The HARWEST Compiling Environment: Accessing the FPGA

World through ANSI-C Programs

Alessandro Marongiu and Paolo Palazzari
Ylichron &' and ENEA

ABSTRACT: FPGA computing is always thought as a media to dramatically improve
computational performances. The real obstacle to its widespread diffusion is primarily
due to the lack of compiling tools which allow to use common specification languages
(like the ANSI C); on the contrary, FPGAs have to be programmed either through very
low level HDL languages or through some not standard languages which are dialects
derived from the C but which are very far from the standard C-language. In order to
overcome previous drawbacks, Ylichron developed a compiling chain, the HARWEST
Compiling Environment (HCE), which allows to specify algorithms to be mapped onto
FPGAs through standard C programs. as a consequence, no special skills are required
to access the power of FPGA computing and no special efforts have to be spent to learn
proprietary languages. The HCE Design Flow and some performance figures are

presented in the paper.

KEYWORDS: FPGA, High Level Synthesis, DRC blades, ANSI C

1. Introduction

FPGA computing is always thought as a media to
dramatically improve computational performancese Th
real obstacle to its widespread diffusion is prilgadue
to the lack of compiling tools which allow to usemmon
specification languages (like the ANSI C); on the
contrary, FPGAs have to be programmed either throug
very low level HDL languages (such as VHDL or Veg)
or through some not standard languages which atead$
derived from the C but which are very far from the
standard C-language: in both the cases, the eftort
develop an application cannot be kept and reusqubtb
the same application onto different compiling
environments. In order to overcome previous drak®ac
Ylichron developed a compiling chain, the HARWEST
Compiling Environment (HCE), which allows to specif
algorithms to be mapped onto FPGAs as standard C
programs: as a consequence, no special skillegtrehic
system design are required to access the powePGAF
computing and no special efforts have to be speldarn
proprietary languages.

HCE is a set of compilation tools which transform a
ANSI C program into an equivalent, optimized VHDL

ready to be compiled and run onto a prefixed taogerd:
the DRC FPGA blades, used by the Cray XT5h systems,
are among the supported targets.

The choice of the ANSI C is aimed at allowing the
adoption of FPGA computing devices to a widespiaati
heterogeneous community of users: as it is a stdndia
facto language, its adoption allows many techniiand
scientists from many fields (biology, chemistryypics,

...) to port the kernel of their C applications ofBGA
devices.

The main characteristic of the Ylichron approach is
that the programs given as input to the HCE flow ba
previously refined and debugged within a well kno@n
compiling environment (the Microsoft VisualStudiaid,
once fixed, they are passed to the HCE flow without
changing or adding any line of code: this fact eesuhat
no use of not standard functionalities related he t
hardware synthesis flow (exploiting the application
parallelism, guiding the scheduling process, ...) is
required. Thanks to the effort spent in ensuringhsu
compliance to the standard C, no special skillsctebnic
design, system architectures) are required to hes¢iCE
flow.

CUG 2008Proceedings 1 of 8

In order to allow the implementation of area e#iti
designs, the set of the standard ANSI C data tyjaes
been extended to include also two of the System@ da
types — the sc_bv and the sc_fixed, being Systehj@ [
set of standardized C++ classes defined to effigien
model and simulate digital systems. For such aoreabe
debug and test phase requires a C++ compiler.

2. HCE Design Flow

The HARWEST Compiling Environment (HCE) is
one of the first outcomes of the HARWEST research
project, funded by the Italian Ministry for Univéysand
Research, aimed at creating a fully automated HW/SW
co-design environment. The HCE flow is reportedrig.

