximize results.  The PGI compiler 
suite has been the mainstream compilation environment at 
Sandia National Laboratories for several years in its high 
performance computing initiatives. PGI compiler suites 
were deployed on the 32-bit Intel x86 processor-based 
ASCI Red supercomputer in 1997, in addition to Sandia’s 
2nd generation capability class ASC Red Storm, a 64-bit 
AMD Opteron processor-based platform deployed in 
2004 and still operational.  PGI compilers are also 
deployed on Sandia’s many computational clusters, the 
most recent being the Opteron based ASC Tri-Lab 
Capacity Computing (TLCC) clusters, being deployed in 
2008. Throughout this period, there has been a continual 
effort to ensure that optimal performance is extracted and 
utilized on these platforms. 

Sandia’s Scalable Architectures Group is continually 
evaluating new technologies and technological trends to 
determine the impact on its application base. One such 
trend is the increasing width of SIMD units to increase 
peak floating-point rates in general purpose processors. At 
CUG 2007, a paper was presented on optimizing the 
performance for a kernel from Sandia’s Alegra 
application [1].  This paper is a follow-on effort 
investigating performance for sparse matrix-vector 
kernels from the Trilinos solver package. 
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Packages employed in the Trilinos framework, and in 
particular the Epetra package, must support the transition 
to multi-core timely and efficiently.  This paper evaluates 
the performance of Epetra on the AMD Barcelona 
processor and investigates optimizations to exploit the 
performance potential of multiple cores and the double-
wide SIMD unit. 

 

2.  Architecture Considerations on x64   
     Processors 

Recent X64 processors from AMD and Intel have 
followed a similar, well-documented track.  While the 
speed of the processors seems to have reached a plateau, 
the number of cores on a socket has increased from one, 
to two, to four, over the last several years.   

It is important when running on newer systems to be 
clear in the presentation of performance data.  
Performance obtained running on 1 core of a quad-core 
system may or may not be sustainable when running the 
same or similar code on all four cores at the same time.  
Even running multiple instances of the code, on multiple 
socket systems, can be misleading.  As Figure 1 shows, it 
is important to lock threads or processes onto all cores of 
the same socket.  A term used for this principle is running 
"fully subscribed".  Taskset is a Linux utility that can set a 
processes’s CPU affinity and the ampersand and wait 
command are shell job control utilities. 

 

 
 

Diagram 1. Performance of the same binary can vary 
from 435 MFlops to 260 MFlops depending on where 
and how many. 

 
As we documented in the CUG 2007 paper, the width 

of the SSE computational units, for obtaining peak 
floating point performance, has increased from 64 bits 
wide to 128 bits wide in the last year.  A recent 
announcement from Intel states they are extending the 
SSE units to 256 bits wide in a future design[2] .  AMD 
has plans to use fused-multiply-add (FMA) ops in a future 
product[3].  Both of these architectural changes have the 

potential to again double the peak floating point 
performance. 

One performance feature which has not seen this 
"doubling phenomenon" is the memory hierarchy.  In fact, 
given the increase in the number of cores and the SSE 
width, memory bandwidth as a percentage of peak 
performance has actually decreased over the last 5 years. 

Diagram 2 shows the peak data transfer bandwidth as 
a percentage of the peak floating point performance for a 
number of X64 processors which have been available 
over the last 5 years.  These numbers were measured on a 
number of different types of machines, from laptops to 
servers, and from single-core-per-socket processors to 
quad-core.  All measurements are with fully-subscribed 
cores. 
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Diagram 2. The decline of the peak rate of data 
transfer compared to peak floating point performance.  
Note the logarithmic scale. 
 
The Future-1 and Future-2 processors are 

hypothetical.  The Future-1 processor from Diagram 2 
assumes hardware updates which doubles the peak 
floating point performance (either through FMA or wider 
SSE units), runs at 2.5 GHz, and has a 25% memory 
bandwidth improvement.  The Future-2 processor also has 
the Future-1 SSE units and speed, but with eight cores per 
socket, and an additional 25% memory bandwidth 
improvement over Future-1. 

