

CUG 2008 Proceedings 1 of 4

The Need for Parallel I/O in Classical Molecular Dynamics

I.T. Todorov, I.J. Bush & A.R. Porter
Advanced Research Computing, CSED

STFC Daresbury Laboratory, UK

ABSTRACT: We discuss the need for parallel I/O in classical molecular dynamics
(MD) simulations. While reading is a one off operation during MD simulations, writing
is a fairly repetitive one which can be prohibitively pricy time-wise with respect to the
actual compute time per MD timestep. Comparisons between different writing strategies
on a variety of modern platform are made and discussed. Despite that ASCII format is
spacious and compromises on precision it is still the fastest alternative there is. While
MPI-I/O can be a fast alternative it is not widely available and well supported. NetCDF
format is a promising alternative to ASCII, it is not yet utilising the MPI-I/O functionality
and its serial I/O is prohibitively slow.

KEYWORDS: DL_POLY_3, Molecular Dynamics, Parallel I/O, Fortran Direct Access,
MPI I/O, NetCDF

1. Introduction
DL_POLY_3 [1] is a general purpose molecular
dynamics (MD) package developed by I.T. Todorov and
W. Smith at STFC Daresbury Laboratory to support
researchers in the UK academic community [2]. This
software is designed to address the demand for large-scale
MD simulations on multiprocessor platforms, although it
is also available in serial mode. DL_POLY_3 is fully
self-contained and written in FORTRAN 95 in a
modularised manner with communications handled by
MPI2. The standards conformance of the code has been
very rigorously checked using the NAGWare95 and
FORCHECK95 analysis tools, so guaranteeing
exceptional portability. Parallelisation is achieved by
equi-spatial domain decomposition distribution which
guarantees excellent load balancing and full memory
distribution provided the particle density of the system is
fairly uniform across space [3]. This parallelisation
strategy results in mostly point to point communication
with very few global operations [4], and excellent scaling
[5]; one might compare it with the halo exchange
algorithms employed in computational fluid dynamics.

Although parallelisation of the computation is very
important, for DL_POLY_3 to be an effective tool for
researchers all parts of the calculation must scale. In
particular, this includes the input and output (I/O) stages
of the code. Historically, this has most often been
performed in an essentially serial manner, not only in
DL_POLY_3 but also in many other large scale packages.
However, with the scale of calculations now possible, this
approach will not scale to the next generation of machines
as the time taken by I/O is becoming prohibitive.

An example of the problem is a relatively recent
calculation performed on an oxygen deficient pyrochlore
on the BG/L at Jülich, Germany [6]. The compute scaled
well on this large system (around 15,000,000 particles),
with the wall-clock time per time step decreasing from 2.7
seconds on 2048 processors to 0.49 on 16384. However,
it was not possible to perform any science on this system
simply because the (serial) I/O was too expensive, taking
over 10 minutes to dump the atomic positions (the atomic
configuration). As this needed to be done roughly every
1,000 time steps, it is clear that the good scaling of the
parallel compute portion of the code is overshadowed by
the serial I/O.

CUG 2008 Proceedings 2 of 4

Historically, all I/O in DL_POLY_3 has been in ASCII.
A simple and fast solution to the I/O bottleneck would be
to move to Fortran binary I/O. Unfortunately, this is not
practical for the DL_POLY user base as usually
simulations are performed on a supercomputer whereas
the analysis of the results is performed on a workstation at
the user’s home institution. Thus the output files must be
portable making ASCII a good choice were it not for the
performance issues noted above. This need for both
portability and performance has caused us so far to make
preliminary investigations into two approaches:

1. Parallel ASCII I/O
2. Serial NetCDF

and this paper presents our preliminary results. As the
majority of the I/O time is in writing rather than reading
we shall only consider the former.

2. Parallel ASCII I/O
In DL_POLY_3.09, two conceptual solutions to ordered
parallel ASCII printing exist in three principal
implementations.

1. Serial direct access write (abbreviated as
SDAW) – where only a single node, the master,
prints it all and all the rest communicate
information to a master in turn while the master
completes writing a configuration of the time
evolution.

2. Parallel direct access write (PDAW) – where all
nodes print in the same file in an orderly manner
so no overlapping occurs using Fortran direct
access files. However, it should be noted that
the behaviour of this method is not defined by
the Fortran standard, and in particular we have
experienced problems when disk cache is not
coherent with the memory.

3. Finally, MPI-I/O write (MPIW) which has the
same concept as the PDAW but is performed
using MPI-I/O rather than direct access.

To test the I/O the system we used was an oxygen
deficient pyrochlore Gd2Zr2O7 (zirconite) consisting of
3,773,000 particles, which requires a 1.1 GB
configuration dump file. It is worth mentioning that no
machine was available for exclusive use while
benchmarking, which could have contributed to the
fluctuations of the observed times at low processor
counts. The parallel timings presented are from runs
undertaken on the following platforms:

• The UK National Supercomputing facility HPCx
[7], sited at STFC Daresbury [8], comprising of
160 IBM p5-575 nodes, totalling 2560 POWER5
1.5 GHz compute cores.