1.
Input specs
(ANSI C)

A 4

Parallelism
Extraction
(CDFG) C++ code
representing a
» CDFG of the input
| program.
Allocation e
&
scheduling Control Path and
Data Path of a
> parallel system
v implementing the
VHDL-RTL input algorithm.

generation/
Optimization &
DRC IF
instanziation

Synthesizable VHDL
representing the
parallel system on

y the DRC blade.
Xilinx
proprietary
synthesis tools

\ 4

y

FPGA
bitstream

Figure 1: HCE Flow

The system specifics are given by means of an ANSI
C program: actually we adopt both a subset of thSIA
C, not allowing the use of pointers and of recwgsiv
functions, and a small extension toward C++, sufpgr
the two SystemC sc_bv and sc_fixed data typeshéset
two data types are implemented as C++ objects, tvéh
methods and dedicated operations, a C++ compiler is
needed to run the HCE C input programs. This, toget
with the & operator used when declaring a function
parameter, are the only C++ features accepted by th
HCE.

Starting at a very high level of abstraction (C
language), the correctness of the specifics is kadteby
running and debugging, on a conventional system,Gh
program (of course, we do not afford the task affing
the correctness of a C program: we consider a progo
be correct once it works correctly on some givels sé
input data). Once we are satisfied with the program
behavior, i.e. after the debugging and testing @htse
input specifics are translated into the Control &ata
Flow Graph (CDFG) model of computation. Given a set
of resources (humber of basic building block mosyle
the CDFG is mapped into a Data Path and a ConindeF
State Machine (FSM) which enforces the behavior
expressed by the starting C program. Such an eathit,
represented by the Data Path and the Control FSM, i
further optimized (some redundant logic is remoaed
connections are implemented and optimized) and
translated into an equivalent synthesizable VHDdeco
Finally, the VHDL program is processed through the
standard proprietary design tools (translation mag into
the target technology, place and route) to prodinee
configuration bit stream.

It is worth to be underlined that the debuggingsgha
is executed only at very high level of abstracijon the C
program), while all the other steps are fully autted and
result to be correct by construction: this factuzas that,
once we have a working C program, the final archite
will show the same program behavior.

CDFG Extraction from C programs

As reported in Fig. 1, the first step of the dedigw
transforms the C program into an equivalent alporit
expressed by means of the, intrinsically paralGEDFG
computational model.

When designing HCE, we decided to use a CDFG
model with blocking semantics (i.e. a computing enod
does not terminate until all its outputs have besad by
the consumer nodes) because it does not require the
insertion of buffers along the communication eddge$2]
we individuated a set of rules which transform Ggrams
into CDFGs and ensure that deadlocks never arise.

Once the CDFG of the original program has been
determined, it is analyzed to implement some basic
optimizations aimed at reducing the complexity bé t
graph (constant folding/propagation, common sub-
expression elimination, invariant code motion, ...).

CUG 2008Proceedings 2 of 8

Allocating and scheduling CDFGs

Resorting to the design flow in Fig. 1, after havin
derived the CDFG representation of the original
algorithm, we are faced with the problem of allangiand
scheduling such computations onto a set of preeefin
computing resources which represent a subset afhg
constraints (further constraints could be invohmdthe
need of a realtime behavior or by throughput
requirements).

In order to perform the allocation and scheduling
operations, within the HCE we created a library of
computing modules which are the building blocksbt
used to set-up the final parallel architecture.rE@module
is constituted by
» acollection of static information regarding

o0 the area requirements (basic blocks needed for

the implementation of the module onto a certain
technology - LUT, memory modules, DSP
blocks, ...),

o the module behavior (combinational, pipelined,

multicycle, asynchronous),

0 the response time (propagation delay, setup time,

latency, ...)
» a collection of files (EDIF format) to implementeth
module onto different target technologies (for
instance, FPGAs from different vendors).

The HCE library of pre-designed modules contains:

v" Pipelined (*, +) and multi-cycle (/) floating point
operators

v'All the family of operators to support char, intdan
fixed point data types

v" The basic math functions (sinf, cosf, tanf, sdaéf,

expf)

v" The rand() function

v" Modules to manage pipelined memory banks with any
address and word length; address length is
constrained to be <= 64 and word length has to be a
power of 2.

v" Modules to support the management of the program
control flow.

The library of HCE modules can be extended by
inserting user defined modules.