Diagram 3 shows the sustainable compute intensity 
for each level of the memory hierarchy.  Computational 
intensity is defined as the number of arithmetic operations 
(floating point operations, normally) performed per 
memory transfer. [4]   

 

 
 
 

Today's X64 architectures can perform 2x the number of 
single precision computations as double precision in their 

Compute Intensity  =   
Number of Input/Output Data Points   

Total Number of Operations 
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SSE units, where each data operand is 1/2 the size.  
Therefore compute intensity is independent of data type. 

  
So, for example, a simple dot product: 

 
  for (i = 0; i<N; i++) 
     sum = sum + a[i] * b[i]; 

 
requires 2*N loads and performs 2*N arithmetic 
operations, for a compute intensity of 1.  For simplicity, it 
is usually assumed the N factors cancel out, but this can 
become more complicated in nested loops.  Also, it is 
assumed in the intensity calculation that reuse is handled 
perfectly by the compiler, i.e. for each data element, one 
load or store counts, the rest are for free. 

 
Compute Intensity Required to Sustain Floating-Point Speed
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Diagram 3. Inverse of Diagram 2 gives a rough 
estimate of the compute intensity that can be sustained 
from each memory level and operation. 
 
Starting with the 7.2 release of the PGI compilers, 

you can get –Minfo output of the computational intensity 
of innermost loops (nested loops will follow in PGI 8.0).  
Here are some examples from simple implementations of 
vector add, daxpy, and ddot: 

 
dvadd: 
     3, Intensity = 0.333    
        double add:1 ld:2 st:1 
daxpy: 
    11, Intensity = 0.667    
        double add:1 mul:1 ld:2 st:1 
ddot: 
    21, Intensity = 1.000    
        double add:1 mul:1 ld:2 

 
As can be seen by Diagram 3, to obtain near peak 

floating point performance when the data set is too large 
to reside in the data caches, the compute intensity must be 
very large ( ~100 ).  In some cases this can be achieved 
due to the structure of the calculations.  There may be lots 
of time being spent in math functions such as log(), 
pow(), exp() or extended precision arithmetic.  Perhaps 
the calculations are an order of N or log(N) higher in 

magnitude than the data transfers required, as is the case 
with matrix multiply or FFTs.  To find the intensity in 
these cases, it is necessary  to look at the reuse over the 
non-innermost loops, and again assume the 2nd-through-
nth memory accesses are free or nearly free. 

A technique employed by compilers and 
programmers to improve data reuse is termed tiling, 
blocking (2-d) and/or strip mining (1-d).  The goal of this 
technique is to restructure long nested loops to get finer 
reuse on data resident in the L1 or L2 caches.  Often, by 
breaking one long loop into 2 blocked or strip-mined 
loops, the number of streams of data to or from memory 
in the innermost loop can be reduced from many to one.  
More complicated techniques, but having the same 
general idea, have been presented by Sandia authors at 
CUG [5] before and are termed "cache-oblivious" 
algorithms.  [9][10] 

In previous papers [11] we have discussed the 
benefits of vectorization.  It should be noted that on newer 
processors, vectorization can provide a 2x speedup on 
double precision loops, and 4x speedup on single 
precision loops, assuming the data is cache-resident.  This 
is hardly insignificant, but in this paper, we expand on the 
previous work and attempt to address issues which arise 
as we  move our focus further from the processor core. 

In the remainder of this paper we discuss results 
generated in a cooperative effort between The Portland 
Group and Sandia’s Scalable Architectures Group.. We 
specifically looked at the Trilinos Epetra package of 
sparse solvers, and some similar Sandia sparse solver 
benchmarks.  The Trilinos package is a critical 
component of many of the codes that run at Sandia and 
other DOE sites, and performance of this package can 
make a large impact on the overall job throughput of the 
DOE systems. 

