
Cray Programming Environment
Update & Roadmap

This Presentation May Contain Some Preliminary Information, Subject To Change

Luiz DeRose
Programming Environment Director

Cray Inc.

May 6, 2008 Cray Inc. Proprietary Slide 2October 2, 2007 Cray Inc. Confidential Slide 2

Cray Programming Environment Focus

It is the role of the Programming Environment to close the gap between
observed performance and peak performance

Help users achieve highest possible performance from the hardware

The Cray Programming Environment addresses issues of scale and
complexity of high end HPC systems.

The Cray Programming Environment helps users to be more productive
It is the place at which the complexity of a system is hidden from the user

User productivity is enhanced with
Increase of automation
Ease of use
Extended functionality and improved reliability
Close interaction with users for feedback targeting functionality
enhancements

May 6, 2008 Cray Inc. Proprietary Slide 3Slide 3

Cray Programming Environment
Programming Languages

Fortran
C
C++
Chapel #
Java (Service nodes)

Programming models
Distributed Memory

MPI
SHMEM

Shared Memory
OpenMP

PGAS
UPC
CAF 1

Tools
Environment setup

Modules
Debuggers

TotalView
DDT 2
lgdb #

Performance analysis
CrayPat
Cray Apprentice2

Optimized Math Libraries
LibSci

libgoto 2

Iterative Refinement Toolkit
LAPACK
ScaLAPCK
SuperLU

Cray PETSc
CASK 2#

CRAFFT 2#

Fast-mv 2#
1: X2 Only 2: XT Only #: Under development

May 6, 2008 Cray Inc. Proprietary Slide 4Slide 4

2008
Q1 Q2 Q3 Q4

2009
Q1 Q2 Q3 Q4

2010
Q1 Q2 Q3 Q4

2011
Q1 Q2 Q3 Q4

Programming Environment Releases

Cascade Debugger CDB ▼1.0 ▼1.1 ▼2.0

Cray Performance Tools
CPT ▼4.2 ▼5.0 ▼5.1 ▼6.0▼4.3

Message Passing Toolkit
▼3.0 ▼3.1 ▼4.0 ▼5.1MPT ▼4.1 ▼5.0

Scientific Libraries
LibSci ▼10.2.1 ▼10.3 ▼11.0 ▼11.1 ▼12.0▼10.4 ▼12.1

Chapel
Chapel ▼0.7 ▼1.0 ▼1.2 ▼2.0▼1.1 ▼2.1 ▼3.0 ▼3.1

Brule Calhoun Diamond EagleAlpine

Cray Compiling Environment
CCE ▼7.0 ▼7.1 ▼7.2 ▼8.0▼ PE 6.0

May 6, 2008 Cray Inc. Proprietary Slide 5

Compilers for the XT Systems
PGI

Provide C, C++, F77, F90, & 95
PGI 7.1.6 released in March 2008

PathScale
Provide C, C++, F77, F90, & 95
PathScale 3.1 released in January 2008

GNU
XT gcc 4.2.3 released in February 2008
XT gcc 4.2.0 (Quad core only) released in March 2008
XT 4.3 planned for May 2008

UPC
XT UPC 1.0.2 Released in September 2007

BUPC
GCCUPC

May 6, 2008 Cray Inc. Proprietary Slide 6

Chapel
Chapel Version 0.7 Released in March 08

Limited availability
Revised chapters of language specification

Parallelism and locality
Initial support for task parallelism on multiple locales
Support for execution on the Cray XT

First public release of Chapel targeted to 4Q08

May 6, 2008 Cray Inc. Proprietary Slide 7

MPI & Cray SHMEM
MPI

Implementation based on MPICH2 from ANL
Optimized Remote Memory Access (one-sided) fully supported
including passive RMA
Full MPI-2 support with the exception of

Dynamic process management (MPI_Comm_spawn)

Cray SHMEM
Fully optimized Cray SHMEM library supported

XT4 implementation close to the T3E model
• Cray SHMEM is layered directly on top of Portals

May 6, 2008 Cray Inc. Proprietary Slide 8

New XT MPI implementation (Cray MPI 3.0)
Cray XT MPI 3.0 uses Cray X2 MPI as base and merge of MPICH 1.0.5
Cray MPI 3.0 (Released in April 08)

On-node 0 byte latency less than .4 usecs
Off-node 0 byte latency less than 6 usecs
Supports the following MPI ADI devices

Portals device
• Used between nodes on XT (completely rewritten from MPI 2.0)

Shared memory device
• Used for X2 and XT MPI 3.0 and future Cray platforms
• Used for on-node messaging

Distributed Memory device
• Scalable device used between nodes on the X2

Supports multiple ADI devices running concurrently
Fastest path automatically chosen