Allocating and scheduling a computation requires a
time instant and a computing resource (i.e. a n&)ca
be assigned to each operation of the computatioarder
to do this, the HCE flow implements a list scheulyli
heuristic, derived from the algorithm presente@Bin It is
worth to be underlined that the algorithm in [3gHzeen
deeply modified to allow the sharing of the same HW
module among different SW nodes.

When the original C program is structured with
different functions, the program can be flatteneaugh
the inline expansion of the functions, thus gemegat
unigue CDFG and a unique FSM. In order to reduee th
complexity of the scheduling operation, as a sifyiplg

option, each function - starting from the deepa#so-

can be translated onto a different CDFG. The H@R fl
initially schedules the CDFGs corresponding to code
which has not inner functions, generating the
corresponding FSMs; successively such FSMs are
scheduled as asynchronous modules when the CDFG of
the calling function is scheduled; these asynchusno
modules are synchronized with the FSM of the cgllin
CDFG through a basic start/stop protocol.

Before performing the actual allocation and
scheduling phase, HCE allows the user to define the
structure of the target architecture. In fact ip@ssible to
specify, for each C function, the multiplicity ohe
modules that will be used to implement that functim
such a way the user may control at which level of
granularity the parallelism is exploited.

As illustrative example of previous point, let us
consider a portion of code to implement the Cannon
algorithm [4] to multiply two matrices:

void Bl ockMatri xMAC(fl oat BA[N [BS],
float BB[N[BS],float BCON[BS],int step)

int i,j,k, base_k, BN
for (BN = 0; BN < NP; BN++){
base_k = ((BN+step) *BS) W\,
for (i=BN*BS;i<(BN+1)*BS;i ++){
for (j=0;j<BS;j++)
for (k=0; k<BS; k++)
BAi][j]+=BAli][k]*BB[base_k+ K][j];
}
}
}

void rotateMatri xBA(fl oat BA[NP] [N] [BS]

[*#HWST split 1 NP */)

{...}
voi d CannonMV

float BA[NP][N][BS] /*#HWST split 1
NP*/

float BB[NP][N][BS] /*#HWST split 1 NP*/,

float BQNP][N[BS] /*#HWST split 1 NP*/)
{

for (int s =0; s < NP, s++){

int i;

[*#HWST split */

for (i=0; i<NP;, i++)

Bl ockMat ri xMAC(BA[i],BB[i],BJi],

s);

rot at eMat ri xBA(BA) ;

) }

Figure 2: The Cannon algorithm the for matrix prcidu

As mentioned before, the innesl ockMatrixMAC

function will be initially scheduled. Before entegi the
scheduling step, the user is asked about the nuwiber
Floating Point multipliers and adders that havbeaised:
wanting not to exploit parallelism at this levelFP add
and 1 FP mul can be selected. Once shatkMat ri xMAC
has been scheduled, it becomes an asynchronoudemodu
which is used by the&annonwmm function. Again, before
scheduling thecannonmv function, user is asked about the
multiplicity of the Bl ocknat ri xMAC module: looking at the

CUG 2008Proceedings 3 of 8

algorithm, whereBl ockMatri xMAC is called NP times
without any dependence, it is natural to ask for NP
modules of the previously synthesizedocknat ri xMAC
module: in such a case NP sequential modules
Bl ockMat ri xMAC Will run in parallel.

Post optimization and VHDL generation

Once obtained the allocation and the scheduling for
the CDFG, the final architecture has still to bdirg in
the part concerning the interconnection/controbvoek.

In fact, during the scheduling step, all the dstathout the
connections and the structures to support HW shaig
neglected. In this final phase all the connecti@me
implemented, introducing and defining the multighex
logic necessary to implement the communicationsline
furthermore, a set of registers and multiplexers tiog
control lines are inserted, in order to allow a em@mt
management of iterations in presence of HW sharing.

As basic optimization, the control lines driven thg
same logic conditions are joined together. In otdeneet
the fan-out constraints imposed by the target telclyy, a
buffer tree is eventually inserted.

