

CUG 2006 Proceedings 1 of 4

The Cray XT Programming Environment

Luiz DeRose, Mark Pagel, Heidi Poxon, and Adrian Tate
Cray, Inc.

ABSTRACT: In this paper we presented the programming environment for the Cray XT
system, which consists of state of the art compiler, tools, and libraries, supporting a wide
range of programming models. The Cray XT programming environment has been
designed to address the complexity of large scale HPC systems, to help users achieve the
highest possible performance from the hardware. Its design focus is on providing an ease
of use and optimised performance on the Cray XT system.

KEYWORDS: Programming environment, programming models, compilers, math
software, tools.

1. Introduction
It is the role of the Programming Environment to close
the gap between observed performance and peak
performance, in order to help users achieve highest
possible performance from the hardware. The
Programming Environment should address issues of scale
and complexity of high end HPC systems and hide the
complexity of the system from the user, to help them to
be more productive.

In this paper we describe the Programming Environment
for the Cray XT systems, which was designed with the
focus on performance and ease of use. The paper is
organized as follows: Section 2 addresses programming
languages and compilers. Section 3 discusses
programming models. Math software is presented in
Section 4, and tools in Section 5. Finally, we present our
conclusions in Section 6.

2. Compilers & Parallel Programming
Models

The Cray XT programming environments relies on state
of the art compilers provided by independent software
vendors such as PGI and PathScale. The GNU compilers
are also available on the systems. The main languages
used in scientific and technical computing: Fortran, C,
C++, and Java are the supported languages.

The programming environment of the Cray XT system
supports an extensive set of programming models,
including distributed memory approaches like MPI and
SHMEM, shared memory mechanisms like OpenMP, and
the Unified Parallel C (UPC) PGAS language. In this

section we describe the main characteristics of each of
these models.

2.1 MPI

The Cray implementation of the Message-Passing
Interface (MPI), which supports parallel programming
across a network of computer systems, is based on
MPICH-2 and implements the MPI-2 standard, except for
spawn support.
It also implements the MPI 1.2 standard, as documented
by the MPI Forum in the spring 1997 release of MPI: A
Message Passing Interface Standard.

The Cray MPI implementation on XT calls the Portals
layer of software that has been specifically adapted for
the XT architecture. Many enhancements have been
made over the past year to improve performance,
especially for dual-core and quad-core Opterons. Some
of those enhancements have been made in portals and
MPI and are enabled by default. Others are MPI specific
and require enabling environment variables to take
advantage of those specific optimizations. The
"intro_mpi" man page contains descriptions of these
environment variables.

2.2 Cray SHMEM

The Cray SHMEM data-passing library routines are
similar to the message passing interface (MPI) library
routines: they pass data between cooperating parallel
processes. The Cray SHMEM data-passing routines can
be used in programs that perform computations in
separate address spaces and that explicitly pass data to
and from different processing elements (PEs) in the
program.

CUG 2006 Proceedings 2 of 4

The Cray SHMEM parallel programming model assumes
an MPI-1 like group of processes that runs in parallel
from job launch to job termination. No processes can be
added or removed from this group and all processes
execute the same application. Thus, Cray SHMEM
applications are of the SPMD (Single Program Multiple
Data) type. However, a Cray SHMEM application can be
part of a larger MPMD (Multiple Program Multiple Data)
type MPI job. Cray SHMEM is a one-sided message
passing model in which memory is private to each
process.

The Cray SHMEM routines minimize the overhead
associated with data passing requests, maximize
bandwidth, and minimize data latency. Data latency is the
length of time between a PE initiating a transfer of data
and a PE being able to use the data.

Cray SHMEM routines support remote data transfer
through "put" operations that transfer data to a different
PE and "get" operations that transfer data from a different
PE. Other supported operations are work-shared
broadcast and reduction, barrier synchronization, and
atomic memory operations. In addition, non-blocking
"put" operations are also supported. The "intro_shmem"
man page gives descriptions of the supported interface
calls as well as additional information on how to use the
Cray SHMEM library.

2.3 OpenMP

OpenMP provides multithreaded, shared-memory
parallelism using directives to specify data locality, work
distribution, and control flow. The API is available for
both C/C++ and FORTRAN. OpenMP is supported on
the Cray XT system running the Cray Linux Environment
on the compute nodes and is provided by the compiler
vendors PGI and PathScale.