• The BG/L, 1024 PowerPC 440 700 MHz
compute cores, and BG/P, 4096 PowerPC 450
850 MHz compute cores, clusters [9] sited at
STFC Daresbury [8].

• The UK National Supercomputing facility
HECToR [10], sited at the University of
Edinburgh, with 60 Cray XT4 cabinets totalling
11,328 AMD 2.8 GHz Opteron compute cores.

• The Swiss Supercomputing Centre CSCS [11],
comprising of 18 Cray XT3 cabinets, totalling
3328 AMD 2.6 GHz Opteron compute cores.

0 512 1024 1536 2048

0

25

50

75

100

125

W
ri
te

 S
p
e
e
d
 [
M

B
/s

]

Processor Count

BG/L : SDAW, PDAW, MPIW

BG/P : SDAW, PDAW

P5-575: SDAW, PDAW, MPIW, SNCW

XT3 SC: PDAW, MPIW (to 512)

XT3 DC: PDAW, MPIW (to 1024)

XT4 SC: SDAW, MPIW, SNCW

XT4 DC: SDAW, MPIW, SNCW

Figure 1

Plotted in Figure 1 is the write speed in MBytes per
second with increasing processor count. The notation
specifies the type of platform followed by the type of
writing method. The benchmarks on the Cray XT3/4
platforms were run in two modes: single core (SC) mode
– when only a single core per dual core socket is engaged,
and dual core (DC) mode – when both cores of the socket
are engaged. Except where noted, all of the runs were
done with the default settings for any environment
variables.

It can be seen that, where results are presented, the
performance ordering of the different methods is the same
on all of the machines examined: PDAW (represented by
circles) is the most efficient, MPIW (triangles) the next
and the SDAW (squares) the least. Cases where the runs
were not successful are reflected by gaps in the data with
reasons as outlined below. However, it is very clear that
while the scaling is poor, a marked increase in
performance can be achieved through parallel I/O.

The IBM and Cray platforms use different file systems;
BG/L, BG/P and P5-575 employ GPFS, while the two
Cray systems, the XT3 and XT4, have Lustre. While all
GPFS systems guaranteed cache coherency between

CUG 2008 Proceedings 3 of 4

memory and disk, this was not so for Lustre.
Interestingly, the Cray XT3 running Catamount with
Lustre had no problem with cache coherency, i.e. see
PDAW data, but when SDAW was employed it
performed so poorly1 that no performance data is
presented. However, the opposite was found on the Cray
XT4 running CNL where SDAW performed correctly but
PDAW was not successful as spurious NULL characters
were introduced into the output stream. For BG/P the
MPIW benchmarks did not complete within 5 hours and
so again no performance data is presented. Further,
MPIW also failed on the highest processor counts of
BG/L and P5-575.

It can be seen that the PDAW algorithm was performing
markedly superiorly to the SDAW or MPIW methods
when supported by the platform for this particular size of
messages (73 Bytes ASCII per message). Improvements
by an order of magnitude can be obtained, and it is clear
that if regular writing is required when studying a system
that this parallel strategy will markedly improve the
scaling of the whole code by reducing the time for I/O
relative to that required for the compute, even though the
I/O is not scaling especially well itself.

It is also worth noting that for all the benchmarked
platforms, it was only the Cray XT3/4 where the MPI-I/O
write performed consistently well and much better than
the standard serial direct access write. However, as seen
on the Cray XT3, this was still not as fast as the parallel
direct access method. Interestingly, when the number of
object storage targets (OSTs) being used on the Lustre
system was optimised to give the best performance of
MPIW for the simulated system, an improvement by a
factor of two was observed. Such an improvement means
that MPIW can achieve similar performance to PDAW on
the Cray XT3 once the storage methodology is optimised
for the dedicated I/O processing units.

Comparing the fastest write strategies on all platforms, we
see that those from IBM (BG/P/L and P5-575) deliver the
best I/O performance when running on 128 compute
cores, whereas the Cray XT3/4 both perform best on 32
compute cores in single core mode or 64 in dual core
mode.

1 On the XT3 the SDAW method took over 9 hours to

complete. This might have been a consequence of the
use of the CRAY XT3 Catamount microkernel, which is
known to implement ASCII printing in a character by
character manner.

