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ABSTRACT: FPGA computing is always thought as a media to dramatically improve 
computational performances. The real obstacle to its widespread diffusion is primarily 
due to the lack of  compiling tools which allow to use common specification languages 
(like the ANSI C); on the contrary, FPGAs have to be programmed either through very 
low level HDL languages or through some not standard languages which are dialects 
derived from the C but which are very far from the standard C-language. In order to 
overcome previous drawbacks, Ylichron developed a compiling chain, the HARWEST 
Compiling Environment (HCE), which allows to specify algorithms to be mapped onto 
FPGAs through standard C programs: as a consequence, no special skills are required 
to access the power of FPGA computing and no special efforts have to be spent to learn 
proprietary languages. The HCE Design Flow and some performance figures are 
presented in the paper. 
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1. Introduction 

FPGA computing is always thought as a media to 
dramatically improve computational performances. The 
real obstacle to its widespread diffusion is primarily due 
to the lack of  compiling tools which allow to use common 
specification languages (like the ANSI C); on the 
contrary, FPGAs have to be programmed either through 
very low level HDL languages (such as VHDL or Verilog) 
or through some not standard languages which are dialects 
derived from the C but which are very far from the 
standard C-language: in both the cases, the effort to 
develop an application cannot be kept and reused to port 
the same application onto different compiling 
environments. In order to overcome previous drawbacks, 
Ylichron developed a compiling chain, the HARWEST 
Compiling Environment (HCE), which allows to specify 
algorithms to be mapped onto FPGAs as standard C 
programs: as a consequence, no special skills in electronic 
system design are required to access the power of FPGA 
computing and no special efforts have to be spent to learn 
proprietary languages. 

HCE is a set of compilation tools which transform an 
ANSI C program into an equivalent, optimized VHDL 

ready to be compiled and run onto a prefixed target board: 
the DRC FPGA blades, used by the Cray XT5h systems, 
are among the supported targets. 

The choice of the ANSI C is aimed at allowing the 
adoption of FPGA computing devices to a widespread and 
heterogeneous community of users: as it is a standard de 
facto language, its adoption allows many technicians and 
scientists from many fields (biology, chemistry, physics, 
…) to port the kernel of their C applications onto FPGA 
devices. 

The main characteristic of the Ylichron approach is 
that the programs given as input to the HCE flow can be 
previously refined and debugged within a well known C 
compiling environment (the Microsoft VisualStudio) and, 
once fixed, they are passed to the HCE flow without 
changing or adding any line of code: this fact ensures that 
no use of not standard functionalities related to the 
hardware synthesis flow (exploiting the application 
parallelism, guiding the scheduling process, …) is 
required. Thanks to the effort spent in ensuring such 
compliance to the standard C, no special skills (electronic 
design, system architectures) are required to use the HCE 
flow. 
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In order to allow the implementation of area efficient 
designs, the set of the standard ANSI C data types has 
been extended to include also two of the SystemC data 
types – the sc_bv and the sc_fixed, being SystemC [1] a 
set of standardized C++ classes defined to efficiently 
model and simulate digital systems. For such a reason, the 
debug and test phase requires a C++ compiler. 

2. HCE Design Flow 

The HARWEST Compiling Environment (HCE) is 
one of the first outcomes of the HARWEST research 
project, funded by the Italian Ministry for University and 
Research, aimed at creating a fully automated HW/SW 
co-design environment. The HCE flow is reported in Fig. 
1. 
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Figure 1: HCE Flow 

 

The system specifics are given by means of an ANSI 
C program: actually we adopt both a subset of the ANSI 
C, not allowing the use of pointers and of recursive 
functions, and a small extension toward C++, supporting 
the two SystemC sc_bv and sc_fixed data types. As these 
two data types are implemented as C++ objects, with their 
methods and dedicated operations, a C++ compiler is 
needed to run the HCE C input programs. This, together 
with the & operator used when declaring a function 
parameter, are the only C++ features accepted by the 
HCE.  

