Performance Comparison of Cray XT4 with SGI Altix 4700, IBM POWER5+, SGI ICE 8200, and NEC SX-8 using HPCC and NPB Benchmarks

Subhash Saini and Dale Talcott
NASA Ames Research Center
Moffett Field, California, USA
and
Rolf Rabenseifner, Michael Schliephake and Katharina Benkert
High-Performance Computing-Center (HLRS)
Nobelstr. 19, D-70550 Stuttgart, Germany

CUG 2008, May 5-8, 2008, Helsinki, Finland
Outline

- **Computing platforms**
 - Cray XT4 (NERSC-LBL, USA) - 2008
 - SGI Altix 4700 (NASA, USA) - 2007
 - IBM POWER5+ (NASA, USA) - 2007
 - SGI ICE 8200 (NASA, USA) - 2008
 - NEC SX-8 (HLRS, Germany) - 2006

- **Benchmarks**
 - HPCC 1.0 Benchmark suite
 - NPB 3.3 MPI Benchmarks

- **Summary and conclusions**
Cray XT4

Cray XT4 Scalable Architecture

- Compute PE
- Service PE
- 6.4 GB/s Direct Connect HyperTransport
- Dual PCI-X
- 1-8 GB
- 10.6 - 12.8 GB/s Direct Connect Memory

Cray Seastar 3D Interconnect

7.6 GB/s
Cray XT4

- Dual-core AMD Opteron
- Core clock frequency 2.6 GHz
- Two floating operations per clock per core
- Peak performance per core is 5.2 Gflop/s
- L1 cache 64 KB (I) and 64 KB (D)
- L2 cache 1MB unified
- L3 cache is not available
- 2 cores per node
- Local memory per node is 4 GB
- Local memory per core is 2 GB
- Frequency of FSB is 800 MHz
- Transfer rate of FSB is 12.8 GB/s
- Interconnect is Sea Star 2
- Network topology is mesh.
- Operating system is Linux SLES 9.2
- Fortran compiler is pgi
- C compiler is Intel pgi
- MPI is Cray implementation
SGI Altix 4700 System

- Dual-core Intel Itanium 2 (Montvale)
- Core clock frequency 1.67 GHz
- Four floating operations per clock per core
- Peak performance per core is 6.67 Gflop/s
- L1 cache 32 KB (I) and 32 KB (D)
- L2 cache 256 (I+D)
- L3 cache is 9 MB on-chip
- 4 cores per node
- Local memory per node is 8 GB
- Local memory per core is 2 GB
- Frequency of FSB is 667 MHz
- Transfer rate of FSB is 10.6 GB/s
- Interconnect is NUMAlnk4
- Network topology is fat tree
- Operating system is Linux SLES 10
- Fortran compiler is Intel 10.0.026
- C compiler is Intel 10.0/026
- MPI is mpt-1.16.0.0
IBM POWER5+ Cluster

- Dual-core IBM POWER5+ processor
- Core clock frequency 1.9 GHz
- Four floating operations per clock per core
- Peak performance per core is 7.6 Gflop/s
- L1 cache 64 KB (I) and 32 KB (D)
- L2 cache 1.92 MB (I+D) shared
- L3 cache is 36 MB and is off-chip
- 16 cores per node
- Local memory per node is 32 GB
- Local memory per core is 2 GB
- Frequency of FSB is 533 MHz
- Transfer rate of FSB is 8.5 GB/s
- Interconnect is HPS (Federation)
- Network topology is multi-stage.
- Operating system is AIX 5.3
- Fortran compiler is xlf 10.1
- C compiler is xlc 9.0
- MPI is POE 4.3
SGI Altix ICE 8200 Cluster

- Quad-core Intel Xeon (Clovertown)
- Core clock frequency 2.66 GHz
- Four floating operations per clock per core
- Peak performance per core is 10.64 Gflop/s
- L1 cache 32 KB (I) and 32 KB (D)
- L2 cache 8 MB shared by two cores
- L3 cache is not available
- 8 cores per node
- Local memory per node is 8 GB
- Local memory per core is 1 GB
- Frequency of FSB is 1333 MHz
- Transfer rate of FSB is 10.7 GB/s
- Interconnect is Infiniband
- Network topology is hypercube.
- Operating system is Linux SLES 10
- Fortran compiler is Intel 10.1.008
- C compiler is Intel 10.1.008
- MPI is mpt-1.18.b30
NEC SX-8 System
SX-8 Technology

- Hardware dedicated to scientific and engineering applications.
- CPU: 2 GHz frequency, 90 nm-Cu technology
- 8000 I/O per CPU chip
- Hardware vector square root
- Serial signalling technology to memory, about 2000 transmitters work in parallel
- 64 GB/s memory bandwidth per CPU
- Multilayer, low-loss PCB board, replaces 20000 cables
- Optical cabling used for internode connections
- Very compact packaging.
SX-8 specifications