More environment variables set by default (example MPI_COLL_OPT_ON)
SMP aware optimized collectives now default

May 6, 2008 Cray Inc. Proprietary Slide 9May 08 Slide 9

Single copy
optimization
activated at
128K bytes
message and
above

Huge improvements for small to medium messages

May 6, 2008 Cray Inc. Proprietary Slide 10May 08 Slide 10

SMP aware collective
optimizations enabled by

default

May 6, 2008 Cray Inc. Proprietary Slide 11May 08 Slide 11

43% gain in the
Barotropic phase

May 6, 2008 Cray Inc. Proprietary Slide 12

The Cray Performance Tools Strategy

Must be easy and flexible to use
Automatic program instrumentation

No source code or makefile modification needed
Automatic Profiling Analysis (APA)
Profile Guided Rank Placement Suggestions

Integrated performance tools solution
Multiple platforms
Multiple functionality

Measurements of user functions, MPI, I/O, memory, & math SW
HW Counters support

May 6, 2008 Cray Inc. Proprietary Slide 13

Cray Performance Tools Recent Work

Focus on reliability, scalability, and automation
Focus on new systems support (X2, QC, CLE)
Expand types of performance statistics available

Load balance metrics
OpenMP support available with Cray Tools 4.2

Sampling
Support of OpenMP trace points within Cray compiler (X2 only)
New user API for OpenMP tracing (for ISV compilers)
• Support of OpenMP trace points within PGI 7.2

Support for OpenMP runtime library calls (all compilers)
OpenMP runtime library calls grouped separately from OpenMP
API calls

May 6, 2008 Cray Inc. Proprietary Slide 14

Cray Performance Tools Directions

Automatic performance analysis
Use of performance models to automatically identify and expose
performance anomalies

Load imbalance
Communication / synchronization / I/O problems
Environment variables
etc

Recent work towards automatic performance analysis
Determined pattern representation

Will expand on existing infrastructure
Built basic recommendation infrastructure in CrayPat

Support MPI rank placement suggestions
Increasing level of data collection/analysis automation

Automatic Profiling Analysis
Scalable visualizer

May 6, 2008 Cray Inc. Proprietary Slide 15

Automatic Profiling Analysis
Example of our approach to analyze the performance data
and direct the user to meaningful information

Simplifies the procedure to instrument and collect
performance data for novice users

Based on a two phase mechanism
1. Automatically detects the most time consuming functions in the

application and feeds this information back to the tool for further (and
focused) data collection

2. Provides performance information on the most significant parts of
the application

May 6, 2008 Cray Inc. Proprietary Slide 16

APA File Example
You can edit this file, if desired, and use it
to reinstrument the program for tracing like this:
#
pat_build -O ft.ind.B.2+pat+5257-770sdt.apa
#
These suggested trace options are based on data from:
#
/work/users/luizd/COE_Workshop/run/ft.ind.B.2+pat+5257-

770sdt.xf

--

HWPC group to collect by default.

-Drtenv=PAT_RT_HWPC=0 # Summary with instructions metrics.

--

Libraries to trace.

-g mpi

--

User-defined functions to trace, sorted by % of samples.
Limited to top 200. A function is commented out if it has < 1%
of samples, or if a cumulative threshold of 90% has been

reached.

-w # Enable tracing of user-defined functions.
Note: -u should NOT be specified as an additional option.

37.70%
-T fftz2_

26.23%
-T cffts2_

9.37%
-T transpose2_local_

8.96%
-T cffts1_

7.82%
-T evolve_

Functions below this point account for less than 10% of samples.

6.43%
-T transpose2_finish_

2.72%
-T cfftz_

0.48%
-T vranlc_

0.28%
-T compute_indexmap_

--

-o ft.ind.B.2+apa # New instrumented program.

/work/users/luizd/COE_Workshop/bin/ft.ind.B.2 # Original
program.

May 6, 2008 Cray Inc. Proprietary Slide 17

Math Software Stack + upcoming features

LibSci

ScaLAPACKScaLAPACK

BLAS (BLAS (libGotolibGoto))

LAPACKLAPACK

SuperLU_distSuperLU_dist

IRTIRT

CRAFFTCRAFFT

CASKCASK

Fast MVFast MV

PETSc

PETScPETSc

HYPREHYPRE

MUMPSMUMPS

SuperLUSuperLU

ParMETISParMETIS

FFT

FFTWFFTW

ACML

FFTFFT

RNGRNG

May 6, 2008 Cray Inc. Proprietary Slide 18

Recent Work
Released LibSci 10.2.0 (and 10.2.1)

Added Goto + custom BLAS / LAPACK
Provided significant performance improvements over ACML.

