

CUG 2008 Proceedings 1 of 8

The HARWEST Compiling Environment: Accessing the FPGA
World through ANSI-C Programs

Alessandro Marongiu and Paolo Palazzari
Ylichron Srl and ENEA

ABSTRACT: FPGA computing is always thought as a media to dramatically improve
computational performances. The real obstacle to its widespread diffusion is primarily
due to the lack of compiling tools which allow to use common specification languages
(like the ANSI C); on the contrary, FPGAs have to be programmed either through very
low level HDL languages or through some not standard languages which are dialects
derived from the C but which are very far from the standard C-language. In order to
overcome previous drawbacks, Ylichron developed a compiling chain, the HARWEST
Compiling Environment (HCE), which allows to specify algorithms to be mapped onto
FPGAs through standard C programs: as a consequence, no special skills are required
to access the power of FPGA computing and no special efforts have to be spent to learn
proprietary languages. The HCE Design Flow and some performance figures are
presented in the paper.

KEYWORDS: FPGA, High Level Synthesis, DRC blades, ANSI C

1. Introduction

FPGA computing is always thought as a media to
dramatically improve computational performances. The
real obstacle to its widespread diffusion is primarily due
to the lack of compiling tools which allow to use common
specification languages (like the ANSI C); on the
contrary, FPGAs have to be programmed either through
very low level HDL languages (such as VHDL or Verilog)
or through some not standard languages which are dialects
derived from the C but which are very far from the
standard C-language: in both the cases, the effort to
develop an application cannot be kept and reused to port
the same application onto different compiling
environments. In order to overcome previous drawbacks,
Ylichron developed a compiling chain, the HARWEST
Compiling Environment (HCE), which allows to specify
algorithms to be mapped onto FPGAs as standard C
programs: as a consequence, no special skills in electronic
system design are required to access the power of FPGA
computing and no special efforts have to be spent to learn
proprietary languages.

HCE is a set of compilation tools which transform an
ANSI C program into an equivalent, optimized VHDL

ready to be compiled and run onto a prefixed target board:
the DRC FPGA blades, used by the Cray XT5h systems,
are among the supported targets.

The choice of the ANSI C is aimed at allowing the
adoption of FPGA computing devices to a widespread and
heterogeneous community of users: as it is a standard de
facto language, its adoption allows many technicians and
scientists from many fields (biology, chemistry, physics,
…) to port the kernel of their C applications onto FPGA
devices.

The main characteristic of the Ylichron approach is
that the programs given as input to the HCE flow can be
previously refined and debugged within a well known C
compiling environment (the Microsoft VisualStudio) and,
once fixed, they are passed to the HCE flow without
changing or adding any line of code: this fact ensures that
no use of not standard functionalities related to the
hardware synthesis flow (exploiting the application
parallelism, guiding the scheduling process, …) is
required. Thanks to the effort spent in ensuring such
compliance to the standard C, no special skills (electronic
design, system architectures) are required to use the HCE
flow.

CUG 2008 Proceedings 2 of 8

In order to allow the implementation of area efficient
designs, the set of the standard ANSI C data types has
been extended to include also two of the SystemC data
types – the sc_bv and the sc_fixed, being SystemC [1] a
set of standardized C++ classes defined to efficiently
model and simulate digital systems. For such a reason, the
debug and test phase requires a C++ compiler.

2. HCE Design Flow

The HARWEST Compiling Environment (HCE) is
one of the first outcomes of the HARWEST research
project, funded by the Italian Ministry for University and
Research, aimed at creating a fully automated HW/SW
co-design environment. The HCE flow is reported in Fig.
1.

Input specs
(ANSI C)

Parallelism
Extraction
(CDFG)

Allocation
&

scheduling

VHDL-RTL
generation/

Optimization &
DRC IF

instanziation

Xilinx
proprietary

synthesis tools

FPGA
bitstream

C++ code
representing a

CDFG of the input
program.

Control Path and
Data Path of a
parallel system
implementing the
input algorithm.

Synthesizable VHDL
representing the
parallel system on
the DRC blade.