Starting at a very high level of abstraction (C 
language), the correctness of the specifics is checked by 
running and debugging, on a conventional system, the C 
program (of course, we do not afford the task of proofing 
the correctness of a C program: we consider a program to 
be correct once it works correctly on some given sets of 
input data). Once we are satisfied with the program 
behavior, i.e. after the debugging and testing phase, the 
input specifics are translated into the Control and Data 
Flow Graph (CDFG) model of computation. Given a set 
of resources (number of basic building block modules), 
the CDFG is mapped into a Data Path and a Control Finite 
State Machine (FSM) which enforces the behavior 
expressed by the starting C program. Such an architecture, 
represented by the Data Path and the Control FSM, is 
further optimized (some redundant logic is removed and 
connections are implemented and optimized) and 
translated into an equivalent synthesizable VHDL code. 
Finally, the VHDL program is processed through the 
standard proprietary design tools (translation and map into 
the target technology, place and route) to produce the 
configuration bit stream. 

It is worth to be underlined that the debugging phase 
is executed only at very high level of abstraction (on the C 
program), while all the other steps are fully automated and 
result to be correct by construction: this fact ensures that, 
once we have a working C program, the final architecture 
will show the same program behavior. 

CDFG Extraction from C programs 
As reported in Fig. 1, the first step of the design flow 

transforms the C program into an equivalent algorithm 
expressed by means of the, intrinsically parallel, CDFG 
computational model. 

When designing HCE, we decided to use a CDFG 
model with blocking semantics (i.e. a computing node 
does not terminate until all its outputs have been read by 
the consumer nodes) because it does not require the 
insertion of buffers along the communication edges. In [2] 
we individuated a set of rules which transform C programs 
into CDFGs and ensure that deadlocks never arise.  

Once the CDFG of the original program has been 
determined, it is analyzed to implement some basic 
optimizations aimed at reducing the complexity of the 
graph (constant folding/propagation, common sub-
expression elimination, invariant code motion, …). 
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Allocating and scheduling CDFGs 
Resorting to the design flow in Fig. 1, after having 

derived the CDFG representation of the original 
algorithm, we are faced with the problem of allocating and 
scheduling such computations onto a set of predefined 
computing resources which represent a subset of the input 
constraints (further constraints could be involved by the 
need of a real-time behavior or by throughput 
requirements). 

In order to perform the allocation and scheduling 
operations, within the HCE we created a library of 
computing modules which are the building blocks to be 
used to set-up the final parallel architecture. Each module 
is constituted by  
• a collection of static information regarding 

o the area requirements (basic blocks needed for 
the implementation of the module onto a certain 
technology - LUT, memory modules, DSP 
blocks, ...), 

o the module behavior (combinational, pipelined, 
multicycle, asynchronous), 

o the response time (propagation delay, setup time, 
latency, ...) 

• a collection of files (EDIF format) to implement the 
module onto different target technologies (for 
instance, FPGAs from different vendors). 

The HCE library of pre-designed modules contains: 

� Pipelined (*, +) and multi-cycle (/) floating point 
operators 

� All the family of operators to support char, int and 
fixed point data types 

� The basic math functions (sinf, cosf, tanf, sqrtf, logf, 
expf) 

� The rand() function 
� Modules to manage pipelined memory banks with any  

address and word length; address length is 
constrained to be <= 64 and word length has to be a 
power of 2. 

� Modules to support the management of the program 
control flow. 
The library of HCE modules can be extended by 

inserting user defined modules. 
Allocating and scheduling a computation requires a 

time instant and a computing resource (i.e. a module) to 
be assigned to each operation of the computation. In order 
to do this, the HCE flow implements a list scheduling 
heuristic, derived from the algorithm presented in [3]. It is 
worth to be underlined that the algorithm in [3] has been 
deeply modified to allow the sharing of the same HW 
module among different SW nodes. 

When the original C program is structured with 
different functions, the program can be flattened through 
the inline expansion of the functions, thus generating a 
unique CDFG and a unique FSM. In order to reduce the 
complexity of the scheduling operation, as a simplifying 

option, each function - starting from the deepest ones - 
can be translated onto a different CDFG. The HCE flow 
initially schedules the CDFGs corresponding to code 
which has not inner functions, generating the 
corresponding FSMs; successively such FSMs are 
scheduled as asynchronous modules when the CDFG of 
the calling function is scheduled; these asynchronous 
modules are synchronized with the FSM of the calling 
CDFG through a basic start/stop protocol. 