Once the original C program has been translated int
a synthesizable parallel architecture, the proptarface
with the DRC environment is added.

3.HCE IDE

As already discussed in the introduction, when
designing HCE we had in mind two main usability
objectives:

1- use only C standard statements, avoiding the
introduction of constructs to directly manage
parallelism or instruct the scheduler in a way \Whic
is not compliant with the ANSI C;

2- minimize the effort, for a not specialist, to us€H
In order to fulfill previous requirements we decide

to embed HCE within a very well known C compileiurO

choice fall on the VisualStudio from the Microsfuft

a. its strict compliance with the ANSI C and its ngarl

complete coverage of the ISO C++ standard
(required by the HCE engine)

b. its debug capabilities and its widespread diffusion

C. its possibility to be customized to host and execut
external programs

d. the availability of the free Express edition.

Consequently, HCE has been completely embedded

within the VisualStudio environment. Figure 3 regoa
screenshot of a typical HCE program.

Thanks to the deep integration with a C compiler,
HCE programs are written and debugged using theenat
compiler: this fact will ensure that the progranssepted
by HCE adhere to the ANSI C / ISO C++ standards,
because they have to be compiled by the VisualStudi
C++ compiler.

B WTranspose_2 - ¥isual C++ 2005 Express Edition

Fle Edt Wiew Project Buld Debug Tools Window Communty Help

v [# Hello_world
3 %, i 4> |45 & = &5

MTranspose_2.cpp| Start Page

Selution Explarer - Soldtien ,

= 5 EH (Global Scope)

[Solution 'MTranspose_2' (2 projects | [/ +

= (30 MTranspese 2 debug
B [Header Flles

0] MTranspose_2.h
(h] MTrar e _2_testhe

HARVEST compiling environment
File created by the Harvest Visual Studio wizard

File details:
- Source implementation file for NTranspose_Z module;
- Project: WTranspose 2

= [Header Fles "/
(1] SynthesisParameters.h
25 Source Files
€+ Synthesizer.cpp
[£] readme.txt

#include <stdio.h>
#inelude <stdlib.h>

#include "MTranspose_2.h"
[void NTranspose_2 (int m[M] [M] /HHUST split 1 M+/, int wT[H][H] /7
¢
int ,3;
for (i=0; i<M: i++)
/THHVST split*/
Tor (3=0; 3<M; 3+
1

wT[i][3] = m[3][i];

¥
)

Figure 3: Screenshot of the HCE IDE

Remaining in the same environment, switching from
the (VisualStudio standard) Debug modality to tHEE
proprietary) HARWEST modality, the same C code is
passed through the whole HCE flow sketched in Feidur

The execution of the HCE flow generates, other than
the final VHDL program corresponding to the oridia
outermost function, a set of report files that a&llm have
a deeper comprehension of what HCE did: in both
graphical and XML formats the user finds the suitetof
the CDFGs generated, of the FSMs produced andeof th
system architecture.

Harwest Project Wizard - MyHarwestProjectl

A]Evnthesis Settings

Overview

Synthesis karget:
HVWST: :System::vHOL::FPGA::Board:: DRC: LX200: Systeml 200 |
Clock fraquency (MHz):

fpof
Async. modules waiting policy:

a5 500N a5 possible -
Additional options:

I™ Enable data chaining

Top Moduls Settings
Synthesis Settings
Project Settings

™ Datapath modules inkeractive mode

< Prewious | et > I Finish | Cancel |

Figure 4: A step from the HCE project configuration
wizard

When creating a new HCE project, the user is &sbist
by the HCE Project wizard which allows:

1- to define the signature of the function;

2- to select the HW target which will be addressed
to generate the final architecture (FPGA family —
i.e. Virtex2, Virtex4, Virtex5, board type — i.e.
DRC LX200, XD1, ...);

3- to decide whether allowing or not data chaining
in the scheduling phase (i.e. if two dependent
operations could be scheduled in the same state);

CUG 2008Proceedings 4 of 8

4- to select if being asked to define the structure of
the parallel architecture (multiplicity of modules
and of registers) or letting HCE to generate a
simple parallel architecture;

5- to add support to the SystemC data types;

6- to ask for XML/postscript graphical reports
(CDFG, FSM, Architecture)

7- to automatically generate a debug project which
contains the skeleton of a testbench application
aimed at stimulating the inputs of the function to
be synthesized by HCE.