Figure 1: HCE Flow

The system specifics are given by means of an ANSI
C program: actually we adopt both a subset of the ANSI
C, not allowing the use of pointers and of recursive
functions, and a small extension toward C++, supporting
the two SystemC sc_bv and sc_fixed data types. As these
two data types are implemented as C++ objects, with their
methods and dedicated operations, a C++ compiler is
needed to run the HCE C input programs. This, together
with the & operator used when declaring a function
parameter, are the only C++ features accepted by the
HCE.

Starting at a very high level of abstraction (C
language), the correctness of the specifics is checked by
running and debugging, on a conventional system, the C
program (of course, we do not afford the task of proofing
the correctness of a C program: we consider a program to
be correct once it works correctly on some given sets of
input data). Once we are satisfied with the program
behavior, i.e. after the debugging and testing phase, the
input specifics are translated into the Control and Data
Flow Graph (CDFG) model of computation. Given a set
of resources (number of basic building block modules),
the CDFG is mapped into a Data Path and a Control Finite
State Machine (FSM) which enforces the behavior
expressed by the starting C program. Such an architecture,
represented by the Data Path and the Control FSM, is
further optimized (some redundant logic is removed and
connections are implemented and optimized) and
translated into an equivalent synthesizable VHDL code.
Finally, the VHDL program is processed through the
standard proprietary design tools (translation and map into
the target technology, place and route) to produce the
configuration bit stream.

It is worth to be underlined that the debugging phase
is executed only at very high level of abstraction (on the C
program), while all the other steps are fully automated and
result to be correct by construction: this fact ensures that,
once we have a working C program, the final architecture
will show the same program behavior.

CDFG Extraction from C programs
As reported in Fig. 1, the first step of the design flow

transforms the C program into an equivalent algorithm
expressed by means of the, intrinsically parallel, CDFG
computational model.

When designing HCE, we decided to use a CDFG
model with blocking semantics (i.e. a computing node
does not terminate until all its outputs have been read by
the consumer nodes) because it does not require the
insertion of buffers along the communication edges. In [2]
we individuated a set of rules which transform C programs
into CDFGs and ensure that deadlocks never arise.

Once the CDFG of the original program has been
determined, it is analyzed to implement some basic
optimizations aimed at reducing the complexity of the
graph (constant folding/propagation, common sub-
expression elimination, invariant code motion, …).

CUG 2008 Proceedings 3 of 8

Allocating and scheduling CDFGs
Resorting to the design flow in Fig. 1, after having

derived the CDFG representation of the original
algorithm, we are faced with the problem of allocating and
scheduling such computations onto a set of predefined
computing resources which represent a subset of the input
constraints (further constraints could be involved by the
need of a real-time behavior or by throughput
requirements).

In order to perform the allocation and scheduling
operations, within the HCE we created a library of
computing modules which are the building blocks to be
used to set-up the final parallel architecture. Each module
is constituted by
• a collection of static information regarding

o the area requirements (basic blocks needed for
the implementation of the module onto a certain
technology - LUT, memory modules, DSP
blocks, ...),

o the module behavior (combinational, pipelined,
multicycle, asynchronous),

o the response time (propagation delay, setup time,
latency, ...)

• a collection of files (EDIF format) to implement the
module onto different target technologies (for
instance, FPGAs from different vendors).

The HCE library of pre-designed modules contains:

� Pipelined (*, +) and multi-cycle (/) floating point
operators

� All the family of operators to support char, int and
fixed point data types

� The basic math functions (sinf, cosf, tanf, sqrtf, logf,
expf)

� The rand() function
� Modules to manage pipelined memory banks with any

address and word length; address length is
constrained to be <= 64 and word length has to be a
power of 2.

� Modules to support the management of the program
control flow.
The library of HCE modules can be extended by

inserting user defined modules.
Allocating and scheduling a computation requires a

time instant and a computing resource (i.e. a module) to
be assigned to each operation of the computation. In order
to do this, the HCE flow implements a list scheduling
heuristic, derived from the algorithm presented in [3]. It is
worth to be underlined that the algorithm in [3] has been
deeply modified to allow the sharing of the same HW
module among different SW nodes.

When the original C program is structured with
different functions, the program can be flattened through
the inline expansion of the functions, thus generating a
unique CDFG and a unique FSM. In order to reduce the
complexity of the scheduling operation, as a simplifying

option, each function - starting from the deepest ones -
can be translated onto a different CDFG. The HCE flow
initially schedules the CDFGs corresponding to code
which has not inner functions, generating the
corresponding FSMs; successively such FSMs are
scheduled as asynchronous modules when the CDFG of
the calling function is scheduled; these asynchronous
modules are synchronized with the FSM of the calling
CDFG through a basic start/stop protocol.

