
Application Monitoring

Robert A. Ballance∗, Sandia National Laboratories
John T. Daly†, Los Alamos National Laboratory

Sarah E. Michalak‡, Los Alamos National Laboratory

SAND Number: 2008-2931C
May 6, 2008

Abstract

Application monitoring is required to determine the
true performance of an application while it is run-
ning. Two case studies will be used to illustrate
different aspects of the problem. First, we present
a light-weight monitoring system for first-order de-
termination of whether a job is making progress.
However, full application monitoring requires deeper
characterization and accurate measurement of the
phases of an application’s processing. Using the data
gathered through application monitoring we can also
derive information about the underlying system re-
liability. This paper will show how maximum likeli-
hood estimates (MLEs) can be used to derive infor-
mation about platform reliability based on applica-
tion monitoring data.

1 What is Application Moni-
toring?

When applications are not making progress the sys-
tem is not productive. Despite the truistic nature of
this observation, the HPC community has yet to im-
plement a standard application monitoring solution
to answer the fundamental question: are applica-
tions making real progress? This is not the same as
asking whether a system is being utilized or checking
to see that the applications are “running.” Those are
system monitoring questions to be addressed by sys-
tem tools, such as Cray’s HSS software, and system
data.

Whether or not an application is actually mak-
ing progress — meaning that it is performing useful

∗Sandia National Laboratories, raballa@sandia.gov.
†Los Alamos National Laboratories, jtd@lanl.gov.
‡Los Alamos National Laboratories, michalak@lanl.gov.

computational work — is an application monitoring
question that has traditionally been left up to the
users and code developers to address. However, the
results of the W76 LEP calculations run by Daly
on Red Storm, Purple, and BG/L in tandem (i.e.,
40 million PE hours of computation completed in
16 weeks) at a cost of only 0.25 FTEs of user effort
suggest that even a rudimentary application moni-
toring capability can have tremendous pay-offs for
user productivity [3]. This connection arose after
the fact, as Daly was discussing the ad-hoc scripts
that he had developed for monitoring his own ap-
plication. Daly’s scripts have since been adapted
locally at Sandia for one or two key applications,
and have also informed the design of the Jobmoni-
tor tool described below. Accurate application mon-
itoring is also key to effective system administration,
since system administrators will have better insights
into the workload, and can react more quickly when
problems arise.

In this paper we present an overview of work-in-
progress at Sandia and Los Alamos. The text of
the paper revolves around two case studies of how
to approach application monitoring. Think of these
case studies as design sketches of where this research
is heading, rather than finished pieces. Early review
and good feedback will help us to refine the work
and hopefully to produce tools of general use to the
Cray and HPC communities.

2 Sketch: A Simple Progress
Monitor

Users appear to have many ways to check whether
their application is, in fact, progressing. At first
glimpse, the number of checks is as varied as the
number of applications times the number of users.

1

However, it seems that the actual test cases can be
reduced to a handful. Most users tail a log file, look-
ing for timestep markers, or they look to see if par-
ticular files are being updated. Knowing which files
to check, and how to check them is daunting, but we
can usefully restrict our attention to batch-scheduled
jobs. In this case, it is feasible to ask the user to add
information to their batch script to provide the nec-
essary hints.

Our approach is guided by two assumptions, and
one key observation:

1. Job progress monitoring is interesting only
in the presence of long-running jobs. For
short jobs, the key metric is queue through-
put. Throughout the DOE Tri-Labs, capabil-
ity users run jobs whose total duration is mea-
sured by days and weeks, with multiple inter-
vening restarts. In such cases, it is important
to know whether a job on the mesh is in fact
doing any work. Section 3 addresses some of
the issues concerning whether the work being
accomplished is “useful.”

This assumption loosens the real-time con-
straints on monitoring, but may not affect the
scalability issues. As we consider a centralized
monitoring database spanning multiple plat-
forms, we may need to deal with many jobs,
only a few of which need progress checks at any
given time.

2. Progress monitoring is simply a way to provide
centralized and informed observations. The
monitoring process is based on hints provided
by users — which files to check, how frequently
to check, what to check for, what constitutes a
hang — and so the appropriate response to fail-
ure is to ignore or question the hint, rather than
initiate a possibly hasty or improper corrective
action.