- 16 GF / CPU (vector)
- 64 GB/s memory bandwidth per CPU
- 8 CPUs / node
- 512 GB/s memory bandwidth per node
- Maximum 512 nodes
- Maximum 4096 CPUs, max 65 TFLOPS
- Internode crossbar Switch
- 16 GB/s (bi-directional) interconnect bandwidth per node
- Maximum size SX-8 is among the most powerful computers in the world
HPC Challenge Benchmarks

- Basically consists of 7 benchmarks
 - **HPL**: floating-point execution rate for solving a linear system of equations
 - **DGEMM**: floating-point execution rate of double precision real matrix-matrix multiplication
 - **STREAM**: sustainable memory bandwidth
 - **PTRANS**: transfer rate for large data arrays from memory (total network communications capacity)
 - **RandomAccess**: rate of random memory integer updates (GUPS)
 - **FFTE**: floating-point execution rate of double-precision complex 1D discrete FFT
 - **Latency/Bandwidth**: ping-pong, random & natural ring
HPC Challenge Benchmarks

- Top500: solves a system
 \[Ax = b \]
- STREAM: vector operations
 \[A = B + s \times C \]
- FFT: 1D Fast Fourier Transform
 \[Z = FFT(X) \]
- RandomAccess: random updates
 \[T(i) = \text{XOR}(T(i), r) \]

HPCS program has developed a new suite of benchmarks (HPC Challenge)
- Each benchmark focuses on a different part of the memory hierarchy
- HPCS program performance targets will flatten the memory hierarchy, improve real application performance, and make programming easier
Programs can be decomposed into memory reference patterns

- Stride is the distance between memory references
 - Programs with small strides have high “Spatial Locality”
- Reuse is the number of operations performed on each reference
 - Programs with large reuse have high “Temporal Locality”
- Can measure in real programs and correlate with HPC Challenge
NAS Parallel Benchmarks (NPB)

Kernel benchmarks
- **MG**: multi-grid on a sequence of meshes, long- & short-distance communication, memory intensive
- **FT**: discrete 3D FFTs, all-to-all communication
- **IS**: integer sort, random memory access
- **CG**: conjugate gradient, irregular memory access and communication
- **EP**: embarrassingly parallel

Application benchmarks
- **BT**: block tri-diagonal solver
- **SP**: scalar penta-diagonal solver
- **LU**: lower-upper Gauss Seidel
Benchmark Classes

- **Class S** - small (~1 MB)
 - any quick test
- **Class W** - workstation (a few MB)
 - used to be, now too small
- **Classes A, B, C**
 - standard test problems
 - 4x size increase going from one class to the next
- **Class D**
 - about 16x of Class C
- **Class E**
 - About 16x of Class D
NPB Implementations

- The original NPB
 - paper-and-pencil specifications
 - useful for measuring efficiency of parallel computers, parallel tools for scientific applications
 - well-understood, generally accepted
 - decent reference implementations available
 - MPI (3.2.1), OpenMP (NPB3.2.1)
 - NPB 3.3

- Multi-zone versions of NPB
 - from application benchmarks: LU-MZ, SP-MZ, BT-MZ
 - exploit multi-level parallelism
 - test load balancing schemes
 - hybrid implementation
 - MPI+OpenMP (NPB3.2-MZ)
NPB and HPCC Implementations on NEC SX-8

- MPI version of NPB are written/optimized for cache based systems
 - Computational intensive benchmarks like BT, LU, FT and CG are not suitable for vector systems such as NEC SX-8 and Cray X1
 - NPB benchmarks were altered to run on NEC SX-8 making inner loops longer for appropriate vector lengths.
 - For SX-8, LU was run with SX-8 specific compiler directives for vectorization.
- HPCC 1.0 version is written/optimized for cache based systems
 - Cache based MPI FFT benchmark is not suitable for vector systems such as NEC SX-8 and Cray X1
HPCC EP-Stream Benchmark

EP-Stream Triad Benchmark

- Memory Bandwidth (GB/s)
 - 100
 - 10
 - 1
 - 0.1

- Number of Cores
 - 1
 - 10
 - 100
 - 1000

- Cray XT4
- SGI Altix 4700
- +IBM POWER5
- SGI ICE 8200
- NEC SX-8
HPCC: EP-DGEMM Benchmark

![Graph showing EP-DGEMM Benchmark performance across different numbers of cores for various systems. The performance is measured in Gflop/s. The systems compared include Cray XT4, SGI Altix 4700, +IBM POWER5, SGI ICE 8200, and NEC SX-8.](image-url)
HPCC: G-HPL Benchmark