Before performing the actual allocation and 
scheduling phase, HCE allows the user to define the 
structure of the target architecture. In fact it is possible to 
specify, for each C function, the multiplicity of the 
modules that will be used to implement that function: in 
such a way the user may control at which level of 
granularity the parallelism is exploited. 

As illustrative example of previous point, let us 
consider a portion of code to implement the Cannon 
algorithm [4] to multiply two matrices: 
 
void BlockMatrixMAC(float BA[N][BS], 
     float BB[N][BS],float BC[N][BS],int step) 
{ 
 int i,j,k, base_k, BN; 
 for (BN = 0; BN < NP; BN++){ 
  base_k = ((BN+step)*BS)%N; 
    for (i=BN*BS;i<(BN+1)*BS;i++){ 
      for (j=0;j<BS;j++) 
         for (k=0;k<BS;k++) 
            BC[i][j]+=BA[i][k]*BB[base_k+ k][j]; 

} 
 } 
} 
 
void rotateMatrixBA(float BA[NP][N][BS]  

      /*#HWST split 1 NP */) 
{...} 
 
void CannonMM( 
        float BA[NP][N][BS] /*#HWST split 1 
NP*/, 
 float BB[NP][N][BS] /*#HWST split 1 NP*/, 
 float BC[NP][N][BS] /*#HWST split 1 NP*/) 
{ 
    for (int s = 0; s < NP; s++){ 
        int i; 
        /*#HWST split */ 
        for (i=0; i<NP; i++) 
            BlockMatrixMAC(BA[i],BB[i],BC[i], 
s); 
 rotateMatrixBA(BA); 
    } 
}  

Figure 2: The Cannon algorithm the for matrix product 

As mentioned before, the inner BlockMatrixMAC 
function will be initially scheduled. Before entering the 
scheduling step, the user is asked about the number of 
Floating Point multipliers and adders that have to be used: 
wanting not to exploit parallelism at this level, 1 FP add 
and 1 FP mul can be selected. Once that BlockMatrixMAC 
has been scheduled, it becomes an asynchronous module 
which is used by the CannonMM function. Again, before 
scheduling the CannonMM function, user is asked about the 
multiplicity of the BlockMatrixMAC module: looking at the 
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algorithm, where BlockMatrixMAC is called NP times 
without any dependence, it is natural to ask for NP 
modules of the previously synthesized BlockMatrixMAC 

module: in such a case NP sequential modules 
BlockMatrixMAC will run in parallel. 

  

Post optimization and VHDL generation 
Once obtained the allocation and the scheduling for 

the CDFG, the final architecture has still to be defined in 
the part concerning the interconnection/control network. 
In fact, during the scheduling step, all the details about the 
connections and the structures to support HW sharing are 
neglected. In this final phase all the connections are 
implemented, introducing and defining the multiplexing 
logic necessary to implement the communication lines; 
furthermore, a set of registers and multiplexers on the 
control lines are inserted, in order to allow a coherent 
management of iterations in presence of HW sharing. 

As basic optimization, the control lines driven by the 
same logic conditions are joined together. In order to meet 
the fan-out constraints imposed by the target technology, a 
buffer tree is eventually inserted. 

Once the original C program has been translated into 
a synthesizable parallel architecture, the proper interface 
with the DRC environment is added.  

3. HCE IDE 

As already discussed in the introduction, when 
designing HCE we had in mind two main usability 
objectives: 
1- use only C standard statements, avoiding the 

introduction of constructs to directly manage 
parallelism or instruct the scheduler in a way which 
is not compliant with the ANSI C; 

2- minimize the effort, for a not specialist, to use HCE. 
In order to fulfill previous requirements we decided 

to embed HCE within a very well known C compiler. Our 
choice fall on the VisualStudio from the Microsoft for 
a. its strict compliance with the ANSI C and its nearly 

complete coverage of the ISO C++ standard 
(required by the HCE engine) 

b. its debug capabilities and its widespread diffusion 
c. its possibility to be customized to host and execute 

external programs 
d. the availability of the free Express edition. 
Consequently, HCE has been completely embedded 
within the VisualStudio environment. Figure 3 reports a 
screenshot of a typical HCE program.  

Thanks to the deep integration with a C compiler, 
HCE programs are written and debugged using the native 
compiler: this fact will ensure that the programs accepted 
by HCE adhere to the ANSI C / ISO C++ standards, 
because they have to be compiled by the VisualStudio 
C++ compiler.  