Before performing the actual allocation and
scheduling phase, HCE allows the user to define the
structure of the target architecture. In fact it is possible to
specify, for each C function, the multiplicity of the
modules that will be used to implement that function: in
such a way the user may control at which level of
granularity the parallelism is exploited.

As illustrative example of previous point, let us
consider a portion of code to implement the Cannon
algorithm [4] to multiply two matrices:

void BlockMatrixMAC(float BA[N][BS],
 float BB[N][BS],float BC[N][BS],int step)
{
 int i,j,k, base_k, BN;
 for (BN = 0; BN < NP; BN++){
 base_k = ((BN+step)*BS)%N;
 for (i=BN*BS;i<(BN+1)*BS;i++){
 for (j=0;j<BS;j++)
 for (k=0;k<BS;k++)
 BC[i][j]+=BA[i][k]*BB[base_k+ k][j];

}
 }
}

void rotateMatrixBA(float BA[NP][N][BS]

 /*#HWST split 1 NP */)
{...}

void CannonMM(
 float BA[NP][N][BS] /*#HWST split 1
NP*/,
 float BB[NP][N][BS] /*#HWST split 1 NP*/,
 float BC[NP][N][BS] /*#HWST split 1 NP*/)
{
 for (int s = 0; s < NP; s++){
 int i;
 /*#HWST split */
 for (i=0; i<NP; i++)
 BlockMatrixMAC(BA[i],BB[i],BC[i],
s);
 rotateMatrixBA(BA);
 }
}

Figure 2: The Cannon algorithm the for matrix product

As mentioned before, the inner BlockMatrixMAC
function will be initially scheduled. Before entering the
scheduling step, the user is asked about the number of
Floating Point multipliers and adders that have to be used:
wanting not to exploit parallelism at this level, 1 FP add
and 1 FP mul can be selected. Once that BlockMatrixMAC
has been scheduled, it becomes an asynchronous module
which is used by the CannonMM function. Again, before
scheduling the CannonMM function, user is asked about the
multiplicity of the BlockMatrixMAC module: looking at the

CUG 2008 Proceedings 4 of 8

algorithm, where BlockMatrixMAC is called NP times
without any dependence, it is natural to ask for NP
modules of the previously synthesized BlockMatrixMAC

module: in such a case NP sequential modules
BlockMatrixMAC will run in parallel.

Post optimization and VHDL generation
Once obtained the allocation and the scheduling for

the CDFG, the final architecture has still to be defined in
the part concerning the interconnection/control network.
In fact, during the scheduling step, all the details about the
connections and the structures to support HW sharing are
neglected. In this final phase all the connections are
implemented, introducing and defining the multiplexing
logic necessary to implement the communication lines;
furthermore, a set of registers and multiplexers on the
control lines are inserted, in order to allow a coherent
management of iterations in presence of HW sharing.

As basic optimization, the control lines driven by the
same logic conditions are joined together. In order to meet
the fan-out constraints imposed by the target technology, a
buffer tree is eventually inserted.

Once the original C program has been translated into
a synthesizable parallel architecture, the proper interface
with the DRC environment is added.

3. HCE IDE

As already discussed in the introduction, when
designing HCE we had in mind two main usability
objectives:
1- use only C standard statements, avoiding the

introduction of constructs to directly manage
parallelism or instruct the scheduler in a way which
is not compliant with the ANSI C;

2- minimize the effort, for a not specialist, to use HCE.
In order to fulfill previous requirements we decided

to embed HCE within a very well known C compiler. Our
choice fall on the VisualStudio from the Microsoft for
a. its strict compliance with the ANSI C and its nearly

complete coverage of the ISO C++ standard
(required by the HCE engine)

b. its debug capabilities and its widespread diffusion
c. its possibility to be customized to host and execute

external programs
d. the availability of the free Express edition.
Consequently, HCE has been completely embedded
within the VisualStudio environment. Figure 3 reports a
screenshot of a typical HCE program.

