
Optimizing FFT for HPCC

Mark P. Sears
Courtenay T. Vaughan

Sandia National Laboratories
Presented at the Cray User Group Conference

Helsinki, Finland, May 2008

May 27, 2008

Abstract

One component of the HPCC benchmark for high performance
parallel computing platforms is a very large one dimensional FFT.
This benchmark stresses the memory and communications bandwidth
at all levels of the memory hierarchy. In this paper we discuss some of
the algorithmic, implementation, and performance issues for the FFT
HPCC benchmark that we developed for the Sandia-Cray Red Storm
architecture.

1 Introduction.

Suppose we want to do a large one dimensional discrete Fourier transform
(DFT), say of length N . If N can be factored (say the factors are n, m so
that N = nm) then we can use a factorization theorem which allows the
DFT of a vector of length N to be written as n DFT operations of length m
each followed by a so-called twiddle operation and then m DFT operations of
length n. This theorem is the basis for the standard FFT algorithms which

1



are just applications of the divide and conquer method. The other tricks
in high performance serial FFT implementations (the well known FFTW
package is a good example) are first the use of carefully written short length
DFT codelets and second the tuning of the choice and order of which codelets
to use. For example, if N = 16 then one could use a codelet for length 2
followed by a codelet of length 8, or the reverse order, or two codelets of length
4 each, or a codelet written specifically for length 16. The more factorable
N is the more possible choices there are and choosing the correct factors
and order can have a big effect on performance. One can expect that tuned
FFT algorithms of this kind will achieve a significant fraction of the available
performance on modern CPU architectures, on the order of 50 percent. The
limiting factor is memory bandwidth, including effects of cache.

The FFT problem is thus pretty much solved for serial architectures with
modest N and the resulting library can be applied to serial one, two, and
three dimensional applications. For multidimensional parallel applications
there is still some room for better algorithms although the basic approaches
are well known. The usual method to do a 3d parallel FFT for example is
to apply a serial FFT algorithm to one axis which is in memory on each
process, the other two axes being distributed in some way. Then a transpose
operation brings the second axis into memory and serial FFTs are applied to
that axis. A second transpose operation brings the third axis into memory
for the third FFT. Generally an attempt to parallelize the FFT will end up
using the same message passing operations as the transposes and the code is
merely harder to write with no performance benefit.

For the HPCC benchmark FFT however we have to do a very large one
dimensional FFT, so large that it must occupy a significant fraction of the
memory on each process. The details of the implementation are open, and
although a standard implementation is available any particular benchmark
run can use code written and tuned for that particular architecture. In order
to see exactly how such an implementation can work we go through the
development of the factorization theorem to see how it can be used for a
very large distributed one dimensional FFT.

2



2 The DFT factorization theorem.

Suppose we have a complex vector u of length N where N is factorable as
described above. Let ωN = e

2πi
N . Then the DFT is given by the transform

ũ(K) =
N−1∑
J=0

ωJK
N u(J) (1)

The basic trick behind the factorization theorem is to note that a vector of
length N can be thought of as a matrix which is m×n or as a matrix which
is n×m. In fact we use one of these decompositions for u and the other for
ũ. We can break up the index K into K = p + qm say where the digit p is
in the range [0 : m − 1] and the digit q is in the range [0 : n − 1]. Similarly
J = s + nt where the digit s is in the range [0 : n − 1] and the digit t is in
the range [0 : m− 1]. Rewriting the transform we get

ũ(p, q) =
n−1∑
s=0

m−1∑
t=0

ω
(p+qm)(s+tn)
N u(s, t) (2)

and using mn = N , ωN
N = 1, ωm

N = ωn, ωn
N = ωm and expanding the

product (p + qm)(s + tn) we can break up the DFT into two steps (using an
intermediate complex array v)

v(s, p) = ωsp
N

m−1∑
t=0

ωpt
mu(s, t) (3)

followed by

ũ(p, q) =
n−1∑
s=0

ωqs
n v(s, p) (4)

Here the factor ωsp
N is the twiddle factor. The first step is a DFT of length

m on the second index of the array u, followed by multiplication by the
twiddle factor. The second step is a DFT of length n on the first index of the
intermediate array v, but the result is out of order and must be transposed.
This is the source of the shuffling or digit-reversal requirement for ordinary
serial FFT algorithms, and in our large parallel one dimensional FFT this
will be the source of the transpose requirement.

3



In the usual derivation of the FFT algorithm we take one of the factors n
or m to be very small, say 2 and then the small DFT is written out. For a
factor of two the phase factor of ω2 is just -1, so the codelet for this DFT
involves only addition and subtraction and we can deduce the Cooley-Tukey
algorithm for example. Repeatedly taking one or the other factor like this
leads to two kinds of algorithms sometimes called frequency or time based
schemes. We can also do this algorithm in reverse.