![Graph showing the performance of different systems (Cray XT4, SGI Altix 4700, +IBM POWER5, SGI ICE 8200, NEC SX-8) with respect to the number of cores. The performance is measured in T flop/s.](image)
HPCC: Random Memory Access Benchmark

G-Random Access Benchmark

Performance (Gup/s) vs. Number of Cores

- Cray XT4
- SGI Altix 4700
- +IBM POWER5
- SGI ICE 8200
- NEC SX-8
HPCC: Random Order Ring Latency Benchmark

![Graph showing Random Order Ring (ROR) Latency Benchmark]

- **Network ROR Latency (microsecond)**
- **Number of Cores**

Legend:
- Cray XT4
- SGI Alix 4700
- +IBM POWER5
- SGI ICE 8200
- NEC SX-8
HPCC: Random Order Ring Bandwidth

![Graph showing Random Order Ring Bandwidth (GB/s) vs Number of Cores for different systems: Cray XT4, SGI Altix 4700, +IBM POWER5, SGI ICE 8200, NEC SX-8. The y-axis represents Network ROR Bandwidth (GB/s) and the x-axis represents Number of Cores, ranging from 1 to 1000.]
HPCC: PTRANS Benchmark

G-PTRANS Benchmark

Number of Cores

PTRANS Bandwidth (GB/s)

Cray XT4
SGI Altix 4700
+IBM POWER5
SGI ICE 8200
NEC SX-8
HPCC: FFTE Benchmark

![Graph showing G-FTE Benchmark performance across different numbers of cores for various systems. The x-axis represents the number of cores, ranging from 1 to 1000. The y-axis represents performance in Gflop/s, ranging from 0.1 to 10000. Different systems are represented by distinct markers and lines: Cray XT4, SGI Altix 4700, +IBM POWER5, SGI ICE 8200, NEC SX-8.](image)
NPB MG Class C Benchmark

![Graph showing performance (Gflop/s) vs number of cores for different systems: Cracy XT4, SGI Altix 4700, +IBM POWER5, SGI ICE 8200, NEC SX-8.](image)
NPB CG Class C Benchmark

![Graph showing performance (Gflop/s) vs. number of cores for different systems. The graph includes data for Cray XT4, SGI Altix 4700, IBM POWER5, SGI ICE 8200, and NEC SX-8.]
NPB FT Class C Benchmark

NPB 3.3 FT Class C Benchmark

- Performance (Gflop/s)
- Number of Cores

- Cray XT4
- SGI Altix 4700
- +IBM POWER5
- SGI ICE 8200
- NEC SX-8

29/34
NPB BT Class C Benchmark

![Graph showing performance (Gflop/s) vs number of cores for different systems: Cray XT4, SGI Altix 4700, +IBM POWER5, SGI ICE 8200, NEC SX-8.](image)
NPB SP Class C Benchmark

NPB 3.3 SP Class C Benchmark

Performance (Gflop/s)

Number of Cores

Cray XT4
SGI Altix 4700
+IBM POWER5
SGI ICE 8200
NEC SX-8
NPB LU Class C Benchmark

NPB 3.3 LU Class C Benchmark

- Cray XT4
- SGI Altix 4700
- IBM POWER5
- SGI ICE 8200
- NEC SX-8

Performance (Gflop/s)

Number of Cores
Stream memory BW is highest for vector system NEC SX-8. Among cached based systems it is highest for IBM POWER5+ and lowest for SGI ICE 8200.

Floating point performance is highest for NEC SX-8. Among cached based systems it is highest for SGI ICE 8200 and lowest for Cray XT4.

Network random order latency is lowest for SGI Altix 4700 (NL4) and highest for ICE 8200 (IB). However, for Cray XT4 it is almost constant from 4-512 cpus.

Network random order bandwidth is highest for NEC SX-8 and lowest for SGI ICE 8200 (IB).

Performance of PTRANS is highest for NEC SX-8 and lowest for SGI ICE 8200 (IB).
Summary

- Performance of HPCC-FFT is highest for Cray XT4 and lowest for SGI ICE 8200 (IB)
- Performance of MG is highest for NEC SX-8 and lowest for SGI ICE 8200 (IB)
- Performance of CG is highest for IBM POWER5+ & SGI Altix 4700 and lowest for SGI ICE 8200 (IB) & NEC SX-8
- Performance of NPB FT is highest for NEC SX-8 and lowest for SGI ICE 8200 (IB)
- Performance of NPB BT and SP is highest for NEC SX-8 and lowest for SGI ICE 8200 (IB)