This assumption relieves the need for 100% cor-
rectness on each and every check, as well as the
need for correctness on the part of the user.

A third observation quickly becomes apparent:

3. There are as many or more ways for a job
to cease progressing, or for a monitoring tool
to fail, than there are simple, straightforward
cases.

The complexities introduced by building a re-
silient monitoring application will be exposed
in the following discussions.

With these observations in hand, we have begun to
deploy a generic job monitoring facility built around
periodic user-specified checks of user-specified log
files.

The only other general issue was to create the
appropriate structures for the monitoring, but this
was reduced to a “simple matter of programming”
(SMOP) by adopting an application structure based
on managing a simple SQL database.

2.1 Overview and Approach

The Jobmonitor tool is a monitoring application de-
veloped on the LAMPs (Linux, Apache, Mysql, Perl)
platform. Figure 1 illustrates the key components.
The arrows in the diagram indicate primary infor-
mation flows.

The “A” component of the LAMPs base is deem-
phasized; the Web server is currently used only to
display the current job status. The choice of LAMPs
was deliberate; this tool is being evaluated at Sandia
(and perhaps the Tri-Labs) for roll-out across all of
the HPC platforms. The portability and ubiquity of
MySQL and Perl make this possible.

Adopting a database-based application schema
also simplified many portions of the implementation,
since the existence of clients and servers for MySQL
could be presupposed. This reduced the “hard” im-
plementation requirements to developing a resilient
system that would be secure in a multi-client envi-
ronment.

There is actually a suite of programs involved,
most of which are database clients. Several tools,
which do not appear in Figure 1 are for the adminis-
trators of the system to use when validating config-
urations or cleaning up the databases. Table 1 lists
the top-level executables.

Table 1: Jobmonitor Executables

monitor Registration script
job status CLI status check
jobmonitor.cg WWW status page

monitor cron.sh cron wrapper
update monitored jobs Checking script

clean jobmon db DB management
print config Installation diagnostic
check config Installation diagnostic

2

MySQL

monitor

System UserUser

monitor_job.pl

monitor_cron.sh (command)
update_monitored_jobs.pl

job_status
job_status.pl

jobmonitor.cgiWeb

.monitor

jobmonitor.conf

System Scheduler

Figure 1: Jobmonitor Application Architecture

The system itself builds on widely available PERL
packages, including DBI, DBD:mysql, DBI::Class,
AppConfig, Mail::Mailer, Text::Template and oth-
ers.

2.2 A Tour of Jobmonitor

By design, jobs are monitored only when a user re-
quests monitoring. Once a job is registered with
the Jobmonitor application, a slow polling loop (run
from cron) updates the job status according to the
user’s hints along with the known state of the job.
The time frame for checking is measured in min-
utes, not seconds. Each job is in a purported known
state; but determining the state of the machine is a
bit more involved than first anticipated.

For background, let us follow a single job through
the system.

2.2.1 Registering the Job

A user “registers” a job by invoking the monitor
command from within a batch job. On the XT sys-
tems at Sandia, this portion of the job script typi-
cally looks like

module load jobmonitor
monitor ...

The arguments to the monitor command specify
the particular progress check to be made, the tim-
ing between checks, and whether the user is to be
informed if the job hangs. So, for example, to moni-
tor a log file for any file modifications, the user might
specify

monitor --check=mtime --filename=run.log

In this case, the working directory of the job script
will be used (by default) for the location of the out-
put file. On each check, the file run.log’s modifi-
cation time will be compared against the previous
value, and if it has increased, the job will be marked
as progressing.

The only required arguments to the monitor com-
mand are the check, any arguments required by the
check, and the file to monitor. System-configured
options provide all other default values. However, as
users become more sophisticated, and jobs are more
complicated, other choices become relevant. Sup-
pose, that the job should only be checked once an
hour after it gets through initialization, but that ini-
tialization takes roughly 45 minutes. Additions to
the command line can express such requirements:

monitor --check=mtime --filename=run.log
--lag=45m --freq=1h

Since the monitor registration script runs as the
user, in a batch shell, all normal shell operations and
environment variables can be used.

monitor --filename=$PBS_JOBID.log
--check=mtime --lag=45m --freq=1h

The full set of command line options is shown in
Table 2.

