
The HCE: Accessing the

FPGA World through

ANSI-C Programs

Paolo Palazzari

Ylichron Srl

Ylichron Srl

Outline of presentation

� Why using the ANSI C
� What is HCE
� How HCE works
� Example of HCE use
� The DRC co-processing boards
� HCE performances
� Conclusions

Ylichron Srl

Outline of presentation

� Why using the ANSI C
� What is HCE
� How HCE works
� Example of HCE use
� The DRC co-processing boards
� HCE performances
� Conclusions

Why an ANSI-C compiler for FPGA?

� Don’t need HW-engineering knowledge
� Don’t request specific expression of parallelism
� Don’t need to learn a new language/dialect
� May use any C compiling environment to test and

debug the application
� May port your codes under any new computing

technology supporting ANSI-C (for sure a
proprietary language will not be supported)

Is ANSI-C adequate to express algorithms?

� ANSI-C can represent any untimed algorithm and
is widespread used to express scientific
algorithms.

� To efficiently support not standard data types it
can be useful to extend the ANSI-C with data
types defined by the SystemC standard: HCE
supports the sc_fixed and the sc_bv data types.

Ylichron Srl

Outline of presentation

� Why using the ANSI C
� What is HCE
� How HCE works
� Example of HCE use
� The DRC co-processing boards
� HCE performances
� Conclusions

What is HCE

� The HARWEST Compiling Environment (HCE) is
a C to VHDL optimizing and parallelizing compiler

� It is the first outcome of the HARWEST research
project, funded by the Italian Ministry for
University and Research, aimed at creating a fully
automated HW/SW co-design environment.

What is HCE

� The HARWEST Compiling Environment (HCE) is
a C to VHDL optimizing and parallelizing compiler

� It is the first outcome of the HARWEST research
project, funded by the Italian Ministry for
University and Research, aimed at creating a fully
automated HW/SW co-design environment.

� Let us see the HCE Design Flow

Input specs
(ANSI C)

Input specs
(ANSI C)

Parallelism
Extraction
(CDFG)

C++ code
representing a
CDFG of the

input program.

Input specs
(ANSI C)

Parallelism
Extraction
(CDFG)

C++ code
representing a
CDFG of the

input program.

Allocation
&

scheduling

Control Path
and Data Path
of a parallel
system

implementing
the input
algorithm.

Input specs
(ANSI C)

Parallelism
Extraction
(CDFG)

C++ code
representing a
CDFG of the

input program.

Allocation
&

scheduling

Control Path
and Data Path
of a parallel
system

implementing
the input
algorithm.

VHDL-RTL
generation/

Optimization &
DRC IF

instanziation

Synthesizable
VHDL

representing
the parallel
system on
the DRC
blade.

Input specs
(ANSI C)

Parallelism
Extraction
(CDFG)

C++ code
representing a
CDFG of the

input program.

Allocation
&

scheduling

Control Path
and Data Path
of a parallel
system

implementing
the input
algorithm.

VHDL-RTL
generation/

Optimization &
DRC IF

instanziation

Synthesizable
VHDL

representing
the parallel
system on
the DRC
blade.

Xilinx
proprietary
synthesis
tools

FPGA
Configuration
bitstream

Input specs
(ANSI C)

Parallelism
Extraction
(CDFG)

C++ code
representing a
CDFG of the

input program.

Allocation
&

scheduling

Control Path
and Data Path
of a parallel
system

implementing
the input
algorithm.

VHDL-RTL
generation/

Optimization &
DRC IF

instanziation

Synthesizable
VHDL

representing
the parallel
system on
the DRC
blade.

Xilinx
proprietary
synthesis
tools

FPGA
Configuration
bitstream

How does HCE work?

� The C code is translated into a parallel
representation, i.e. the Control Data Flow Graph
model (CDFG): roughly each operator
corresponds to a CDFG node;

� At the CDFG level some basics optimization,
aimed at reducing the complexity of the graph,
are performed: constant folding/propagation,
common sub-expression elimination, invariant
code motion, dead code elimination

How does HCE work?