4. DRC Co-processing systems

DRC provides a co-processor system which fits on a
free Opteron socket. Due to the tight interconmectio
the host buses it provides high communication baatitiw
between the host and the co-processor system. éit th
moment of writing the system is provided in twosiens:
RPU110-L60 and DRC RPU110-L200. In the following
we refer to the last version which is able to pdevimore
performances.
DRC co-processor system is equipped with:
e a Xilinx Virtexd FPGA (XC4VLX200). See Xilinx
documentation for details on such a FPGA,;
» HyperTransport (HT) interconnection;
e Up to 2GB of RPU DRAM with two independent
physical buses each with 3.2GB/s peak bandwidth;
128 MB of RPU Low Latency RAM (LLRAM) with
two independent physical buses each with 800Mb/s
peak bandwidth;
» 256 Mbits of not volatile Flash RAM
DRC co-processor system can be optionally equipped
with up to 4GB of motherboard DRAM with one phydica
bus with 6.4GB/s peak bandwidth.
DRC provides all the cores needed to drive the
resources outside the FPGA device:
* HT bus driver core;
 DRAM and LLRAM driver cores

5. DRC co-processor s and the HCE flow

Writing an application for the DRC co-processor
system requires skills in electronic system desigrfact
the first step is to design and implement the ¢onetion
to be executed on the hardware. Once designed, the
hardware block must be interfaced with the external
resources of the FPGA, i.e. with the HT, the DRAMIa
the LLRAM. Finally the host software application stie
re-designed to include the calls to routines wiaittbw to
transfer input data on the storage resources ofcthe
processor system, to activate the hardware coretifum
and to get the computation results.

HCE allows the automation of the previous steps.

First of all the core function to be implemented in
hardware must be selected. Usually such a fundson

selected among the more computationally intensive

functions which require the less data transfers.

Once the core function (for example myFunc()) has
been selected, it is synthesized through the HOGEEtHry

the DRC co-processor system as target technolo@g H

produces a hardware block (described in VHDL/Verilo

language) which reflects the function signature fdat,

the hardware block has a set of I/O ports generated

according to the following rules:

» if the function returns a value (i.e. the functismot
a void function) the hardware block has an output
port named out_myFunc_var;

» for each scalar input parameter passed “by valne” i
the function signature, the hardware block has an
input port named in_parameter_name;

» for each scalar input/output parameter passed “by
reference” (&) in the function signature, the haadev
block has:

0 an input port named in_parameter_name if
the parameter is only read in the function
body;

0 an output port named out_parameter_name if
the parameter is only written in the function
body;

0 both the previous input and output port if the
parameter is read and written in the function
body;

» for each array parameter in the function signatiine,
hardware block has a set of port which allows teedr
an external memory. The actual protocol
implemented on these ports depends on the target
technology. Referring to the DRC co-processor
system, at the moment of writing HCE supports only
the Block RAM of the FPGA device. Support for the
LLRAM and DRAM will be added in the next release
of HCE;

« finally the set of signals implementing a simple
handshake protocol to synchronize with other
devices.

HCE synthesis process automatically generates an
interface which allows the hardware block to inténaith
the resources outside the DRC co-processor system.

Analyzing the signature of the function to be
synthesized, HCE maps the /O parameters into the
addressing space of the DRC co-processor systentoand
each parameter associates a storage resourceadbr e
scalar parameter a register is generated and ébr @aay
parameter a memory is generated.

Then a decoding block is designed and instantiated
map the DRC co-processor system addressing spdice to
FPGA storage resources. Such a decoding block is
designed in order to allow the direct interconractivith
the HT bus.