3.  Targeting Trilinos Epetra Performance 
Epetra [6] is a collection of distributed data objects 

for sparse and dense matrices, vectors and graphs.  It is 
the most heavily used package in Trilinos because it 
provides matrix and vector services for all other Trilinos 
packages.  Epetra is written for real-valued double-
precision scalar field data only, and restricts itself to a 
stable core of the C++ language standard.  As such, 
Epetra is very portable and stable, and is accessible to 
Fortran and C users. Epetra combines in a single package 
(i) support for generic parallel machine descriptions, (ii) 
extensive use of standard numerical libraries including 
BLAS and LAPACK, (iii) use of object-oriented C++ 
programming and (iv) parallel data redistribution.  The 
availability of Epetra has facilitated rapid development of 
numerous applications and solvers because many of the 
complicated issues of working on a parallel distributed 
memory machine are handled by Epetra. 
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Application developers can use Epetra to construct 
and manipulate matrices and vectors, and then pass these 
objects to other Trilinos solver packages.  Furthermore, 
solver developers can develop new algorithms using 
Epetra classes to handle the intricacies of parallel 
execution. Epetra also has extensive parallel data 
redistribution capabilities, including an interface to the 
Zoltan load-balancing library [7].  Epetra linear operators 
and matrices are written as concrete implementations of 
abstract linear operator and matrix bases classes.  The 
most heavily used matrix class is Epetra_CrsMatrix, 
which stores the user matrix in a compressed sparse row 
format. 

Other Trilinos packages access Epetra services via 
the base class interfaces and do not rely on the specific 
way in which matrix data is stored.  Therefore, users and 
Epetra developers can develop new matrix classes, such 
as classes that use different data structures, and 
seamlessly use these new classes with the rest of Trilinos, 
as long as the new classes are accessible via the base class 
interfaces.  We use this extensibility of Epetra in this 
paper to test the performance of sparse diagonal data 
structures for matrices that have sparsity structures 
amenable to this representation. 

Some of the results generated in this paper, 
specifically those related to the sparse diagonal format,  
are from the Mantevo [8] benchmark code pHPCCG, 
which captures the performance-impacting features of 
Epetra sparse matrix kernels, but is much smaller in size 
than Epetra and easier to use for focused performance 
studies. 

Sparse matrices come in many varieties, and 
numerous data formats are used to store sparse matrix 
data for the purpose of computing basic operations.  The 
most common sparse matrix operation by far is sparse 
matrix times a dense vector, sometimes referred to as 
SpMV, and usually formulated as y = A*x.  In this paper 
we considered three data formats: compressed row 
storage (CRS), jagged diagonal storage (JDS) and sparse 
diagonal storage (SDS).  Each format is appropriate in 
important situations. 

To illustrate these data structures, consider the 
following matrix: 
 

 
A =

11 12 0 14 15

21 22 0 0 25

0 32 33 34 0

41 0 0 44 0

0 52 0 0 55

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

    . 

 

Using the CRS format, the matrix is stored in three arrays 
as follows (the colons are not part of the format): 
 

 
values = 11,12,14,15 : 21,22,25 : 32, 33,34 : 41, 44 : 52,55[ ]
indices = 0,1,3, 4 : 0,1,4 :1,2,3 : 0, 3 :1,4[ ]
offsets = 0,4,7,10,12,14[ ]

. 

 
Nonzero elements of each row in the matrix A are 

"compressed" or packed, row-by-row in a single array.  
The indices array is the same length as values and 
contains the corresponding column indices (using zero 
based indexing).  The offsets array contains offsets into 
the values and indices arrays such that offsets[i] is the 
first matrix entry of row i.  The last value of offsets is set 
to the number of nonzero entries in the matrix.  The CRS 
format is an excellent general-purpose data structure and 
is the most popular format in many linear algebra 
libraries. 