2.4 UPC

Unified Parallel C (UPC) is C extension to allow
programmers to specify both data distribution and work
distribution in a single program multiple data (SPMD)
programming model. The Cray XT-UPC is a
combination of the the Berkeley UPC compiler, a source
to source translator and the Intrepid GCCUPC, a UPC to
assembly compiler based on GNU gcc. The four main
components of the Cray XT UPC Package consist of:

1. GASNet, the Global-Address Space Networking
Version 1.8.0, which was ported by UC
Berkeley/LBNL, to run on top of the Cray XT
Portals implementation.

2. UPCR, the UPC Runtime library Version 2.5.10
from UC Berkeley/LBNL

3. The Berkeley UPC Translator (BUPC) Version
2.4.0, also ported by UC Berkeley/LBNL

4. GCCUPC Version 4.0.3.4, a UPC to assembly
compiler based on gnu gcc, developed by
Intrepid.

Both BUPC and GCCUPC generate code which is linked
with UPCR and GASNet. Both compilers are compliant
with UPC specs Version 1.2. They also include the
Berkeley reference implementation of UPC-IO and an
optional portion of the UPC V1.2 specs. The C code
generated by BUPC can be compiled with the PGI
compiler (pgcc) or the GNU compiler (gcc).

3. Math Software
Cray XT Series Math Software consists of a combination
of Cray custom tuned algorithms and third Party products,
often with Cray added value or specifically tuned for the
Opteron processor. Base linear algebra operations are
performed using AMD’s Core Math Library (ACML)
which contains BLAS and LAPACK routines tuned
specifically for the AMD64 instruction set. ACML also
contains a library of fast vector intrinsic for the efficient
calculation of sets of transcendental functions.

Cray XT-LibSci contains base linear algebra functionality
provided with the Goto Library, parallel linear algebra
functionality through Cray-tuned versions of
ScaLAPACK and PBLAS, and sparse direct solvers
through the SuperLU (for non-symmmetric matrices). For
users of traditional Cray FFT programs, XT-LibSci
contains also a suite of FFTs programs that preserve the
popular Cray FFT interface. However, these programs are
provided for compatibility reasons only – Cray’s
recommended FFT package on XT systems is FFTW.

FFTW is provided by MIT and is the industry standard
FFT library for scalar systems. FFTW automatically
generates code that is tuned for the host machine, but
Cray also provide information to the FFTW developer to
help the library work well for Cray interconnect and MPI
implementations. Currently, the newest and most efficient
version of FFTW is FFTW3.1 does not contain parallel
algorithms and as such Cray provide a second version
FFTW2.1.5. These 2 separate versions are accessed via
different modules.

The Cray Iterative Refinement Toolkit (IRT) is packaged
as part of the XT-LibSci product and is a library of faster
linear solvers. This library uses mixed precision iterative
refinement, with a potential speed-up of 2x (in practice
more likely 1.2 to 1.7) depending on the condition of the
user’s systems. IRT contains both parallel and serial
versions of the common linear solvers, and includes a

CUG 2006 Proceedings 3 of 4

very sophisticated convergence scheme that allows either
forward or backward error to be minimized. See the
intro_irt manpage for more details.

Libsci.10.2.0 also includes a highly tuned custom version
of the popular iterative solver library PETSc. This release
includes optimizations for certain matrix classes..

4. Tools

4.1 Debuggers

In addition to gdb, two third party debuggers are available
on the Cray XT system. The TotalView debugger from
TotalView Technologies is a powerful, sophisticated, and
programmable tool that lets users debug, analyze, and
tune the performance of complex serial, multiprocessor,
and multithreaded programs. TotalView is available with
its command line interface (CLI) and its graphical
interface, supporting threads, MPI, SHMEM, OpenMP,
C/C++ and FORTRAN, as well as mixed-language codes.

The Distributed Debugging Tool (DDT) From Allinea is
an intuitive, scalable, graphical debugger. DDT can be
used as a single-process or a multi-process program
(MPI) debugger. Both modes of DDT are capable of
debugging multiple threads, including OpenMP codes.
DDT provides all the standard debugging features (stack
trace, breakpoints, watches, view variables, threads etc.)
for every thread and every process running as part of the
application. It also supports the standard HPC languages.