 

 
Figure 3: Screenshot of the HCE IDE 

Remaining in the same environment, switching from 
the (VisualStudio standard) Debug modality to the (HCE 
proprietary) HARWEST modality, the same C code is 
passed through the whole HCE flow sketched in Figure 1. 

The execution of the HCE flow generates, other than 
the final VHDL program corresponding to the original C 
outermost function, a set of report files that allow to have 
a deeper comprehension of what HCE did: in both 
graphical and XML formats the user finds the structure of 
the CDFGs generated, of the FSMs produced and of the 
system architecture. 

 
Figure 4: A step from the HCE project configuration 

wizard 

When creating a new HCE project, the user is assisted 
by the HCE Project wizard which allows: 

1- to define the signature of the function; 
2- to select the HW target which will be addressed  

to generate the final architecture (FPGA family – 
i.e. Virtex2, Virtex4, Virtex5, board type – i.e. 
DRC LX200, XD1, …); 

3- to decide whether allowing or not data chaining 
in the scheduling phase (i.e. if two dependent 
operations could be scheduled in the same state); 
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4- to select if being asked to define the structure of 
the parallel architecture (multiplicity of modules 
and of registers) or letting HCE to generate a 
simple parallel architecture; 

5- to add support to the SystemC data types; 
6- to ask for XML/postscript graphical reports 

(CDFG, FSM, Architecture) 
7- to automatically generate a debug project which 

contains the skeleton of a testbench application 
aimed at stimulating the inputs of the function to 
be synthesized by HCE. 

4. DRC Co-processing systems 

DRC provides a co-processor system which fits on a 
free Opteron socket. Due to the tight interconnection to 
the host buses it provides high communication bandwidth 
between the host and the co-processor system. At the 
moment of writing the system is provided in two versions: 
RPU110-L60 and DRC RPU110-L200. In the following 
we refer to the last version which is able to provide more 
performances. 

DRC co-processor system is equipped with: 
• a Xilinx Virtex4 FPGA (XC4VLX200). See Xilinx 

documentation for details on such a FPGA; 
• HyperTransport (HT) interconnection; 
• Up to 2GB of RPU DRAM with two independent 

physical buses each with 3.2GB/s peak bandwidth; 
• 128 MB of RPU Low Latency RAM (LLRAM) with 

two independent physical buses each with 800Mb/s 
peak bandwidth; 

• 256 Mbits of not volatile Flash RAM 
DRC co-processor system can be optionally equipped 

with up to 4GB of motherboard DRAM with one physical 
bus with 6.4GB/s peak bandwidth. 

DRC provides all the cores needed to drive the 
resources outside the FPGA device: 
• HT bus driver core; 
• DRAM and LLRAM driver cores 

5. DRC co-processors and the HCE flow 

Writing an application for the DRC co-processor 
system requires skills in electronic system design. In fact 
the first step is to design and implement the core function 
to be executed on the hardware. Once designed, the 
hardware block must be interfaced with the external 
resources of the FPGA, i.e. with the HT, the DRAM and 
the LLRAM. Finally the host software application must be 
re-designed to include the calls to routines which allow to 
transfer input data on the storage resources of the co-
processor system, to activate the hardware core function 
and to get the computation results. 

HCE allows the automation of the previous steps. 
First of all the core function to be implemented in 

hardware must be selected. Usually such a function is 

selected among the more computationally intensive 
functions which require the less data transfers. 

Once the core function (for example myFunc()) has 
been selected, it is synthesized through the HCE selecting 
the DRC co-processor system as target technology. HCE 
produces a hardware block (described in VHDL/Verilog 
language) which reflects the function signature. In fact, 
the hardware block has a set of I/O ports generated 
according to the following rules: 
• if the function returns a value (i.e. the function is not 

a void function) the hardware block has an output 
port named out_myFunc_var; 

• for each scalar input parameter passed “by value” in 
the function signature, the hardware block has an 
input port named in_parameter_name; 

• for each scalar input/output parameter passed “by 
reference” (&) in the function signature, the hardware 
block has: 

o an input port named in_parameter_name if 
the parameter is only read in the function 
body; 

o an output port named out_parameter_name if 
the parameter is only written in the function 
body; 

o both the previous input and output port if the 
parameter is read and written in the function 
body; 

• for each array parameter in the function signature, the 
hardware block has a set of port which allows to drive 
an external memory. The actual protocol 
implemented on these ports depends on the target 
technology. Referring to the DRC co-processor 
system, at the moment of writing HCE supports only 
the Block RAM of the FPGA device. Support for the 
LLRAM and DRAM will be added in the next release 
of HCE; 

• finally the set of signals implementing a simple 
handshake protocol to synchronize with other 
devices. 
 