LAPACK
Mixed mode ScaLAPACK support

MPI across sockets (1 BLACS process per socket)
Threaded BLAS within sockets

Released PETSc 2.3.3
PETSc + HYPRE, SuperLU, MUMPS, ParMETIS

Released IRT2.0 automatic interfaces

libsci-10.3.0 will contain considerable performance improvements
CASK will improve iterative solver performance by 5-25% (problem
dependent)
Cray Adaptive FFT

May 6, 2008 Cray Inc. Proprietary Slide 19

Iterative Refinement Toolkit
Solves linear systems in single precision whilst obtaining solutions
accurate to double precision

For well conditioned problems
Serial and Parallel versions of LU, Cholesky, and QR
With LibSci-10.2.0, there are now 2 ways to use the library
1. IRT Benchmark routines

Uses IRT 'under-the-covers' without changing your code
• Simply set an environment variable
• Useful when you just want a quick-and-dirty factor/solve

2. Advanced IRT API (from libsci-10.1.0)
If greater control of the iterative refinement process is required
• Allows

» condition number estimation
» error bounds return
» minimization of either forward or backward error
» 'fall back' to full precision if the condition number is too high or

IRT fails
» max number of iterations can be altered by users

May 6, 2008 Cray Inc. Proprietary Slide 20

IRT2.0 performance (serial)

0.8

1

1.2

1.4

1.6

1.8

2

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

matrix size

sp
ee

d-
up

LU
Cholesy

QR

Measuring speed-up of IRT over full precision solver

May 6, 2008 Cray Inc. Proprietary Slide 21

IRT on XT4 (Condition vs. performance)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.0
0E

+0
1

1.0
0E

+0
2

1.0
0E

+0
3

1.0
0E

+0
4

1.0
0E

+0
5

1.0
0E

+0
6

1.0
0E

+0
7

1.0
0E

+0
8

1.0
0E

+0
9

Condition Number

Sp
ee

d-
up

n=3000
n=2000

n=1000

Measuring speed-up for various condition numbers, irt_lu_real_serial used

IRT works well IRT may

help

IRT will

not help

May 6, 2008 Cray Inc. Proprietary Slide 22

Fusion Energy: AORSA
rf heating in tokamak

Maxwell-Bolzmann Eqns

FFT

Dense linear system

Calc Quasi-linear op

INCITE: “High Power
Electromagnetic Wave Heating in
the ITER Burning Plasma’’

Courtesy
Richard Barrett

May 6, 2008 Cray Inc. Proprietary Slide 23

AORSA solver performance - 128x128 grid

Theoretical
Peak

Courtesy
Richard Barrett

May 6, 2008 Cray Inc. Proprietary Slide 24

Math SW Focus in 2008
Auto-tuning: use code generator and automatic tester to
develop codes

Cray Adaptive Sparse Kernels (CASK)

Adaptivity: make runtime decisions to choose best
kernel/library/routine

Cray Adaptive FFT (CRAFFT)
CASK

Performance:
Iterative Solver Performance
FFT performance
Quad-core optimization
Fast libm

May 6, 2008 Cray Inc. Proprietary Slide 25

Math Software Roadmap

10.1.010.1.0
IRT2.0IRT2.0

10.2.110.2.1
Quad Quad
Core Core
TuningTuning

10.2.010.2.0
LibGotoLibGoto BLAS, BLAS,
LAPACKLAPACK

MixedMixed--mode mode
SCaLAPACKSCaLAPACK

10.3.010.3.0 11.0.011.0.0
Baker Baker
SupportSupport
CAFCAF--ScaLAPACKScaLAPACK

2.3.32.3.3 2.3.42.3.4
PETScPETSc + +
CASKCASK

LibSci

ACML

PETSc

FFTW

3.03.0 3.63.6

3.23.2

1Q07 2Q07 3Q07 4Q07 today1Q08 3Q08 4Q08 1Q09

XT4 XT5 Baker

4.14.1

CASK 1.01.0 1.11.1

CRAFFT 1.01.0

3.13.1

Fast Libm 1.01.0

May 6, 2008 Cray Inc. Proprietary Slide 26

Summary: Cray Programming Environment Strengths

Leading edge software for HPC
State of the art compilers, MPI, math SW, and tools

Ability to innovate targeting performance improvements
Only vendor to have supported PGAS throughout its existence

We invented it!
More recent advancements in scientific libraries and performance
tools than any other vendor
Automatic performance analysis
Auto-tuned libraries

Team with extensive HPC experience and advanced
knowledge of parallel performance

Close user interaction provides essential feedback for features and
functionality enhancements, allowing the development of a practical
user-driven Programming Environment

May 6, 2008 Cray Inc. Proprietary Slide 27

Thank You!