Given this default format, a simplified version of the 
SpMV operation y = A * x is then coded like this: 

 
   for (i=0; i< nrow; i++) { 

 double sum = 0.0; 
 double * A_vals = A->ptr_to_vals_in_row[i]; 
 int    * inds   = A->ptr_to_inds_in_row[i]; 
 int cur_nnz     = A->nnz_in_row[i]; 
 for (j=0; j< cur_nnz; j++) 
   sum += A_vals[j]*x[inds[j]]; 
 y[i] = sum; 
} 
 
When compiled with PGI 7.2, we get this information 

output: 
 

 67, Intensity = 1.000    
        double add:1 mul:1 ld:2 
        integer add:2 ld:1 

 Generated vector sse code for inner loop 
 Generated 1 prefetch instructions for this loop 

 
For other operations in the solver process, the loop 

may be transposed and appear something like this, and get 
this –Minfo output: 

 
  xtmp = x[i]; 
  for (j=0; j< cur_nnz; j++) 
    y[inds[j]] -= A_vals[j]*xtmp; 
 

 93, Intensity = 0.667    
        double add:1 mul:1 ld:2 st:1 
        integer add:2 ld:1 

 Loop not vectorized: data dependency 
 Loop unrolled 2 times 

 
Although it is not apparent in this code, a problem on 

X64 architectures with the compressed row structure is 
that generally the inner loop counts are small: for certain 
benchmark datasets, they range from two to twelve, and 
for typical problems only between 10-30.  Adding 
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overhead to vectorize the loop may be counter-productive.   
Since there is no software-pipeline via register renaming 
or other techniques on the X64 architecture, the only 
method to hide the latency involved in indirect addressing 
is to unroll the loop an abnormally high number of 
iterations, which can lead to other register allocation 
issues within a compiler, and may additionally lead to 
code bloat when the loop count is less than the unroll 
factor and the vectorized or unrolled loops are never 
taken. 

As an experiment, we added directives or modified 
the code to assume that the values in the inds array were 
safe, i.e. unique in the innermost loop, and that the code 
could vectorize.  We found that had no significant affect 
on performance.  Since the indices and A matrix are very 
large, with no reuse within these nested loops, the 
performance of the function was bounded by the memory 
bandwidth required to load 12 bytes of data (8 from 
A_vals and 4 from inds) per each multiply-add. 

For instance, from Diagram 2, if we find that our 
peak transfer rate of memory loads for a given 
architecture is 5% of peak FP performance, which is 8 
GFlops, we can expect memory-bound loops with a 
compute intensity near 1 to run at roughly 8 GFlops * 5% 
= 400 MFlops.  Note how much of a difference in FP 
performance can be gained or lost with a 1% increase or 
decrease in the values in Diagram 2! 

Similar estimates can be made on other loops with 
proper assumptions about the location of the data being 
operated on.  These assumptions can be based on either 
programmer knowledge, based on the size of the data, or 
obtained from real profile-generated hardware counter 
information. 

To further fine-tune our estimates, consider the two 
loops from the CRS format above.  We know from years 
of experience, and from the size of the data, that the 
performance is dominated by the time to load the A 
matrix and the index array.  If the data is double 
precision, and the indices are ints, we can state that the 
compute intensity "from memory" is 2 FP ops per 1.5 
memory loads, which is a value of 1.33.  A peak transfer 
rate of %5 of peak fp performance corresponds to a 
compute intensity of 20 that is sustainable.  So our peak 
FP performance is bounded by 8 Gflops * (1.33 / 20.0) or 
533 MFlops.  Again, we can see how much of a 
difference in FP performance can be gained or lost with a 
small increase or decrease in compute intensity. 

The next storage class we looked at was the jagged 
diagonal or JDS.  Using the JDS format, the matrix is 
stored in three arrays as follows: 