HCE synthesis process automatically generates an 

interface which allows the hardware block to interact with 
the resources outside the DRC co-processor system. 

Analyzing the signature of the function to be 
synthesized, HCE maps the I/O parameters into the 
addressing space of the DRC co-processor system and to 
each parameter associates a storage resource: for each 
scalar parameter a register is generated and for each array 
parameter a memory is generated. 

Then a decoding block is designed and instantiated to 
map the DRC co-processor system addressing space to the 
FPGA storage resources. Such a decoding block is 
designed in order to allow the direct interconnection with 
the HT bus. 
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The interface generated by HCE also contains an 
application register which allows the synchronization with 
the host system. 

Finally a simple Finite State Machine is generated to 
manage the handshake protocol of the hardware block 
implementing the user function synthesized by HCE.  

S0

AppReg = 0

AppReg = 1

S1

Set start = 1

S1

start_ack = 0

S2

start_ack = 1

stop  = 0

S3

stop  = 1

set stop_ack = 1
Reset AppReg  

Figure 5: Handshake FSM  

The FSM has four states. In S0 the FSM wait for the 
application register. As soon the application register value 
is set to “1”, the start signal is asserted and the FSM goes 
in the S1 state waiting for the start_ack signal from the 
HCE block. When the start_ack signal as been asserted, 
the FSM goes in the S2 state and waits for the stop signal 
to be asserted. When the hardware block finishes the 
computations it asserts the stop signal. Then the FSM goes 
in the S3 state, asserts stop_ack and reset the application 
register. Then the FSM goes to the S0 state waiting for a 
new computation cycle. 

 
On the software side, HCE generates a wrapper 

function which allows to use blindly the FPGA hardware. 
The wrapper function performs the following operations: 
• checks the DRC blade to be correctly configured and 

available to the current user; 
• transfers the input data via HT bus through the DRC 

API functions; 
• writes “1” into the application register to trigger the 

execution of the hardware implemented function; 
• waits for the end of computation and gets the output 

data; 
Three wrapper functions are provided: 

• a blocking wrapper function which stops the 
execution of the application program running on the 
host until the end of the hardware computation; 

• two non blocking wrapper functions: the first allows 
to start the hardware computation and, while the 
FPGA hardware is running, to perform in parallel 
some computation to be run on the host side; the 
second waits for the computation end. 

 
The usage of the wrapper function is trivial. Suppose 

to have the following fragment of code which uses the 
function myFunc(); 

 
#include <myFunc.h> 
… 
… 
myFunc(); //call to myFunc() 
… 
… 
 
Once myFunc() has been synthesized through HCE, 

we obtain: 
• the VHDL files which represent the hardware 

implementation of myFunc() on the DRC blade. Such 
VHDL files have to be synthesized with the Xilinx 
synthesis tool chain in order to obtain a configuration 
bitstream file. HCE produces a batch file to 
automatically perform the low level synthesis step 
with default Xilinx synthesis options. If different 
synthesis options are needed the low level synthesis 
step has to be performed manually; 

• the C++ file which contains the wrapper to call the 
hardware implementation of myFunc() 
 
In order to use the hardware implementation of 

myFunc(), the bitstream must be downloaded onto the 
DRC blade and the original program must be modified so 
that it calls the wrapper function. The original code 
becomes: 

 
#include <myFunc-hwst-wrapper.h> 
… 
… 
//call to the wrapper of myFunc() which 
//activates the hardware implementation 
// and waits for the output data 
myFunc(); 
… 
… 
 
The previous example uses the blocking version of 

the wrapper function. The non-blocking version is the 
following: 

 
#include < myFunc-hwst-wrapper.h > 
… 
… 
//call to the wrapper of myFunc() which 
//activates the hardware implementation 
//without waiting for the output data 
myFunc_start(); 
… 
… code to be executed on the host side 
… 
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//call to the wrapper of myFunc() which 
//waits for the output data 
myFunc_end(); 
 
Obviously the code executed between the 

myFunc_start and myFunc_end calls to the wrapper 
functions must be executed on the host side and must be 
not dependent on the results of myFunc() computation. It 
is up to the user to satisfy such requirements. 