The first transform in the factorization algorithm is done on the second axis.
We call this an outer transform and the corresponding transform on the first
axis is an inner transform. Note that the stride between elements in the
inner transform is 1 and the block size (number of transforms to do) is m.
Accessing memory in this way generally performs well. On the other hand
for the outer transform we have a stride of n and as noted below this can
have a deleterious effect on performance.

Counting flops (floating point operations) and memory accesses for the trans-
form as a whole we have

Nflops = 5N log2(N) (5)

This is not a correct statement if we use anything other than the Cooley-
Tukey algorithm, for example if codelets longer than 2 are used. However this
is the standard expression for flop counts in use, so that different transform
implementations can be compared on the same footing.

The number of memory accesses in bytes for the transform as a whole is

Nbytes = 16N (6)

ignoring transfers to buffer space, instructions, constants, etc. Therefore the
ratio of flops to bytes is

Nflops

Nbytes
=

5

16
log2 N. (7)

Suppose N = 256. Then this ratio is 2.5 flops/byte. If the memory bus
is capable of 1GB/sec then we might expect performance on the order of
2.5Gflop/sec to be acheivable, and within a factor of 2 this is so for modern

4



microprocessors, especially when the transform data is in (at least second-
level) cache. Out of cache performance is often much lower, as for three
dimensional FFTs.

3 Parallel one dimensional FFT algorithm.

For a large parallel one dimensional FFT algorithm we can use the factoriza-
tion theorem as it stands and take one factor to be the number of processes
P . Then we can decompose the array u so that the first axis of the array is
stored on the process and the second axis is distributed over the processes.
In order to do a FFT on one of the axes we have to bring it into local mem-
ory, but then all the FFTs for that axis can be done simultaneously on all
the processes. So the inherently parallel operations are just these parallel
transposes.

The parallel one dimensional algorithm is thus given as follows. The comment
(Parallel) means that parallel communications is required to implement that
step:

• Step 1. (Parallel) Transpose u(s, t) → v1(t, s). This brings the t axis
into local memory on each process.

• Step 2. Perform length m FFTs and twiddle. All FFTs and multipli-
cations are local to each process.

v2(p, s) = ωsp
N

m−1∑
t=0

ωpt
mv1(t, s) (8)

• Step 3. (Parallel) Transpose v2(p, s) → v3(s, p). This brings the s axis
into local memory on each process.

• Step 4. Perform length n FFTs. Again, all FFTs are local to each
process.

v4(q, p) =
n−1∑
s=0

ωqs
n v3(s, p) (9)

5



• Step 5. (Parallel) Transpose v4(q, p) → ũ(p, q) to generate correctly
ordered output.

Note that there are three transpose operations! This is unavoidable if (as
required for the HPCC benchmark) the data must be stored in order on
each process both at the beginning and end of the algorithm. Because of
the number of transpose operations the overall performance of the parallel
transform is limited by the communications bandwidth. Suppose this is
1GB/sec. Since we have three transposes and each one essentially moves all
of the data we can estimate the performance in flops/byte per process as

5

96
log2(N) (10)

where we used a factor 96 = 6 × 16 because the data has to be both sent
and received on every process and there are three transposes. Even though
N is much larger than 256 for the benchmark we still must expect a very
significant reduction in FFT performance from what is available from serial
libraries operating on in-cache data.

4 Parallel transpose operations.

Suppose we have P processes and a P × P matrix, where element M(i, j) is
owned by process j for i = 1 : P . In other words, the first axis of the matrix
is local to the processes and the second is distributed. If we want to transpose
the matrix then each process will need to send and receive some amount of
data to every other process. In fact process p must send one element of the
matrix to process q, for every pair p, q.

To generalize, assume the matrix has dimensions kP, k′P , with block de-
composition of the second axis only. It is possible to further generalize to
arbitrary decompositions but this will not be necessary for this paper. Then
each process p must send a block of memory which is k×k′ to each process q,
and vice versa, for all pairs. But now assuming a simple storage scheme for
the source and destination matrices the data that p sends to q is not contigu-
ous and must be packed up before sending. Moreover the receiving process q

6



must take the message and unpack it to be placed in the destination matrix,
and in either the packing or unpacking process an inner transpose must also
occur (from a block which is k × k′ to a block which is k′ × k).