Commonly reused arguments, such as the email
notification settings, can also be specified in a .mon-
itor file that can be located either in the current
working directory of the batch script, or the user’s
home directory.

3

Table 2: Arguments to monitor

Name Purpose

check Test to run
filename File to monitor
directory Path to file
frequency Time between checks
failafter See below
regex A regular expression
description Job description
decreasing Direction of change, when

appropriate
lag Minimum time before first

check
email Email user on hang?
email addr Email addresses to include

The current set of implemented checks appear in
Table 3. The “grep” check requires a PERL-style

Table 3: Standard Checks

Name Checks Arguments

mtime file modification time
atime file access time
size file access time
grep match a regex regex

regular expression that will isolate a single numeric
value from a line in the file. The test finds the
last occurrence of the regular expression, and then
uses the value found to compare against the previ-
ous check. For example, if the output log regularly
emits a line of the form

Timestep N at time XX:YY:ZZ

a valid set of arguments would be

monitor --filename=run.log --check=grep
--regex=".*Timestep (\d+)"

The implementation assumes that the file itself is
growing, so the comparison scan can begin in the
file at the point of the previous match.

Both “size” and “grep” allow the computed values
to be decreasing.

As we were writing this paper, Daly suggested
that the system should be able to count the num-
ber of files whose names match a regular expression.
The modular design of the system will make this
check straightforward to add.

2.2.2 Job States

Jobs move through a series of states as they are
monitored. It is useful to divide the states into
three groups: states that reflect only queuing sta-
tus, states that represent current running status,
and“holding” states that represent some failure con-
dition in the monitoring. Once a job is moved to
a holding state, no further checks on the job itself
are made, but the system will transition the job to
Exited once it is no longer running. Table 4 lists
the states; the leftmost column indicates (Q,R,H)
for queuing, running, or holding states.

Table 4: Job States

Q Queued Job is in queue
Q Dequeued Job has left queue without a

status check
Q Exited Job was running, but is no

longer running

R Initial Job Running, no data yet
R OK Normal progress found
R Stalled No progress lately

H Probably Hung
H Check Timeout
H File System Timeout
H Configuration error
H Status Unavailable
H Invalid Check Module

Jobmonitor has the ability to write the current
queue status of jobs into its database. This fea-
ture came at the suggestion of an interested user
who regularly manages flocks of jobs across several
systems. Queue monitoring is regarded as experi-
mental, since the functionality replicates that of the
web-based queue management tools that are now
widely deployed. The queue-related states only in-
dicate whether a job is in the queue, or has left the
queue. If the queue-tracking feature is disabled, then
neither the Queued nor Dequeued states will be
activated. It is possible for a job to start running,

4

and to stop running before the monitoring system
ever notices. In this case, there will be no record
of it attempted run, except for the transition from
Queued to Dequeued.

Once a job begins running, it enters the running
states via the Initial state which indicates that the
job has started running, but no status data has yet
accrued. If everything goes well, the sequence of
job-state transitions is given by the following regular
expression:

Queued·Initial· (1)
(OK | Stalled)∗ ·Exited (2)

More importantly, we are interested in the se-
quence

Queued · Initial· (3)

(OK | Stalled)∗ ·OK+· (4)

StalledN ·Probably Hung ·Exited
(5)

In the above regular expressions, “·” denotes se-
quence, | denotes choice, the superscript “∗” de-
notes zero or more repetitions, “+” denote one
or more repetitions, and the superscript “n” indi-
cates precisely N repetition. Note that in both
lines (2) and (4) we allow transitions to and from
the Stalled state, since one or more checks might
fail to indicate progress, even when the job is pro-
gressing. What the system is really looking for is
a sequence of N checks, all of which result in “no
progress”. At that point, the job is moved into
the Probably Hung holding state, and no further
checks are made. The value of N is specified by the
user via the failafter argument to monitor ; the
system default is 4.

Figure 2 shows a simplified version of the entire
state machine. Explicit transitions into the holding
states are not shown in the figure.