6. Performances 

In order to quantify the performances achievable 
through HCE, in this paragraph we report the synthesis 
results achieved in several test cases. 

In order to be meaningful, we consider tests to 
measure different aspects of the global system. We 
implemented a test (test 1) to measure the Read/Write 
bandwidth from/to the DRC accelerator, a test (test 2) to 
measure the effective utilization of the internal memory 
bandwidth, a third test (test 3) to show the performances 
in the case of Boolean computation, a test (test 4) to 
measure performances when processing DNA sequences, 
a test (test 5) to show how HCE behaves with fixed point 
computations and, finally a test (test 6) to analyze the case 
of floating point computations. In all the tests, whenever 
the number of employed slices is reported, the number of 
slices used by the DRC interface has to be added (~12000, 
13% of the total slices available in a Virtex4 LX200 
FPGA) 

 

 
 

Figure 6: Host – DRC I/O Bandwidth 

Test 1: measuring DMA bandwidth 
In order to measure DMA bandwidth from an 

Opteron Linux System, we wrote a simple application 
which required the transfer of a message from the host to 
the FPGA (DMA Write) and the corresponding read back 
from the FPGA to the host memory (DMA Read). The test 
was performed 10 times for different message length.  

In Figure 6 we report, for each message length, the 
average bandwidth obtained averaging the results of the 

10 runs. The bandwidth saturates at 670 MB/s in the read 
case and at 550 MB/s in the write case. The time 
necessary to write (read) the shortest message (8 bytes) is 
equal to 0.9 µs (2.5 µs ). 

 

Test 2: measuring the exploitation of internal bandwidth 
One of the main advantages of FPGAs rely on their 

extremely high memory bandwidth. We wrote a simple 
test to measure the ability of HCE to exploit such a huge 
bandwidth. The test performs the transposition of a 2D 
square matrix, copying the original matrix m[M][M] into 
the transposed matrix mT[M][M]. The C code is the 
following: 

 
#define M 128 
void MTransp(float m[M][M] /*#HWST split 1 M*/, 
       float mT[M][M] /*#HWST split 2 M*/) 
{ 
 int i,j; 
 /*#HWST unroll 16 */ 
 for (i=0; i<M; i++) 
  /*#HWST split*/ 
  for (j=0; j<M; j++) 
  { 
   mT[i][j] = m[j][i]; 
  } 
} 

 
In the code the split keywords in the comments are 

special keys used to inform HCE that matrix m[M][M] is 
divided into M row vectors of size M and mT[M][M] is 
divided into M column vectors of size M. Thanks to this 
matrix organization, each vector will be mapped on a 
different FPGA block memory bank (the LX200 FPGA of 
the Xilinx Virtex4 family has 336 block RAM modules, 
each one with size of 18Kbits) and HCE will be able to 
parallelize the accesses to these memory banks. 

After the synthesis of this simple code, HCE produces 
the VHDL files corresponding to an architecture which 
employs 136 clock cycles to transpose the matrix. As the 
clock frequency is equal to 100 MHz, MxMx4 bytes are 
read and written in 1.36 µs, corresponding to an internal 
bandwidth BWRead=BWWrite=45 GB/s. The number of 
slices used by such an architecture is 6601 (7% of the total 
slices available in a Virtex4 LX200 FPGA). The 
architecture uses 256 Block RAM modules. 

 

Test 3: computing the transitive closure of a graph 
Let us consider a directed graph G with N nodes, 

represented through the incidence matrix a[N][N] (aij=1 
when node ni is connected to node nj, aij=0 otherwise). 

The transitive closure of G is a direct graph which has 
an edge between two any nodes if the two nodes are 
connected by a path in G. The algorithm to compute the 
incidence matrix of the transitive closure of G is the 
following: 
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for (k = 0; k < N; k++) 
  for (i = 0; i < N; i++)  
    for (j = 0; j < N; j++) 
   a_ij=a_ij | (a_ik & a_kj); 
 

We implemented the algorithm to compute the 
transitive closure in the case of graph size N = 2048. The 
architecture produced by HCE computes the transitive 
closure in TEXE = 250 ms, corresponding to 
2*N*N*N/T EXE =  68 x 109 op/s, being one op an 
elementary 1 bit boolean operation. The number of slices 
used by the architecture is 3695 (4% of the slices 
available in a V4LX200 FPGA). The architecture requires 
256 Block RAM modules. 