Thanks to the deep integration with a C compiler,
HCE programs are written and debugged using the native
compiler: this fact will ensure that the programs accepted
by HCE adhere to the ANSI C / ISO C++ standards,
because they have to be compiled by the VisualStudio
C++ compiler.

Figure 3: Screenshot of the HCE IDE

Remaining in the same environment, switching from
the (VisualStudio standard) Debug modality to the (HCE
proprietary) HARWEST modality, the same C code is
passed through the whole HCE flow sketched in Figure 1.

The execution of the HCE flow generates, other than
the final VHDL program corresponding to the original C
outermost function, a set of report files that allow to have
a deeper comprehension of what HCE did: in both
graphical and XML formats the user finds the structure of
the CDFGs generated, of the FSMs produced and of the
system architecture.

Figure 4: A step from the HCE project configuration

wizard

When creating a new HCE project, the user is assisted
by the HCE Project wizard which allows:

1- to define the signature of the function;
2- to select the HW target which will be addressed

to generate the final architecture (FPGA family –
i.e. Virtex2, Virtex4, Virtex5, board type – i.e.
DRC LX200, XD1, …);

3- to decide whether allowing or not data chaining
in the scheduling phase (i.e. if two dependent
operations could be scheduled in the same state);

CUG 2008 Proceedings 5 of 8

4- to select if being asked to define the structure of
the parallel architecture (multiplicity of modules
and of registers) or letting HCE to generate a
simple parallel architecture;

5- to add support to the SystemC data types;
6- to ask for XML/postscript graphical reports

(CDFG, FSM, Architecture)
7- to automatically generate a debug project which

contains the skeleton of a testbench application
aimed at stimulating the inputs of the function to
be synthesized by HCE.

4. DRC Co-processing systems

DRC provides a co-processor system which fits on a
free Opteron socket. Due to the tight interconnection to
the host buses it provides high communication bandwidth
between the host and the co-processor system. At the
moment of writing the system is provided in two versions:
RPU110-L60 and DRC RPU110-L200. In the following
we refer to the last version which is able to provide more
performances.

DRC co-processor system is equipped with:
• a Xilinx Virtex4 FPGA (XC4VLX200). See Xilinx

documentation for details on such a FPGA;
• HyperTransport (HT) interconnection;
• Up to 2GB of RPU DRAM with two independent

physical buses each with 3.2GB/s peak bandwidth;
• 128 MB of RPU Low Latency RAM (LLRAM) with

two independent physical buses each with 800Mb/s
peak bandwidth;

• 256 Mbits of not volatile Flash RAM
DRC co-processor system can be optionally equipped

with up to 4GB of motherboard DRAM with one physical
bus with 6.4GB/s peak bandwidth.

DRC provides all the cores needed to drive the
resources outside the FPGA device:
• HT bus driver core;
• DRAM and LLRAM driver cores

5. DRC co-processors and the HCE flow

Writing an application for the DRC co-processor
system requires skills in electronic system design. In fact
the first step is to design and implement the core function
to be executed on the hardware. Once designed, the
hardware block must be interfaced with the external
resources of the FPGA, i.e. with the HT, the DRAM and
the LLRAM. Finally the host software application must be
re-designed to include the calls to routines which allow to
transfer input data on the storage resources of the co-
processor system, to activate the hardware core function
and to get the computation results.

HCE allows the automation of the previous steps.
First of all the core function to be implemented in

hardware must be selected. Usually such a function is

selected among the more computationally intensive
functions which require the less data transfers.

Once the core function (for example myFunc()) has
been selected, it is synthesized through the HCE selecting
the DRC co-processor system as target technology. HCE
produces a hardware block (described in VHDL/Verilog
language) which reflects the function signature. In fact,
the hardware block has a set of I/O ports generated
according to the following rules:
• if the function returns a value (i.e. the function is not

a void function) the hardware block has an output
port named out_myFunc_var;

• for each scalar input parameter passed “by value” in
the function signature, the hardware block has an
input port named in_parameter_name;

• for each scalar input/output parameter passed “by
reference” (&) in the function signature, the hardware
block has:

o an input port named in_parameter_name if
the parameter is only read in the function
body;

o an output port named out_parameter_name if
the parameter is only written in the function
body;

o both the previous input and output port if the
parameter is read and written in the function
body;

• for each array parameter in the function signature, the
hardware block has a set of port which allows to drive
an external memory. The actual protocol
implemented on these ports depends on the target
technology. Referring to the DRC co-processor
system, at the moment of writing HCE supports only
the Block RAM of the FPGA device. Support for the
LLRAM and DRAM will be added in the next release
of HCE;

• finally the set of signals implementing a simple
handshake protocol to synchronize with other
devices.