 
 

values = 11,21,32,41,52 :12,22, 33,44,55 :14,25,34 :15[ ]
indices = 0,0,1,0,1 :1,1,2,3,4 : 3, 4, 3 : 4[ ]
offsets = 0,5,10,13,14[ ]
. 
The values array again contains all nonzero matrix values, 
but now they are ordered so that the first non-zero value 
from each row is listed in order (a so-called jagged 
diagonal), followed by the second non-zero value from 
each row, and so on.  Since the nonzero count per row is 
not uniform, the length of the jagged diagonals will 
become smaller, assuming that the rows are first permuted 
from most dense to least dense.  The matrix shown here is 
already ordered this way.  The indices array is similar to 
the CRS format, containing the column indices 
corresponding to the values array.  The JDS format is  
certainly more complicated than CRS but has the 
important property that the jagged diagonals for realistic 
problems, and therefore the for-loop lengths in matrix 
operations such as SpMV, are typically of length 
proportional to the dimension of the matrix which will be 
of dimension thousands to millions.  This is in stark 
contrast to CRS where the for-loop length is the number 
of non-zero values per row, which as mentioned above is 
typically a very small value and independent of matrix 
dimension. 

 
The JadMatrix code for SpMV originally looked 

something like this: 
 

 if (!TransA) { 
   for (int i=0; i<jaggedDiagonalLength; i++) { 

 int ix = curIndices[i]; 
 int iy = RowPerm[i]; 
 double val = curValues[i]; 
 y[iy] += val*x[ix]; 
} 

 } else { 
   for (int i=0; i<jaggedDiagonalLength; i++) { 

 int iy = curIndices[i]; 
 int ix = RowPerm[i]; 
 double val = curValues[i]; 
 y[iy] += val*x[ix]; 
} 

 } 

Note that the loop now runs the length of 
jaggedDiagonalLength, which can be up to a million 
points or more.  But, also note that in the general case, it 
now requires two index arrays, which are also long, hence 
the actual total data requirements from memory has 
somewhat increased. 
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The epetra code contains optimized code for this 
format which computes on multiple right-hand-sides 
(RHS).  The most-used loop is unrolled by 5 and looks 
something like this: 

 
  for (int i=0; i<jaggedDiagonalLength; i++) { 

int ix = curIndices[i]; 
int iy = RowPerm[i]; 
double val = curValues[i]; 
y[iy] += val*x[ix]; 
iy+=ldy; ix+=ldx; 
y[iy] += val*x[ix]; 
iy+=ldy; ix+=ldx; 
y[iy] += val*x[ix]; 
iy+=ldy; ix+=ldx; 
y[iy] += val*x[ix]; 
iy+=ldy; ix+=ldx; 
y[iy] += val*x[ix]; 

  } 

 
The idea behind this was to get reuse on the matrix A 

and also on the index arrays.  Which is a good idea and 
may help on many architectures.  It turns out that it did 
not seem to help on the X64 architectures we tried.  
Probably this is due to the fact that ldx and ldy are larger 
than the L2 cache size.  We are just adding multiple 
streams to and from memory, so the hardware and 
software prefetch mechanism is also less effective.  And 
any possible reuse from a single column of y or x in the 1 
RHS case is probably lost with 5 RHS. 

One trick which became apparent with the JDS 
format was that for typical data sets, both the curIndices 
and RowPerm arrays contain long sequences of sequential 
(+1) accesses.  We implemented an experiment to test the 
performance if we took advantage of this knowledge, 
which looked like this: 
 
  if (icnt > 0) { 
    ilen = icnt; 
    int ir = irun; 
    int ix = curIndices[ir]; 
    int iy = RowPerm[ir]; 
    double * __restrict xx1 = x+ix; 
    double * __restrict yy1 = y+iy; 
    for (int i=0; i<ilen; i++) { 

   double val = curValues[ir]; 
   yy1[i] += val*xx1[i]; 
   ir++; 
 } 

  } else { 
    ilen = -icnt; 
    int ir = irun; 
    for (int i=0; i<ilen; i++) { 

   int ix = curIndices[ir]; 
   int iy = RowPerm[ir]; 
   double val = curValues[ir]; 
   y[iy] += val*x[ix]; 
   ir++; 
 } 
} 

 
So, when we were in a run, we reset the starting 

addresses for the x and y columns, and the innermost loop 
turns into a vector-multiply-add without any indirect 

addressing.  Over the course of all processing in this 
routine, it turns out that almost 99% of the elements are 
handled in the first loop for a typical benchmark dataset. 