2.2.3 Updating status

Once a set of jobs are registered, a Unix cron job
regularly checks the database for jobs that are ready
to be updated. At each pass through the cron job,
the list of jobs queued or running in the scheduler
is compared against the contents of the job monitor
database. If a job is running, is due to be checked,
and is not in a holding state, then the status of the
job is updated. As discussed, the holding states are

Initial OK

Stalled

Con�g

Errors

Check

Failed

Check

Timeout

FS

Timeout

Probably

Hung

Exited

DequeuedQueued

N

Any running

state

Holding states

Running

Figure 2: Simplified State Machine

present to describe outcomes in which further check-
ing, aside from job exit, is unwarranted.

Update checking proceeds in 2 stages and several
steps. Stage 1 performs the basic job bookkeeping.

1. Contact the scheduler to list queued and run-
ning jobs. This interface is modularized, and
has been tested with both PBS Pro and Moab.

2. Contact the database to collect running jobs.

3. Move any jobs that are no longer queued and
that are not running into the Dequeued state.

4. Move any jobs that have been queued and are
no longer running to the Exited state. This
includes jobs that are active, or are in one of
the holding states.

This point ends the basic bookkeeping; it runs
quickly, but the duration is linear in both the
number of jobs in the database, and the number
of jobs in the queues.

5. Update the jobs that are ready to be updated.

6. Clean up and complete.

Of course, many things can go wrong:

• The user could provide the wrong arguments,
such as misspelling the log file name, or an in-
valid check module.

• The user could provide improper hints — such
as checking every 10 minutes on a job that only
timesteps every 2 hours.

• The actual checking operations could time out,
either due to load or due to a file system outage.

5

• Checking could run so long that another cron
job starts, creating race conditions on the states
of jobs

• A file system could be flaky, causing checks to
timeout or fail.

Without delving further into details, we will leave
you with the thought that these conditions, and oth-
ers, have been characterized and handled. Two ex-
amples might help: the cron job itself has a deadline
for completion that is set as part of system config-
uration. For example, if it runs every 10 minutes,
then it might have a deadline of 8 minutes. Each
check operation also has a timeout-value that sets
the maximum time allotted to a check. Different
timeouts can be defined for each class of checks, so
that simple date checks can have faster thresholds
than a check that reads the file. The update task,
then, uses the deadlines and the thresholds to per-
form as many checks as possible. If it doesn’t get
around to a job, the next check will pick it up. Since
we don’t require a hard timing constraint for the
checks, this implementation is robust.

What happens if a file system dies? In this case,
all of the checks for that file system will probably
fail, even though other jobs might be progressing.
The Jobmonitor tool has built-in a set of config-
urable “short-circuit” tests that allows a site to spec-
ify the actions to be taken when individual tests time
out. This makes it possible to specify a rule like
“If any test on the /scratch1 file system times-out,
quit running tests on /scratch1, and treat them as
File System Timeout.”

2.3 Checking the status

At any time, the user can check the current (and
historical) state of the job. Two checking mecha-
nisms are provided: a Web-based interface and a
command-line tool. By design, users can access only
the status of their own jobs, while “administrators”
can see all jobs. The term “administrator” is quoted
since there is no assumption that users with admin-
istrative rights on a platform have the same rights
in Jobmonitor ; the configuration file for Jobmonitor
includes the list of user-ids granted the ability to see
all jobs. As a design extension, we are considering
ways to enable groups of users to view jobs belonging
to any member within the group.

2.4 Alerts

What happens when a job enters the
Probably Hung state? Right now, the only
actions available are to log the transition to a
file, or to email interested parties such as system
administrators or the owner of the job. Other
alerts can easily be added to the system, and the
monitor command itself allows the user to specify
additional email addresses. In the long run, we’d
like to develop dashboard-style agents that could
run on a user’s desktop and show the status of her
jobs.

2.5 Privileges & Permissions

Finally, a word about permissions. As noted, the
system is written primarily in Perl. The JobMoni-
tor database in SQL maintains two sets of permis-
sions: read-only rights for users so that job sta-
tus can be queried, and higher privileges for pro-
cesses that can update the database fields. Creden-
tials for the database access reside in configuration
files. These credentials are orthogonal to the status-
viewing privileges implemented by the job status
and jobmonitor.cgi commands.