The other issue in the transfer of data is how messages are scheduled. The
data transfer is an all to all transfer, that is each process will be sending data
to every other process and receiving data from every other process. The MPI
communications interface supports such transfers and it is possible to write
code which turns the whole thing over to the MPI implementation. The
possible benefit of this that the implementation can potentially use lower
level operations which work faster than the method described below, but the
drawback is that the developer has no control over what the implementation
decides to do. Below we describe an approach that just uses point to point
communications. This approach illustrates a number of the issues that any
implementation (MPI internal or not) would have to consider.

5 Packing and unpacking.

The issues of packing and unpacking at first seem trivial. However, the
amount of data that needs to be packed for the benchmark is a large fraction
of the available memory on each process, which far exceeds the capacity
of the lower levels of cache. A poorly written access pattern can interact
very badly with the cache hierarchy and memory management system (page
tables, TLB entries, etc.). A basic rule of thumb for dealing with cache is to
try to make as many references to each cache line as possible before turning
to another cache line, where a cache line is the quantum of information that
gets transferred between levels in the hierarchy. Typical cache line sizes for
microprocessors are on the order of 128 bytes. If we read a complex number
(16 bytes) from a cache line, then go to a different cache line to read another
and so forth then the effective performance of memory is reduced by a factor
of eight (128/16). This could happen when a vector (stream) access pattern
is used where the vector has a large stride.

Similarly if we access a small part of a page before accessing other pages then
the page tables and TLB entries can be overwhelmed and again performance
will suffer. The cure for both cache performance and page table/TLB per-

7



formance is contiguous access. Although eventually we will run out of cache
entries or TLB entries and we will have to evict cache entries before bringing
in new ones, still the cost is amortized over the accesses that are in-cache.

6 All to all parallel communications.

A very simple all to all scheme is to just send P messages to all P processes,
then receive P messages. This is obviously bad because when a message
arrives on a process there is probably no matching receive and therefore the
message will go into an unexpected queue. Worse, the unexpected queue may
be of limited size and chances are that if the exchange involves large amounts
of memory the MPI implementation is free to crash. Even if this method
worked the received data would have to be copied out of the unexpected
queue buffer space. In a better algorithm we would like to ensure that when
messages are received there is a receive buffer already in place to avoid the
unexpected queue and the extra buffer copy.

A first alternative is for each process to prepost all the messages that it will
receive, then send all the messages it is going to send, then wait for all the
messages to complete. This is not a bad approach for parallel machines or
applications involving modest numbers of processes. But it is not scalable:
when P is on the order of 1000 then we have to prepost 1000 messages and
the MPI layer must check to see if an incoming message matches any of
these 1000 requests. Moreover, the amount of message space that we have
to allocate is also proportional to P .

A much better approach is to arrange the sending and receiving so that
processes are paired. That is, we want to guarantee that when process q is
supposed to be exchanging with process q′ then process q′ is also exchanging
with process q. It is not obvious that this is possible, but there is a simple
and elegant way to guarantee that the exchanges occur pairwise with no loss
of time. This is shown in the following algorithm:

// on process q, loop over P exchanges:

for(s=0;s<P;s++)

8



{

qp = (P - q + s) % P;

exchange(q,qp)

}

It is easy to see that as the loop variable s sweeps over the numbers [0 : P−1]
that the expression for the dual process qp sweeps over these numbers as well,
so the exchange function is executed with all the other processes (including
process q itself). Consider a fixed step and compute qp for a given q. Now
on process qp we can compute the dual process that it computes, and this
turns out to be q. So at each step all of the processes are paired and as the
loop proceeds all processes pair with all other processes, with no interference.
There is no wasted time in the loop.

With this approach the pressure on matching and queue space is vastly re-
duced. In fact the number of messages outstanding on each process at any
time is reduced from O(P ) to O(1), independent of the size of P . Thus this
approach is perfectly scalable from this point of view. In the communications
fabric there are O(P ) messages running around at any time. The fabric may
have limitations on bandwidth due to topology that will cause more limited
performance for large P . This will show up as messages or parts of messages
try to occupy the same links and collide, and the effective bandwidth will
thus be reduced. In fact a simple version of this algorithm can be used to
detect collisions and is an excellent test of the fabric reliability. We note also
that the fabric may allocate virtual channels for messages that exclude other
messages from sharing the bandwidth, and this may cause the algorithm
to behave poorly. Other fabric implementations may quantize the messages
into packets and thus effectively share the bandwidth, which is better. If the
fabric allocates channels and this becomes a problem then the algorithm can
easily be rewritten to packetize messages at the application level. Finally,
note that the paired nature of the messages being sent can also be a problem
if the messages in both directions use the same path through the network.

Another advantage of this algorithm is that the temporary buffer space
needed is now much smaller, also by a factor of P . In terms of the block
sizes above we only need two buffers of size k × k′, one for sending and one
for receiving.