3. Serial NetCDF I/O
It has been long known that I/O in native binary data is
faster and more disk-compact than ASCII and data
precision is not compromised as is the case with data in
ASCII. Despite these advantages, binary data is awkward
to work with because it is not portable across different
platforms. Unfortunately, as noted above, the analysis of
DL_POLY_3 runs is often performed on a different
machine to that on which the code originally executed, so
plain binary is not acceptable. However, this significant
drawback has been addressed by the XDR standard in a
number of portable binary implementations, one of which,
NetCDF (network Common Data Form) [12], has become
dominant. NetCDF provides a set of software libraries
and machine-independent data formats for array-based,
scientific data and is widely used by various scientific
communities. The current stable release of this software
does not support parallel I/O but the next release
(currently in beta) will, through the use of MPI-I/O. We
have very recently implemented serial, NetCDF-based
I/O2 within DL_POLY_3 and shall refer to this as the
SNCW (Serial NetCDF Write) algorithm, and here
present our preliminary findings.

When SDAW was forced to native binary rather than
ASCII a speed-up by a factor of 2.5 to 3 was seen in all
benchmarks on all machines. This relates very well to the
ratio of the size of the messages sent per record in either
case – 73 ASCII characters (73 Bytes) to three 64 bit
floating point numbers (3 × 8 Bytes = 24 Bytes).
However, when SNCW was tested the speed-up varied
significantly between the two platforms that were
benchmarked. While on the IBM P5-575 SNCW was
only 1.5 times faster than SDAW on average, on the Cray
XT4 it was 10 times and it did not matter whether runs
were in single- or dual-core mode. Despite these
differences, SNCW performed 2.5 times faster on the IBM
P5-575 than on the Cray XT4.

4. Conclusion
We have demonstrated that the use of a parallel I/O
strategy in writing MD configuration files during
simulations can bring a dramatic improvement in the
overall performance by markedly reducing the time for
the I/O compared to the compute, even though the I/O is
not scaling especially well itself. It is clear from the
discussion above that for DL_POLY_3 to be able to

2 The resulting trajectory files can conform to the NetCDF

formats used by the Molecular Modelling Tool Kit [13]
or Amber [14]

CUG 2008 Proceedings 4 of 4

address larger systems we must use a parallel I/O strategy,
for otherwise the I/O will dominate any compute.

For the NetCDF strategy, while SNCW provides
performance and storage benefits over the SDAW
algorithm, it will ultimately be limited due to its lack of
parallelism. We, therefore, intend to look at other
possible solutions, such as a parallel version of the SNCW
strategy once the appropriate software is available. We
hope that the combination of our two strategies will bring
the benefits of both, and indeed it should be noted that the
order of magnitude improvement in performance in I/O is
the bare minimum required to make scientific studies on
large systems practical, and that at least a further factor of
2 would be desirable. Further, we must also note that
parallel NetCDF will depend on MPI-I/O, and for our
desired performance to be achieved on all platforms the
problems with MPI-I/O that we have found must be
addressed.

Acknowledgments
The authors would like to thank David Quigley at the
University of Warwick and Martyn Foster and Lucian
Anton at NAG UK for their help and useful discussions.

About the Authors
Ilian Todorov, Ian Bush (email: I.J.Bush@dl.ac.uk) and
Andrew Porter are HPC engineers at STFC Daresbury
Laboratory in Cheshire, UK. Ilian Todorov is an
application developer and co-author of the DL_POLY
package. Ian Bush is the author of Daresbury advanced
fast Fourier Transform (DaFT) routine which is fully
memory and domain distributed 3D FFT routine used for
calculation of long ranged forces in DL_POLY_3.
Andrew Porter is the developer of NetCDF I/O routines in
DL_POLY_3.

References:
 1. The DL_POLY webpage, http://www.ccp5.ac.uk/DL
POLY/.
 2. I.T. Todorov and W. Smith, 2004, Phil. Trans. R Soc.
Lond., A 362, 1835.
 3. M.R.S. Pinches, D. Tildesley, and W. Smith, 1991,
Mol. Simulation, 6, 51.
 4. I.T. Todorov, W. Smith, K. Trachenko and M.T. Dove,
J. Mater. Chem., 16, 1611.
 5. I.T. Todorov, N.L. Allan, J.A. Purton, M.T. Dove and
W. Smith, J. Mater. Sc., 42 (6), 1920.
 6. Report on the Jülich Blue Gene/L Scaling Workshop
2006, FZJ-ZAM-IB-2007-02, http://www.fz-
juelich.de/jsc/docs/printable/ib/ib-07/ib-2007-02.pdf.

 7. The HPCx Supercomputing Facility,
http://www.hpcx.ac.uk/.
 8. The Science and Technology Facilities Council,
http://www.stfc.ac.uk/.
 9. The IBM BlueGene,
http://www.research.ibm.com/bluegene/.
10. HECToR - The UK Supercomputing Service,
http://www.hector.ac.uk/.
11. The Swiss National Supercomputing Centre,
http://www-users.cscs.ch/.
12. NetCDF,
http://www.unidata.ucar.edu/software/netcdf/.
13. K. Hinsen, J Comp Chem, 21, 79.
14. AMBER NetCDF conventions
http://amber.scripps.edu/netcdf/nctraj.html.