CUG 2008Proceedings5 of 8

The interface generated by HCE also contains an
application register which allows the synchronizatwith
the host system.

Finally a simple Finite State Machine is generated

manage the handshake protocol of the hardware block

implementing the user function synthesized by HCE.
AppReg =0

<«—__ setstop_ack =1
Reset AppReg

Figure 5: Handshake FSM

The FSM has four states. In SO the FSM wait for the
application register. As soon the application regisalue
is set to “1”, the start signal is asserted andR8#&1 goes
in the S1 state waiting for the start_ack signahfrthe
HCE block. When the start_ack signal as been &skert
the FSM goes in the S2 state and waits for the syl
to be asserted. When the hardware block finishes th
computations it asserts the stop signal. Then 8 Boes
in the S3 state, asserts stop_ack and reset tHieajgm
register. Then the FSM goes to the SO state waiting
new computation cycle.

On the software side, HCE generates a wrapper
function which allows to use blindly the FPGA haste..
The wrapper function performs the following opesas:

» checks the DRC blade to be correctly configured and
available to the current user;

» transfers the input data via HT bus through the DRC
API functions;

« writes “1” into the application register to triggtre
execution of the hardware implemented function;

« waits for the end of computation and gets the dutpu
data;

Three wrapper functions are provided:

e a blocking wrapper function which stops the
execution of the application program running on the
host until the end of the hardware computation;

* two non blocking wrapper functions: the first allow
to start the hardware computation and, while the
FPGA hardware is running, to perform in parallel
some computation to be run on the host side; the
second waits for the computation end.

The usage of the wrapper function is trivial. Suggo
to have the following fragment of code which usks t
function myFunc();

#include <myFunc.h>

}ﬁ'yFunc(); /lcall to myFunc()

Once myFunc() has been synthesized through HCE,
we obtain:

« the VHDL files which represent the hardware
implementation of myFunc() on the DRC blade. Such
VHDL files have to be synthesized with the Xilinx
synthesis tool chain in order to obtain a confitjora
bitstream file. HCE produces a batch file to
automatically perform the low level synthesis step
with default Xilinx synthesis options. If different
synthesis options are needed the low level syrghesi
step has to be performed manually;

» the C++ file which contains the wrapper to call the
hardware implementation of myFunc()

In order to use the hardware implementation of
myFunc(), the bitstream must be downloaded onto the
DRC blade and the original program must be modi§ed
that it calls the wrapper function. The originaldeo
becomes:

#include <myFunc-hwst-wrapper.h>

/[call to the wrapper of myFunc() which
/lactivates the hardware implementation
/I and waits for the output data
myFunc();

The previous example uses the blocking version of
the wrapper function. The non-blocking version le t
following:

#include < myFunc-hwst-wrapper.h >
/[call to the wrapper of myFunc() which
/lactivates the hardware implementation
/Iwithout waiting for the output data

myFunc_start();

... code to be executed on the host side

CUG 2008Proceedings 6 of 8

/[call to the wrapper of myFunc() which
/Iwaits for the output data
myFunc_end();

Obviously the code executed between the
myFunc_start and myFunc_end calls to the wrapper
functions must be executed on the host side and baus
not dependent on the results of myFunc() computatio
is up to the user to satisfy such requirements.

6. Performances

In order to quantify the performances achievable
through HCE, in this paragraph we report the sygithe
results achieved in several test cases.

In order to be meaningful, we consider tests to
measure different aspects of the global system. We
implemented a test (test 1) to measure the Reath\Wri
bandwidth from/to the DRC accelerator, a test (Bstio
measure the effective utilization of the internag@mory
bandwidth, a third test (test 3) to show the penfamces
in the case of Boolean computation, a test (testo4)

measure performances when processing DNA sequences,

a test (test 5) to show how HCE behaves with figeiht
computations and, finally a test (test 6) to analy®e case
of floating point computations. In all the testhemever
the number of employed slices is reported, the raumolb
slices used by the DRC interface has to be addE200,
13% of the total slices available in a Virtex4 LXR0
FPGA)