HCE synthesis process automatically generates an

interface which allows the hardware block to interact with
the resources outside the DRC co-processor system.

Analyzing the signature of the function to be
synthesized, HCE maps the I/O parameters into the
addressing space of the DRC co-processor system and to
each parameter associates a storage resource: for each
scalar parameter a register is generated and for each array
parameter a memory is generated.

Then a decoding block is designed and instantiated to
map the DRC co-processor system addressing space to the
FPGA storage resources. Such a decoding block is
designed in order to allow the direct interconnection with
the HT bus.

CUG 2008 Proceedings 6 of 8

The interface generated by HCE also contains an
application register which allows the synchronization with
the host system.

Finally a simple Finite State Machine is generated to
manage the handshake protocol of the hardware block
implementing the user function synthesized by HCE.

S0

AppReg = 0

AppReg = 1

S1

Set start = 1

S1

start_ack = 0

S2

start_ack = 1

stop = 0

S3

stop = 1

set stop_ack = 1
Reset AppReg

Figure 5: Handshake FSM

The FSM has four states. In S0 the FSM wait for the
application register. As soon the application register value
is set to “1”, the start signal is asserted and the FSM goes
in the S1 state waiting for the start_ack signal from the
HCE block. When the start_ack signal as been asserted,
the FSM goes in the S2 state and waits for the stop signal
to be asserted. When the hardware block finishes the
computations it asserts the stop signal. Then the FSM goes
in the S3 state, asserts stop_ack and reset the application
register. Then the FSM goes to the S0 state waiting for a
new computation cycle.

On the software side, HCE generates a wrapper

function which allows to use blindly the FPGA hardware.
The wrapper function performs the following operations:
• checks the DRC blade to be correctly configured and

available to the current user;
• transfers the input data via HT bus through the DRC

API functions;
• writes “1” into the application register to trigger the

execution of the hardware implemented function;
• waits for the end of computation and gets the output

data;
Three wrapper functions are provided:

• a blocking wrapper function which stops the
execution of the application program running on the
host until the end of the hardware computation;

• two non blocking wrapper functions: the first allows
to start the hardware computation and, while the
FPGA hardware is running, to perform in parallel
some computation to be run on the host side; the
second waits for the computation end.

The usage of the wrapper function is trivial. Suppose

to have the following fragment of code which uses the
function myFunc();

#include <myFunc.h>
…
…
myFunc(); //call to myFunc()
…
…

Once myFunc() has been synthesized through HCE,

we obtain:
• the VHDL files which represent the hardware

implementation of myFunc() on the DRC blade. Such
VHDL files have to be synthesized with the Xilinx
synthesis tool chain in order to obtain a configuration
bitstream file. HCE produces a batch file to
automatically perform the low level synthesis step
with default Xilinx synthesis options. If different
synthesis options are needed the low level synthesis
step has to be performed manually;

• the C++ file which contains the wrapper to call the
hardware implementation of myFunc()

In order to use the hardware implementation of

myFunc(), the bitstream must be downloaded onto the
DRC blade and the original program must be modified so
that it calls the wrapper function. The original code
becomes:

#include <myFunc-hwst-wrapper.h>
…
…
//call to the wrapper of myFunc() which
//activates the hardware implementation
// and waits for the output data
myFunc();
…
…

The previous example uses the blocking version of

the wrapper function. The non-blocking version is the
following:

#include < myFunc-hwst-wrapper.h >
…
…
//call to the wrapper of myFunc() which
//activates the hardware implementation
//without waiting for the output data
myFunc_start();
…
… code to be executed on the host side
…

CUG 2008 Proceedings 7 of 8

//call to the wrapper of myFunc() which
//waits for the output data
myFunc_end();

Obviously the code executed between the

myFunc_start and myFunc_end calls to the wrapper
functions must be executed on the host side and must be
not dependent on the results of myFunc() computation. It
is up to the user to satisfy such requirements.