9



The exchange operation must be carefully written. The simplest approach is
to post a receive, pack the data to be sent, send the data, then wait for the
receive to complete, then unpack the data. The MPI progress rules guarantee
that this must eventually complete successfully. But there is no guarantee
with this approach that when a process sends data that the dual process
has posted its receive, and there are a number of scenarios that can take
place. Possibly the other process does have its receive posted and all goes
well. Otherwise part or all of the message will go into the unexpected queue
before the receive begins, with the extra overhead that involves.

A better exchange algorithm will first exchange short PTS (permission to
send) messages before exchanging the larger buffers. With this scheme each
process posts its receives, sends a PTS message, waits for the correspond-
ing PTS message, sends the data, then waits for the receive to complete.
The message ordering guarantees that the receive buffers are posted before
message data arrives and no large volume of message buffer space is needed.
This is a place where an MPI implementation can potentially outperform
this explicit point to point code, by using some lower level primitives to
possibly synchronize the exchange more quickly. The appropriate routine is
MPI_SendReceive. But we note that the point to point version allows for the
overlapping of the packing and unpacking with the send/receive operations,
which MPI_SendReceive does not.

7 Benchmark results.

The HPC Challenge (HPCC) benchmark suite [1] which provides a variety
of benchmarks that span the space of processor and network performance
for parallel computers. These benchmarks include HPL (factor a large dense
matrix) which emphasizes processor performance, PTRANS (matrix trans-
position) which tests network bisection bandwidth, STREAMS (vector op-
erations) which tests memory performance, RandomAccess (modify random
memory locations across the entire machine) which stresses small message
network performance, and FFT.

The rules for the HPCC competition state that the optimized routines have
to be called from the structure present in the framework and that the for-

10



ward transform performed by FFT routine has to be verified by the inverse
transform that is present in the framework. For each of the transforms there
is a planning stage in which the N for the transform is factored and order
and number of smaller transforms is planned. During this phase, memory is
allocated and some of the twiddle factors are precomputed. The only phase
that is timed is the forward transform.

We have tested this algorithm with two versions of the HPCC benchmark
suite, which differ on how the FFT benchmark is implemented. With ver-
sion 1.0, the FFT benchmark is run on the largest power of two number of
processors that is contained in the total number of processors used to run
HPCC. With version 2.0, this was extended to run on the largest number of
processors that can be factored by the numbers 2, 3, and 5 that is contained
in the total number of processors.

Red Storm is a Cray XT4 located at Sandia which has 12960 dual core
AMD Opteron processors running at 2.4 GHz. We ran HPCC version 1.0
on 25920 cores on Red Storm with the baseline FFT algorithm and the
optimized algorithm. The FFT with those tests ran on 16384 cores and with
the allocation algorithm, those cores are on a mix with 6848 cores running in
dual core mode and 9536 cores running in single core mode. With the baseline
algorithm, we got 1554 GFLOPS and with the optimized algorithm, we got
2871 GFLOPS. This is almost a factor of two performance increase with the
optimized algorithm. This won the FFT category at the HPCC awards at
SuperComputing 2007. We have been able to run HPCC version 1.2 on 16384
cores on 8192 nodes of Red Storm and got 1234 GFLOPS with the baseline
algorithm and 2272 GFLOPS with the optimized algorithm. This again is
almost a factor of two better performance for the optimized algorithm. On
25920 cores, the baseline algorithm got 2755 GFLOPS and we were not able
to get a result from the optimized algorithm that validated (we have since
fixed the bug, but did not get a chance to rerun the algorithm).

8 Conclusions.

We have implemented an optimized FFT algorithm within the HPCC bench-
mark suite which resulted in almost a factor of two improvement over the

11



baseline algorithm on Red Storm and winning the FFT category within the
HPCC competition at SuperComputing 2007. The algorithm relied on a
better use of the cache and a faster algorithm to perform the all to all com-
munication that is present in the algorithm. The algorithm performance
measured by FLOPS per core shows a reduction going from serial to paral-
lel due to the communication required, but in parallel, the algorithm shows
excellent scaling with a consistent FLOPS per core as the number of cores is
increased.

9 Acknowledgments.

This research was sponsored by Sandia National Laboratories, Albuquerque,
New Mexico 87185 and Livermore, California 94550. Sandia is a multipro-
gram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s National Nuclear Secu-
rity Administration under Contract DE-AC04-94-AL85000.

10 References.

1. P. Luszczek, J. Dongarra, D. Koester, R. Rabensiefner, R. Lucas, J. Kep-
ner, J. McCalpin, D. Baily, and D. Takahasi, Introduction to the HPC chal-
lenge benchmark suite, March 2005, http://icl.cs.utk.edu/hpcc/pubs/index.html.

12