800

—— BV Read

600 —— EI'I.-'“'-.III Wl’itE /;

300 /
200 //
100 ’//
0 -=::=='/
1 10 100 1000 10000 100000

Msg length [B]
Figure 6: Host — DRC I/O Bandwidth

£

Bandwidth [MBis]

1000000

Test 1: measuring DMA bandwidth

In order to measure DMA bandwidth from an
Opteron Linux System, we wrote a simple application
which required the transfer of a message from tist to
the FPGA (DMA Write) and the corresponding readkbac
from the FPGA to the host memory (DMA Read). Thst te
was performed 10 times for different message length

In Figure 6 we report, for each message length, the
average bandwidth obtained averaging the resulthef

10 runs. The bandwidth saturates at 670 MB/s irr¢lael
case and at 550 MB/s in the write case. The time
necessary to write (read) the shortest messaggté8)hs
equal to 0.9us (2.5us).

Test 2: measuring the exploitation of internal bandwidth

One of the main advantages of FPGAs rely on their
extremely high memory bandwidth. We wrote a simple
test to measure the ability of HCE to exploit sachuge
bandwidth. The test performs the transposition &Da
square matrix, copying the original matrix m[M][Nfjto
the transposed matrix mT[M][M]. The C code is the
following:

#define M 128

void Miransp(float mM{M[M /*#HWBT split 1 M/,
float MI[M[M [/*#HWST split 2 M/)

{

int i,j;

[*#HWST unrol |l 16 */
for (i=0; i<M i++)
[*#HWST split*/
for (j=0; j<M j++)
eIl = ofjI0il;

In the code thepl i t keywords in the comments are
special keys used to inform HCE that matrix m[M][M]
divided into M row vectors of size M and mT[M][M§i
divided into M column vectors of size M. Thankstlis
matrix organization, each vector will be mapped an
different FPGA block memory bank (the LX200 FPGA of
the Xilinx Virtex4 family has 336 block RAM modules
each one with size of 18Kbits) and HCE will be atde
parallelize the accesses to these memory banks.

After the synthesis of this simple code, HCE praguc
the VHDL files corresponding to an architecture aethi
employs 136 clock cycles to transpose the matrithie
clock frequency is equal to 100 MHz, MxMx4 byteg ar
read and written in 1.3@s, corresponding to an internal
bandwidth BWieadBWwiie=45 GB/s. The number of
slices used by such an architecture is 6601 (7&beofotal
slices available in a Virtex4 LX200 FPGA). The
architecture uses 256 Block RAM modules.

Test 3: computing the transitive closure of a graph

Let us consider a directed graph G with N nodes,
represented through the incidence matrix a[N][N}=(a
when node yis connected to nodg, @=0 otherwise).

The transitive closure of G is a direct graph wthels
an edge between two any nodes if the two nodes are
connected by a path in G. The algorithm to compluée
incidence matrix of the transitive closure of G tie
following:

CUG 2008Proceedings 7 of 8

for (k =0; k <N k++)
for (i =0; i <N, i++4)
for (j =0; j <N j++)
aij=a_ij | (a_ik & a_kj)

We implemented the algorithm to compute the
transitive closure in the case of graph size N 480 he
architecture produced by HCE computes the tramsitiv
closure in Exg = 250 ms, corresponding to
2*N*N*N/T exe = 68 x 18 op/s, being one op an
elementary 1 bit boolean operation. The humbelicés
used by the architecture is 3695 (4% of the slices
available in a V4LX200 FPGA). The architecture riegs
256 Block RAM modules.