While the results were overall favorable, the speedup 
achieved on AMD and Intel platforms was somewhat 
inconsistent.  The largest speedup we saw was on a single 
threaded run on a Woodcrest with both this technique, and 
by reducing the default number of RHS to 1, it netted us a 
1.76x speedup.  More typical was around 1.2x. 

While these were interesting, it is clear that instead of 
changing the solver code looking for patterns, a better 
approach is to choose a format that fits the opportunity.  
Thus we moved on to SDS. 

Using the SDS format, the matrix is assumed to have 
a strongly diagonal pattern, where nonzero entries occur 
in only a few of the diagonals of the matrix.  Many sparse 
matrices have this property at least locally, even if the 
underlying problem is globally unstructured.  If a matrix 
does not have this property, then zeros may be inserted to 
allow diagonal storage, or diagonals that have just a few 
nonzero entries can be stored separately in a more 
general-purpose data format such as CRS.  In our 
example, we will store all nonzero entries in SDS format.  
The arrays are as follows: 

 
values[0] = 41,52[ ]
values[1] = 21,32,0,0[ ]
values[2] = 11,22,33,44,55[ ]
values[3] = 12,0,34,0[ ]
values[4] = 14,25[ ]
values[5] = 15[ ]
offsets    = !3,!1,0,1,3,4[ ]

 

 
The values arrays are used to store matrix entries 

diagonal-by-diagonal, with some zero fill for this 
example.  The value of offsets[i] indicates which diagonal 
values[i] contains, where negative, zero and positive 
offset values refers to diagonals below, on and above the 
main diagonal, respectively.  The advantage of the SDS 
format, if a matrix has strongly diagonal patterns is that 
there is no indices array and no indirect addressing is 
required for operations such as SpMV.  This reduces 
memory bandwidth requirements, and memory references 
are done with unit stride, something that compilers and 
processors can often optimize via pre-fetching techniques. 
Also, as with JDS, for-loop lengths are proportional to 
matrix dimension. 
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Here is the loop structure to perform the SpMV 
operation given the SDS format: 

 
for (int i=0; i<numDiags; i++) { 
  curValues = ptr_to_diags[i]; 
  curDiagOffset = diagonal_offsets[i]; 
  if (curDiagOffset < 0) 
     y = rvector-curDiagOffset; 

      else 
         y = rvector; 

  if (curDiagOffset < 0) 
     x = dvector; 

      else 
     x = dvector+curDiagOffset; 
  diagLength = diagonal_lengths[i]; 
  for (int j=0; j<diagLength; j++) { 
     y[j] += curValues[j] * x[j]; 
  } 
} 

 
As the code was originally written, the performance 

of this routine was poor.  A complete CG solver, on a 100 
x 100 x 100 problem, running fully subscribed on 4 cores, 
was performing at only 128 MFlops per core, compared to 
271 MFlops for the same problem running on CRS.  The 
first thing we noticed was that the code, although now 
simplified, was not vectorizing.  The first step in tuning 
C/C++ code should always be to make appropriate use of 
the restrict type qualifiers.  In C++, they take this form: 

 
  double * __restrict curValues = 0; 
  double * __restrict y = 0; 
  double * __restrict x = 0; 

 
You can verify that code vectorizes by using the  

–Minfo switch on PGI compilers: 
 
148, Generated 3 alternate loops for the inner loop 
        Generated vector sse code for inner loop 
        Generated 3 prefetch instructions for this loop 
        Generated vector sse code for inner loop 
        Generated 3 prefetch instructions for this loop 
        Generated vector sse code for inner loop 
        Generated 3 prefetch instructions for this loop 
        Generated vector sse code for inner loop 
        Generated 3 prefetch instructions for this loop 
 
Alternate loops, or "altcode", is generated by the PGI 

compiler, based on array alignment and loop lengths 
which are executed at runtime.  It is controllable with the  
-Mvect=altcode switch.  Vectorizing this loop gave us a 
tiny bump in performance, but not what was expected. 

