
Optimizing FFT for HPCC

Mark P. Sears and Courtenay T. Vaughan
Sandia National Laboratories

Cray User Group
May 2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

HPCC

• Series of 7 benchmarks in one package. They
include:
– PTRANS - matrix transposition
– HPL - Linpack direct dense system solve
– STREAMS - Memory bandwidth
– Random Access - Global random memory

access
– FFT - large 1-D Fast Fourier Transform

• Code is C with libraries

HPCC

• Meant to give a better indication of machine
performance than just using HPL as a ranking
– Different tests stress different aspects of machine

performance
• Annual competition at SuperComputing

– Allows optimization of tests

FFT in HPCC

• 1-D FFT of a large complex double precision vector
• Requires all-to-all communication
• Stresses interprocessor communication of large

messages
• Algorithm must use given size and validate using

existing inverse transform
• HPCC version 1.0 used a power of 2 number of

processors
• HPCC version 1.2 expands that to the largest number

of processors that can be factored by 2, 3, and 5

FFT Theory

• Discrete Fourier Transform (DFT) of a vector of
length N

• If N can be factored so N = nm then the DFT can
be written as:
– n DFT operations of length m
– twiddle operations (multiplying by appropriate

complex roots of -1)
– m DFT operations of length n

• These operations are applied recursively until the
length is small and then the DFT is explicit

Parallel FFT

• Serial DFT factorization introduces a shuffling of
the order of the array

• In serial this is handled by reordering the vector
• Requires transpose among processors for the

parallel case

FFT Algorithm

• Vector decomposed as N = P*M*P where P is
the number of processors

1. Parallel block transpose
2. Local FFTs on z with twiddle
3. Parallel block transpose
4. Local FFTs on y with twiddle
5. Local FFTs on x
6. Parallel transpose

Cache

• End up with doing small FFTs over vector entries
that are not contiguous
– length of small FFTs is 2, 3, 4, 5, 8
– numerically intensive portion of code

• Do pack and unpack operations
– Allows reuse of cache lines

• Baseline algorithm not tuned for Red Storm

Parallel Transpose

• Baseline algorithm uses MPI_AlltoAll
– Not optimized for Red Storm

• We use pairwise exchange of messages
– Each processor exchanges a message with one

other processor in turn (pairwise)
– Exchanges are ordered so that all processors are

busy at all times
– Significant improvement in scalability

(much smaller buffers, reduces message overhead)
– Allows overlap of packing with communications

FFT Results from Red Storm

• HPCC version 1.0 on 25920 cores
– Baseline 1554 GFLOPS
– Optimized 2871 GFLOPS (#1 at SC 07)
– FFT used 16384 cores (mix of 1 core per node and 2

cores per node)
• HPCC version 1.2 on 16384 cores on 8192 nodes

– baseline 1234 GFLOPS
– optimized 2272 GFLOPS

• HPCC version 1.2 on 25920 cores
– baseline 2755 GFLOPS
– optimized ?

Summary

• Tuned algorithm ~2X over baseline
• Fastest FFT on any computer