� Within the HCE we created a library of computing
modules which are the building blocks used to
set-up the final parallel architecture.

� The modules can be combinational, pipelined,
multicycle, asynchronous.

� The CDFG is allocated and scheduled onto the
available HW modules, which nearly map 1-1
with the nodes: every node has at least one
module which implements it;

Which HW modules does HCE contain?

� modules in the library:
� Pipelined (*, +) and multi-cycle (/) floating point

operators
� All the family of operators for char, int, fixed point
� The basic math functions (sinf, cosf, tanf, sqrtf, logf,

expf)
� The rand() function
� Modules to manage pipelined memory banks with any

(<= 64) address and (2k) word length

� The library can be extended with user defined
modules

� The set of modules to support the C program can
both manually and automatically be fixed.

� In the manual case it is possible to specify, for
each C function, the multiplicity of the modules
that will be used to implement that function: in
such a way the user may control at which level of
granularity the parallelism is exploited

How does HCE work?

How does HCE work?

� An efficient scheduling algorithm creates a Finite
State Machine which executes, in the (~) shortest
time, the original algorithm onto the available
resources

� Optimized VHDL is generated by analyzing FSM
� Once the original C program has been translated

into a synthesizable parallel architecture, the
proper interface with the DRC environment is
added

May algorithm hierarchy be exploited?

� Each C function may use another function
void f1(param_list_1) {…}
void f2(param_list_2) {…; f1(actual_param_list); …}
void main_f(param_list_main_f) {…,f1();…;f2(); …}

� Each function, starting from the innermost (i.e.
f1), is synthesized and constitutes a new
(asynchronous) module (m_f1) on which the node
f1() can be allocated whenever invoked (both in
f2() and in main_f().

void CannonMM(float BA[NbProc][N][BS] /*#HWST split 1 NbProc */,
float BB[NbProc][N][BS] /*#HWST split 1 NbProc */,
float BC[NbProc][N][BS] /*#HWST split 1 NbProc */)

{
for (int step = 0; step < NbProc; step++){

int i;
/*#HWST split */
for (i=0; i<NbProc; i++)

BlockMatrixMAC(BA[i], BB[i], BC[i], step);
rotateMatrixBA(BA);

}
}

void BlockMatrixMAC(float BA[N][BS],float BB[N][BS],float BC[N][BS],int step)
{

int i,j,k, base_k, BlockNumber;
for (BlockNumber = 0; BlockNumber < NbProc; BlockNumber++){

base_k = ((BlockNumber+step)*BS)%N;
for (i=BlockNumber*BS;i<(BlockNumber+1)*BS;i++){

for (j=0;j<BS;j++)
for (k=0;k<BS;k++)
BC[i][j] += BA[i][k] * BB[base_k + k][j];

}
}

}

void rotateMatrixBA(float BA[NbProc][N][BS] /*#HWST split 1 NbProc */)
{}

Implemented with
1 FP Add
1 FP Mul

Implemented with
NbProc

BlockMatrixMAC

Ylichron Srl

Outline of presentation

� Why using the ANSI C
� What is HCE
� How HCE works
� Example of HCE use
� The DRC co-processing boards
� HCE performances
� Conclusions

Creating a new project …

Do create an HARWEST Project

… and configuring it

Define the function I/O Beahvior

… and configuring it

Select the target (FPGA or board family)

… and some synthesis options

… and configuring it

I do not need SystemC support

Write your code….

Debug your code using
the VisualStudio C
Compiler …

…and synthesize it through HCE Flow

HCE Output Files

The CDFG

The FSM

Ylichron Srl

Outline of presentation

� Why using the ANSI C
� What is HCE
� How HCE works
� Example of HCE use
� The DRC co-processing boards
� HCE performances
� Conclusions

DRC co-processing boards

� DRC provides a co-processor system which fits
on a free Opteron socket.