A benefit of removing the indirect addressing in the 
SDS format was it became clear what the next step in 
optimization should be.  The inner loop count is long, 
longer than the size of the cache, yet in the outer loop, the 
y and x vectors basically start over again at or near the 
same point each time.  This lends itself to strip-mining.  
We added an extra loop to the processing, to work in 

smaller, less-than-L2-cache-sized strips of y and x.  It 
looks something like this: 

 
#define STRIPVAL 16384 
  for (int k=0; k<maxDiagLength; k+=STRIPVAL) { 
    for (int i=0; i<numDiags; i++) { 

  curValues = ptr_to_diags[i]; 
  curDiagOffset = diagonal_offsets[i]; 
  y = …; 
  x = …; 
  diagLength = diagonal_lengths[i]; 
  curValues += k; 
  y += k; 
  x += k; 
  diagLength -= k; 
  if (diagLength > STRIPVAL)  
    diagLength = STRIPVAL; 
  for (int j=0; j<diagLength; j++) { 
     y[j] += curValues[j] * x[j]; 
  } 
} 

  } 

 
After this change, we started to see some movement 

in the performance results.   The GNU g++ performance 
was up to 349 MFlops per core.  However, the PGI 
performance was still only 146 MFlops per core.  Why? 

 
There is a hint about the PGI performance in the 

Minfo output:  prefetching.  With the strip-mining 
modifications, the y and x vectors are resident in cache.   
Prefetching data that is in cache can be costly (sometimes, 
as in this case, extremely costly).  When we added the 
Mnoprefetch flag to the PGI compile line, the 
performance was recovered, at 352 MFlops, roughly 
equivalent to the g++ performance. 

The memory tuning was still not optimal.  We would 
actually like to prefetch the A matrix values, but not 
prefetch the y and x vectors.  This has been possible with 
previous versions of PGI compilers, but we are making it 
easier in version 7.2.  This is now the recommended 
pragma form: 

 
   for (int j=0; j<diagLength; j++) { 
#pragma mem prefetch curValues[j+8] 
      y[j] += curValues[j] * x[j]; 
   } 

 
which specifies a target and a distance.  The prefetch 

pragma will override the default prefetch rules on any 
target processor.  With this final change, the performance 
increased to 395 MFlops total, per core, and 460 MFlops 
in this SpMV kernel (Table 1b).  When run on a single 
core of a quad core socket, the performance was 607 and 
675 MFlops, respectively (Table 1a).  Since 395 * 4, for 
each of the four cores, is 1.58 GFlops, this certainly 
makes a case for running even "memory bandwidth 
limited" codes fully subscribed, rather than on one or two 
cores of the processor, as long as they have been tuned. 
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Finally, getting back to our transfer rate vs. peak 
floating point performance graphs, for the fully 
subscribed Barcelona, we measured a memory load 
transfer rate of 3.7% of peak, and could sustain a compute 
intensity of 27.  The compute intensity from memory of 
the SDS loop, assuming y and x are in cache, is 2. So, 8 
GFlops * (2.0 / 27.0) = 593 MFlops.  We've attained 
77.6% (460/593) of our memory limiting peak 
performance, and the rest is attributed to the L2 load and 
store transfer rates which must be added at the compute 
intensity level of (2 FP Ops) / (2 FP loads from L2 + 1 FP 
Store to L2) = 0.667.  The actual combinatorial method is 
left as an exercise for the reader. 

4.  Results 
Table 1a and 1b contain performance data on a 2.0 

GHz AMD Barcelona, running on 1 core of a Quad-Core, 
and also running fully subscribed.   Four datasets are 
shown: the largest  results in a matrix dimension of one 
million.  The smallest shows signs of fitting into the L2 
cache on some systems.  Both the CRS and SDS data 
formats are used, and values are in MFlops for the total 
solve, not just SpMV. 

Compared to the original CRS implementation, by 
implementing and tuning the SDS approach, we were able 
to improve performance by between 44% and 91% on a 
fully subscribed Quad-Core. 
 