Test 4: the Smith Watermann algorithm
Bioinformatics, and DNA sequencing in particular,

has always been seen as a good candidate to adopt

FPGAs. To test HCE in such environment, we decided
implement the computation of the scoring matrixthod
Smith Waterman algorithm [5]. This algorithm uses a
dynamic programming approach to find the best afignt
(with insertions, deletions and mismatches) betwaen
DNA sequence of size m (pattern) and another seguen
of size n (text). The algorithm returns the positia the
text where the pattern is contained and how theepahas

to be stretched to best match the text. In ourrgpdive
fixed the pattern size m=255 and the text size 8410
After the HCE flow we obtained an architecture vhic
requires ~4(n+m) clock cycles to run, beipg ¥ 100
MHz. The number of slices used by the architeciare
20897 (23% of the slices available in a V4LX200 PBG

Test 5: implementing a FIR filter

Digital signal processing is one of the fields more
involved in embedded processing. To test how HCE
behaves on DSP algorithms, we considered the
implementation of a FIR filter — a typical, parauhgtic
DSP application. We coded a filter with 128 tapd &d
it with a signal x[N] constituted by N = 1024 saegl
Both the filter taps and the samples (input anghaiithas
been represented in fixed point, using the sc_#d&d8>
SystemC data type: this data type is composed hyit$6
8 used as integer part and 8 as fractional pae. HGE
flow produced an architecture which ran at 60 Mg a
employed 17us to produce the output vector: such timing
corresponds to a sustained computation rate of A<
being one op a 16 bit fixed point operation. Thenhar
of slices used by the architecture is 30489 (34%hef
slices available in a V4LX200 FPGA); furthermorhe t
architecture uses all the 96 available DSP blocks.

Test 6: the Cannon algorithm for the matrix product

To test the flexibility of HCE in the case of
algorithms requiring the floating point represeiatat we
implemented the Cannon Algorithm [4] to perform the
matrix product C = AxB, being A, B and C NxN maéc
(in the example N = 128). A sketch of the codehigven
in Figure 2, being the block size dimension BS=8 e

number ofBl ockvat ri xMAC modules NP=16. The HCE
flow produced an architecture which ran at 80 Mg a
employed 3.7 ms to produce the output vector: such
timing corresponds to a sustained computationaofitiel
GFlop/s. The number of slices used by the architeds
40799 (45% of the slices available in a Virtex4 10R2
FPGA); furthermore, the architecture uses all tfe 9
available DSP blocks and 98 memory blocks (29%hef t
total memory blocks available in a V4LX200 FPGA).

7. Conclusions

The HARWEST Compiling Environment (HCE), an
high level synthesis tool developed by Ylichron i&rthe
framework of the HARWEST industrial research prajec
has been presented. HCE is a collection of congpitiols
which automatically translate, in a nearly optimaly, an
ANSI C program into a corresponding, synthesizable
parallel architecture. In order to make really edisg
adoption of FPGA technology to users with experéeimnc
software development (and without experience in
electronic system design), the HCE flow has been
completely embedded within the Microsoft VisualStud
compile framework.

HCE supports, among its targets, the DRC co-
processing boards and allows the seamless integrefi
programs running in the host processor node with th
kernel allotted to the co-processing FPGA node: HCE
translates the kernel into a synthesizable parallel
architecture, adds the interface to the DRC FPGA
environment, automatically generates the bitstream
configure the FPGA and generates also the C wrapper
functions to invoke, together with the necessaryA3No
pass data and to read the results, the accelekatee!
from a C program running on the host processor.

Thanks to the HCE approach, the porting of
computationally demanding applications onto the DRC
FPGA co-processing boards has become a task whith c
be accomplished in a completely automated way.

References

[1] www.systemc.org

[2] G. Brusco: “Generation of CDFGs from C programs
and their scheduling”. Master Thesis in Electronic
Engineering, University “La Sapienza” (Rome),
2004 (in Italian).

[3] G. Lakshminarayana et al.: “Wavesched: a novel
scheduling technique for control flow intensive
designs”. IEEE Trans on CAD, 18, 5, 1999.

[4] A. Grama, A. Gupta, G. Karypis, V. Kumar:
“Introduction to parallel computing”, Addison
Wesley, 2003 — Paragraph 8.2.2

[5] TF Smith, MS Waterman: “ldentification of
Common Molecular Subsequences”. Journal of
Molecular Biology 147, 1981.

CUG 2008Proceedings 8 of 8