4.2 Performance Tools

The Cray Performance tools provide an integrated
infrastructure for measurement and analysis of
computation, communication, I/O, and memory
utilization, which is unique in the industry and represents
the state of the art in performance measurement. This
framework for performance analysis consists of the
CrayPat Performance Collector and the Cray Apprentice2
Performance Analyzer. CrayPat provides an infrastructure
for automatic program instrumentation at the binary level
with function granularity, creating an intuitive and easy to
use interface for performance tuning of scientific
applications on all Cray platforms. Users can select the
functions to be instrumented by groups, such as MPI, I/O,
memory, and user functions, or by name. CrayPat also
provides an API for fine grain instrumentation. When
instrumenting at a function level, users do not need to
modify the source code, the makefile, or even recompile
the program. CrayPat uses binary rewrite techniques at
the object level to create an instrumented application,

which is generated with a single static re-link, managed
by the CrayPat infrastructure. A second main component
of the CrayPat Performance Collector is its runtime
performance data collection library, which can be
activated by sampling or by interval timers. Performance
data can be generated in the form of a profile or a trace
file, and its selection is based on an environment variable.
A third CrayPat main component is its report generator,
which is a utility that reads the performance file that was
created by the runtime library and generates text reports,
presented in the form of tables. Special reports are
produced, depending on the groups that were selected.
For example, the collection of I/O allows reporting on
bytes transferred, I/O wait time, files used, and so on. The
collection of MPI allows the generation of detailed MPI
profiles.

CrayPat supports programs written in Fortran, C, and
C++, with the MPI, SHMEM, and OpenMP,
programming models (or combinations of these
programming models). It uses the PAPI library for
collection of hardware performance counters and allows
the user to select PAPI hardware counter presets, as well
as native Opteron events. In order to facilitate the user
selection of hardware counters events, CrayPat also
provides set of predefined hardware counters groups.
Derived hardware metrics, such as cache hit rate and
MFlop rate are computed depending on the selected
events or groups.

The Cray Apprentice2 Performance Analyzer is a multi-
platform, multifunction performance data visualization
tool that takes as input the performance file generated by
CrayPat and provides the familiar notebook-style tabbed
user interface, displaying a variety of different data
panels, depending on the type of performance experiment
that was conducted with CrayPat and the data that was
collected. Cray Apprentice2 provides call-graph based
profile information and timeline based trace visualization,
supporting the traditional parallel processing and
communication mechanisms, such as mpi, OpenMP, and
SHMEM, as well as performance visualization for I/O. It
can help developers to identify and correct load
imbalance, excessive serialization and excessive
communication problems.

Cray Apprentice2 can be run either on the Cray XT
service nodes, or on a remote Linux server or
workstation. This allows a remote user who does not
connect to the Cray XT through a high-performance
network to still benefit from the power of this GUI,
without having to experience long delays due to X
Window traffic on the network.

CUG 2006 Proceedings 4 of 4

5. Conclusions
In this paper we presented the programming environment
for the Cray XT MPP system, which consists of state of
the art compiler, tools, and libraries, supporting a wide
range of programming models. The Cray XT
programming environment has been designed to help
users achieve the highest possible performance from the
hardware. Its design focus is on providing an ease of use
and optimised performance on the Cray XT system.

About the Authors

Dr. Luiz DeRose is a Sr. Principal Engineer and the
Programming Environments Director at Cray Inc. He has
more than twenty years of experience in HPC software
design and development. He has published more than 40
peer-review articles in scientific publications, primarily
on programming environment topics. He can be reached
at ldr@cray,.com.

Mark Pagel is the manager of the MPT group at Cray Inc.
He has more than 15 years of experience on software
support for high performance computing. He can be
reached at pags@cray.com

Heidi Poxon is the technical lead of the Performance
Tools and Simulator groups at Cray Inc. She has more
than 15 years of experience in software support for high
performance computing. She can be reached at
heidi@cray.com.

Adrian Tate is the technical lead of the Math Software
group at Cray Inc. He has more than 10 years of
experience in development of applications and
mathematical software for high performance computing.
He can be reached at adrian@cray.com