Problem Size 24**3 48**3 72**3 100**3 
g++ original 
code, CRS 512 486 466 469 
g++ original 
code, SDS 512 350 267 285 
pgCC original 
code, CRS 487 461 451 430 
pgCC original 
code, SDS 541 360 279 292 
pgCC SDS, + 
restrict 389 343 334 326 
g++, SDS, 
restrict + 
Strip-mine 540 486 482 493 
pgCC SDS, 
restrict + 
Strip-mine 389 341 336 346 
pgCC same, 
+Mnoprefetch 572 459 465 481 
pgCC, same 
+ prefetch 
pragma 695 632 563 607 

 
Table 1a. Performance of a single core running on an 
otherwise idle socket of an AMD Quad-Core 
processor.  Values are in MFlops for the entire solver. 
 
 

  

Problem Size 24**3 48**3 72**3 100**3 
g++ original 
code, CRS 314 275 270 271 
g++ original 
code, SDS 442 125 125 128 

pgCC original 
code, CRS 291 271 263 264 
pgCC original 
code, SDS 438 125 126 129 
pgCC SDS, + 
restrict 177 149 135 133 
g++, SDS, 
restrict + 
Strip-mine 469 353 349 349 
pgCC SDS, 
restrict + 
Strip-mine 172 148 145 146 
pgCC same, 
+Mnoprefetch 476 351 351 352 
pgCC, same 
+ prefetch 
pragma 599 422 388 395 

 
Table 1b. Performance of each core of a fully 
subscribed AMD Quad-Core processor.  Values are in 
MFlops for the entire solver. 

5.  Conclusions 
Although the Quad-Core processors from AMD and 

Intel have been out for some time, we are still learning 
how best to take advantage of the characteristics of 
hardware resources available.    Working on Trilinos and 
other codes, a few general guidelines have become 
apparent: 

Every fully-subscribed code is likely memory 
bandwidth limited.  The available memory bandwidth, as 
a percentage of peak floating point performance, has 
been steadily declining since the X64 architecture was 
introduced. 

Tuning for data movement optimizations can be far 
more important than tuning for vectorization, though 
many optimizations may only kick in most effectively 
when the code is vectorized.  Also, vectorization, as we 
have stated in previous papers, is the key to obtaining a 
large fraction of peak performance when there is good 
reuse of data in cache. 

PGI offers a number of switches and pragmas for 
fine-grained control of data movement optimizations.  
Note that the compiler can't always determine, by itself, 
whether data is likely resident in the caches.  There is a 
performance penalty for prefetching data already in cache, 
which was discussed, and there is also a performance 
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penalty for using non-temporal stores to data that is in 
cache (not discussed in this paper). 

Limit the memory bandwidth requirements if 
possible.  This probably requires code restructuring, such 
as the strip-mining method we applied.  Take advantage 
of the caches.   It seems that if you can limit the number 
of "streams" of data to and from memory in each loop, the 
hardware and software prefetching mechanisms run more 
efficiently, especially when the socket is fully subscribed. 

 

6.  Future Work 
PGI will continue to explore and improve the 

tracking and presentation of compute intensity and a 
related metric, transferability.  Whether to provide hints to 
the developer for memory tuning, as we have shown here, 
for auto-parallelization, or for farming work off to an 
attached GPU, we are working to carry this technology 
forward.  

We will continue to examine the application 
programming and compiler techniques required to support 
larger vector operations that are most likely to appear in 
future sequential and parallel architectures deployed by 
the commercial processor vendors. 

Results derived from this work will benefit users of 
Trilinos on current and future DOE and DOD computing 
resources.  The coding practices and compiler 
enhancements that we outline will also help other 
programmers and users in applying the same techniques 
and tools to their codes.  The improved  performance we 
demonstrate may also be beneficial in scheduling resource 
utilization and in planning future compute platform 
acquisitions.  Finally, the cooperation between Sandia’s 
Scalable Architectures Group and the Portland Group 
product development and support teams is shown to be a 
model for future joint endeavours. 
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