� Due to the tight interconnection to the host buses
it provides high communication bandwidth
between the host and the co-processor system.

� At the moment of writing the system is provided
in two versions: RPU110-L60 and DRC RPU110-
L200, both based on the Xilinx Virtex4 FPGAs
(LX60 and LX200)

DRC co-processing boards

DRC co-processor system is equipped with:
� one Xilinx Virtex4 FPGA

� HyperTransport (HT) interconnection;

� Up to 2GB of RPU DRAM with two independent
physical buses each with 3.2GB/s peak
bandwidth;

DRC co-processing boards

� 128 MB of RPU Low Latency RAM (LLRAM) with
two independent physical buses each with
800Mb/s peak bandwidth;

� 256 Mbits of not volatile Flash RAM

Ylichron Srl

Outline of presentation

� Why using the ANSI C
� What is HCE
� How HCE works
� Example of HCE use
� The DRC co-processing boards
� HCE performances
� Conclusions

Performances

� test 1: measure of Read/Write bandwidth
� test 2: measure of internal memory bandwidth
� test 3: Boolean computation (graph transitive

closure)
� test 4: DNA sequences (Smith Watermann)
� test 5: fixed point computations (FIR filter)
� test 6: floating point computations (Cannon

algorithm for the matrix product)

test 1: measure of Read/Write bandwidth

Write: host ⇒ DRC

Read: DRC ⇒ host

The time necessary
to write (read) the
shortest message
(8 bytes) is equal to
0.9 µs (2.5 µs).

test 2: measure of internal memory bandwidth

� The test performs the transposition of a 2D square
matrix, copying the original matrix m[M][M] into the
transposed matrix mT[M][M], (M=128)

� 136 clock cycles to transpose the matrix.
� fck=100 MHz,

� MxMx4 bytes are read and written in 1.36 µs
� BWRead=BWWrite=45 GB/s.
� slices used: 6601 (7% of the total for a Virtex4 LX200

FPGA).
� Block RAM modules used: 256.

test 3: graph transitive closure

� G(N) graph represented through its boolean
incidence matrix a[N][N] (N = 2048)

� TEXE = 250 ms, corresponding to 2*N*N*N/TEXE =
68 x 109 op/s.

� slices used: 3695 (4% of the total for V4LX200)
� Block RAM modules used: 256

test 4: Smith Watermann

� SW uses a dynamic programming approach to find
the best alignment (with insertions, deletions and
mismatches) between a DNA sequence of size m
(=255) and another sequence of size n (1024).

� Implemented the computation of the scoring matrix
� HCE run time: 53 µs, corresponding to 5

GScoreUpdate/sec
� fck = 100 MHz.
� slices used: 20897 (23% of the total for V4LX200).

test 5: FIR filter

� Filter: 128 taps
� Input signal x[N] (N = 1024)
� Both the filter taps and the samples used the

sc_fixed<16,8> SystemC data type

� fck = 60 MHz, TEXE=17 µs
� sustained computation rate of 14 Gop/s,
� slices used: 30489 (34% of the total for V4LX200)
� all the 96 available DSP blocks have been used

test 6: GEMM Cannon algorithm

� Parallel formulation of the MM algorithm, often
used for systolic implementation

� MatSize M = 128
� fck = 80 MHz, TEXE= 3.7 ms
� sustained computation rate of 1.1 GFlop/s,
� slices used: 40799 (45 % of the total for V4LX200)
� all the 96 available DSP blocks have been used
� Block RAM modules used: 98

Ylichron Srl

Outline of presentation

� Why using the ANSI C
� What is HCE
� How HCE works
� Example of HCE use
� The DRC co-processing boards
� HCE performances
� Conclusions

Conclusions

� The HCE, a C to VHDL automatic design suite
has been presented;

� Its theoretical bases have been revised;
� Its use (and usability) has been discussed;
� Some performance figure have been reported;

Contact information

� Commercial: info@ylichron.it

� Technical: support@ylichron.it

� Web site: http://www.ylichron.it