6. Performances

In order to quantify the performances achievable
through HCE, in this paragraph we report the synthesis
results achieved in several test cases.

In order to be meaningful, we consider tests to
measure different aspects of the global system. We
implemented a test (test 1) to measure the Read/Write
bandwidth from/to the DRC accelerator, a test (test 2) to
measure the effective utilization of the internal memory
bandwidth, a third test (test 3) to show the performances
in the case of Boolean computation, a test (test 4) to
measure performances when processing DNA sequences,
a test (test 5) to show how HCE behaves with fixed point
computations and, finally a test (test 6) to analyze the case
of floating point computations. In all the tests, whenever
the number of employed slices is reported, the number of
slices used by the DRC interface has to be added (~12000,
13% of the total slices available in a Virtex4 LX200
FPGA)

Figure 6: Host – DRC I/O Bandwidth

Test 1: measuring DMA bandwidth
In order to measure DMA bandwidth from an

Opteron Linux System, we wrote a simple application
which required the transfer of a message from the host to
the FPGA (DMA Write) and the corresponding read back
from the FPGA to the host memory (DMA Read). The test
was performed 10 times for different message length.

In Figure 6 we report, for each message length, the
average bandwidth obtained averaging the results of the

10 runs. The bandwidth saturates at 670 MB/s in the read
case and at 550 MB/s in the write case. The time
necessary to write (read) the shortest message (8 bytes) is
equal to 0.9 µs (2.5 µs).

Test 2: measuring the exploitation of internal bandwidth
One of the main advantages of FPGAs rely on their

extremely high memory bandwidth. We wrote a simple
test to measure the ability of HCE to exploit such a huge
bandwidth. The test performs the transposition of a 2D
square matrix, copying the original matrix m[M][M] into
the transposed matrix mT[M][M]. The C code is the
following:

#define M 128
void MTransp(float m[M][M] /*#HWST split 1 M*/,
 float mT[M][M] /*#HWST split 2 M*/)
{
 int i,j;
 /*#HWST unroll 16 */
 for (i=0; i<M; i++)
 /*#HWST split*/
 for (j=0; j<M; j++)
 {
 mT[i][j] = m[j][i];
 }
}

In the code the split keywords in the comments are

special keys used to inform HCE that matrix m[M][M] is
divided into M row vectors of size M and mT[M][M] is
divided into M column vectors of size M. Thanks to this
matrix organization, each vector will be mapped on a
different FPGA block memory bank (the LX200 FPGA of
the Xilinx Virtex4 family has 336 block RAM modules,
each one with size of 18Kbits) and HCE will be able to
parallelize the accesses to these memory banks.

After the synthesis of this simple code, HCE produces
the VHDL files corresponding to an architecture which
employs 136 clock cycles to transpose the matrix. As the
clock frequency is equal to 100 MHz, MxMx4 bytes are
read and written in 1.36 µs, corresponding to an internal
bandwidth BWRead=BWWrite=45 GB/s. The number of
slices used by such an architecture is 6601 (7% of the total
slices available in a Virtex4 LX200 FPGA). The
architecture uses 256 Block RAM modules.

Test 3: computing the transitive closure of a graph
Let us consider a directed graph G with N nodes,

represented through the incidence matrix a[N][N] (aij=1
when node ni is connected to node nj, aij=0 otherwise).

The transitive closure of G is a direct graph which has
an edge between two any nodes if the two nodes are
connected by a path in G. The algorithm to compute the
incidence matrix of the transitive closure of G is the
following:

CUG 2008 Proceedings 8 of 8

for (k = 0; k < N; k++)
 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 a_ij=a_ij | (a_ik & a_kj);

We implemented the algorithm to compute the
transitive closure in the case of graph size N = 2048. The
architecture produced by HCE computes the transitive
closure in TEXE = 250 ms, corresponding to
2*N*N*N/T EXE = 68 x 109 op/s, being one op an
elementary 1 bit boolean operation. The number of slices
used by the architecture is 3695 (4% of the slices
available in a V4LX200 FPGA). The architecture requires
256 Block RAM modules.