Test 4: the Smith Watermann algorithm 
Bioinformatics, and DNA sequencing in particular, 

has always been seen as a good candidate to adopt 
FPGAs. To test HCE in such environment, we decided to 
implement the computation of the scoring matrix of the 
Smith Waterman algorithm [5]. This algorithm uses a 
dynamic programming approach to find the best alignment 
(with insertions, deletions and mismatches) between a 
DNA sequence of size m (pattern) and another sequence 
of size n (text). The algorithm returns the position in the 
text where the pattern is contained and how the pattern has 
to be stretched to best match the text. In our coding, we 
fixed the pattern size m=255 and the text size n=1024. 
After the HCE flow we obtained an architecture which 
requires ~4(n+m)  clock cycles to run, being fck = 100 
MHz. The number of slices used by the architecture is 
20897 (23% of the slices available in a V4LX200 FPGA).  

Test 5: implementing a FIR filter 
Digital signal processing is one of the fields more 

involved in embedded processing. To test how HCE 
behaves on DSP algorithms, we considered the 
implementation of a FIR filter – a typical, paradigmatic 
DSP application. We coded a filter with 128 taps and fed 
it with a signal x[N] constituted by N = 1024 samples. 
Both the filter taps and the samples (input and output) has 
been represented in fixed point, using the sc_fixed<16,8> 
SystemC data type: this data type is composed by 16 bits, 
8 used as integer part and 8 as fractional part. The HCE 
flow produced an architecture which ran at 60 MHz and 
employed 17 µs to produce the output vector: such timing 
corresponds to a sustained computation rate of 14 Gop/s, 
being one op a 16 bit fixed point operation. The number 
of slices used by the architecture is 30489 (34% of the 
slices available in a V4LX200 FPGA); furthermore, the 
architecture uses all the 96 available DSP blocks. 

Test 6: the Cannon algorithm for the matrix product 
To test the flexibility of HCE in the case of 

algorithms requiring the floating point representation, we 
implemented the Cannon Algorithm [4] to perform the 
matrix product C = AxB, being A, B and C NxN matrices 
(in the example N = 128). A sketch of the code is shown 
in Figure 2, being the block size dimension BS=8 and the 

number of BlockMatrixMAC modules NP=16. The HCE 
flow produced an architecture which ran at 80 MHz and 
employed 3.7 ms to produce the output vector: such 
timing corresponds to a sustained computation rate of 1.1 
GFlop/s. The number of slices used by the architecture is 
40799 (45% of the slices available in a Virtex4 LX200 
FPGA); furthermore, the architecture uses all the 96 
available DSP blocks and 98 memory blocks (29% of the 
total memory blocks available in a V4LX200 FPGA). 

7. Conclusions 

The HARWEST Compiling Environment (HCE), an 
high level synthesis tool developed by Ylichron Srl in the 
framework of the HARWEST industrial research project, 
has been presented. HCE is a collection of compiling tools 
which automatically translate, in a nearly optimal way, an 
ANSI C program into a corresponding, synthesizable 
parallel architecture. In order to make really easy the 
adoption of FPGA technology to users with experience in 
software development (and without experience in 
electronic system design), the HCE flow has been 
completely embedded within the Microsoft VisualStudio 
compile framework.  

HCE supports, among its targets, the DRC co-
processing boards and allows the seamless integration of 
programs running in the host processor node with the 
kernel allotted to the co-processing FPGA node: HCE 
translates the kernel into a synthesizable parallel 
architecture, adds the interface to the DRC FPGA 
environment, automatically generates the bitstream to 
configure the FPGA and generates also the C wrapper 
functions to invoke, together with the necessary DMAs to 
pass data and to read the results, the accelerated kernel 
from a C program running on the host processor. 

Thanks to the HCE approach, the porting of 
computationally demanding applications onto the DRC 
FPGA co-processing boards has become a task which can 
be accomplished in a completely automated way. 
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