Test 4: the Smith Watermann algorithm
Bioinformatics, and DNA sequencing in particular,

has always been seen as a good candidate to adopt
FPGAs. To test HCE in such environment, we decided to
implement the computation of the scoring matrix of the
Smith Waterman algorithm [5]. This algorithm uses a
dynamic programming approach to find the best alignment
(with insertions, deletions and mismatches) between a
DNA sequence of size m (pattern) and another sequence
of size n (text). The algorithm returns the position in the
text where the pattern is contained and how the pattern has
to be stretched to best match the text. In our coding, we
fixed the pattern size m=255 and the text size n=1024.
After the HCE flow we obtained an architecture which
requires ~4(n+m) clock cycles to run, being fck = 100
MHz. The number of slices used by the architecture is
20897 (23% of the slices available in a V4LX200 FPGA).

Test 5: implementing a FIR filter
Digital signal processing is one of the fields more

involved in embedded processing. To test how HCE
behaves on DSP algorithms, we considered the
implementation of a FIR filter – a typical, paradigmatic
DSP application. We coded a filter with 128 taps and fed
it with a signal x[N] constituted by N = 1024 samples.
Both the filter taps and the samples (input and output) has
been represented in fixed point, using the sc_fixed<16,8>
SystemC data type: this data type is composed by 16 bits,
8 used as integer part and 8 as fractional part. The HCE
flow produced an architecture which ran at 60 MHz and
employed 17 µs to produce the output vector: such timing
corresponds to a sustained computation rate of 14 Gop/s,
being one op a 16 bit fixed point operation. The number
of slices used by the architecture is 30489 (34% of the
slices available in a V4LX200 FPGA); furthermore, the
architecture uses all the 96 available DSP blocks.

Test 6: the Cannon algorithm for the matrix product
To test the flexibility of HCE in the case of

algorithms requiring the floating point representation, we
implemented the Cannon Algorithm [4] to perform the
matrix product C = AxB, being A, B and C NxN matrices
(in the example N = 128). A sketch of the code is shown
in Figure 2, being the block size dimension BS=8 and the

number of BlockMatrixMAC modules NP=16. The HCE
flow produced an architecture which ran at 80 MHz and
employed 3.7 ms to produce the output vector: such
timing corresponds to a sustained computation rate of 1.1
GFlop/s. The number of slices used by the architecture is
40799 (45% of the slices available in a Virtex4 LX200
FPGA); furthermore, the architecture uses all the 96
available DSP blocks and 98 memory blocks (29% of the
total memory blocks available in a V4LX200 FPGA).

7. Conclusions

The HARWEST Compiling Environment (HCE), an
high level synthesis tool developed by Ylichron Srl in the
framework of the HARWEST industrial research project,
has been presented. HCE is a collection of compiling tools
which automatically translate, in a nearly optimal way, an
ANSI C program into a corresponding, synthesizable
parallel architecture. In order to make really easy the
adoption of FPGA technology to users with experience in
software development (and without experience in
electronic system design), the HCE flow has been
completely embedded within the Microsoft VisualStudio
compile framework.

HCE supports, among its targets, the DRC co-
processing boards and allows the seamless integration of
programs running in the host processor node with the
kernel allotted to the co-processing FPGA node: HCE
translates the kernel into a synthesizable parallel
architecture, adds the interface to the DRC FPGA
environment, automatically generates the bitstream to
configure the FPGA and generates also the C wrapper
functions to invoke, together with the necessary DMAs to
pass data and to read the results, the accelerated kernel
from a C program running on the host processor.

Thanks to the HCE approach, the porting of
computationally demanding applications onto the DRC
FPGA co-processing boards has become a task which can
be accomplished in a completely automated way.

References

[1] www.systemc.org
[2] G. Brusco: “Generation of CDFGs from C programs

and their scheduling”. Master Thesis in Electronic
Engineering, University “La Sapienza” (Rome),
2004 (in Italian).

[3] G. Lakshminarayana et al.: “Wavesched: a novel
scheduling technique for control flow intensive
designs”. IEEE Trans on CAD, 18, 5, 1999.

[4] A. Grama, A. Gupta, G. Karypis, V. Kumar:
“Introduction to parallel computing”, Addison
Wesley, 2003 – Paragraph 8.2.2

[5] TF Smith, MS Waterman: “Identification of
Common Molecular Subsequences”. Journal of
Molecular Biology 147, 1981.