However, two activities require some significant
revision of Unix permissions: 1. job registration,
and 2. status checking. On job registration, the
monitor command has to be run by the user, but
the database rights should allow update access. In
this case, the monitor command is split into two por-
tions: the user-level script that can be run by any
user, and a lower-level script that can be run only
by the jobmonitor user-id, and that has access to
the administrative tools.

At job registration, the effective user and group
of the process that is running the registration com-
mand is collected as an attribute of the job. On
job status update, the actual checks that examine a
user’s files are run by a setuid process that immedi-
ately lowers its permissions to that of the effective
user and group that was gathered at registration.

All this means that there are three sets of rights to
administer: the rights for the command (normally
owned by jobmonitor.jobmonitor), the database
privileges on MySQL, and the viewing privileges
for displaying job information. Administrative tools
have been written to assist in the process of setting
and verifying the configurations.

6

2.6 Development Status

The system is now installed and in beta-test at San-
dia. Development is largely complete, but the roll-
out to users has been delayed due to higher-priority
demands on the support staff. We are also consid-
ering an Open-Source licensing and distribution op-
tion.

3 Using Application Monitor-
ing Data to Measure Useful
Work

In this section we will look at ways to use data
available from application monitoring to quantify
the impact of system reliability on user productivity
as measured by application throughput. Applica-
tion throughput is defined as the amount of com-
putational work completed on the system in a given
amount of wall clock time and entails components of
performance and reliability (i.e., time lost to defen-
sive I/O and rework for a calculation that has been
interrupted and must be restarted). The contribu-
tion of system reliability to application throughput
may be hard to measure at the system level because
it is sometimes difficult to discern the impact of a
system event on the running jobs. However, the
application knows when it is interrupted or unable
to make progress, so application monitoring may be
used to understand the impact of system reliability
on the ability of the application to make progress.

A useful metric for measuring application
throughput is “runtime efficiency” [5] which is the
ratio of the amount of time an application is doing
productive work to total runtime, which includes de-
fensive I/O, restart, and rework. Using the model
derived by Daly [7] and validated on large applica-
tion runs on Red Storm [6], it has been shown that
the application runtime efficiency can be accurately
characterized by the following three quantities:

1. δ – the time for an application to create a check-
point

2. R – the time for an application to restart after
an interrupt

3. 1/λ – the expected time to application interrupt

How application monitoring can be used to help
minimize the restart time, R, has already been
examined [10]. In this section, we consider how

data collected from application monitoring com-
bined with a simple system model based on a re-
liability block diagram [7] may be used to better
estimate the application interrupt rate, which is a
measure of the reliability of the system.

This means that in addition to the value added
by application monitoring to the user for keeping
applications running, it also provides a light weight
and relatively easy-to-implement alternative to sys-
tem monitoring for gathering information about the
reliability of a system. Although application moni-
toring data is not intended to replace system moni-
toring data, we believe that it can complement that
data in interesting and insightful ways by providing
the application’s perspective on system reliability.

One way to think of system reliability from the ap-
plication’s perspective is by considering that every
job running on a system has a probability of being
interrupted and exiting with a fatal error that is, at
the very least, dependent upon the number of nodes
allocated to that job and the amount of time that it
runs. If we know the application interrupt rate then
we can predict the amount of time that we expect
the application to run before encountering an inter-
rupt [9]. Conversely, if we know the amount of time
that the application runs between interrupts and the
number of nodes it is using then we can estimate the
application interrupt rate, which in turn gives us an
estimate of system reliability from the application’s
perspective.

One may estimate system reliability as follows.
Assume that for the jth application run on a sys-
tem we have the following information available to
us from application monitoring:

1. kj – number of nodes allocated to the applica-
tion

2. ∆tj – time that the application spent running

3. mj – number of interrupts that occurred during
the run

If we further assume that the inter-arrival times for
interrupts are exponentially distributed, then inter-
rupts arrive according to a Poisson process, which
has been demonstrated to be a not unreasonable as-
sumption [7]. The Poisson probability mass function
(PMF) associated with the random variable M de-
scribing the number of interrupts that occur during
time interval ∆t, given a k-node application inter-
rupt rate of λk interrupts per unit time, is given by:

P (M = m) =
e−λk∆t(λk∆t)m

m!
.

7

If we assume that the jobs running on the sys-
tem experience interrupts independently, then the
likelihood function associated with any particular
sequence of jobs j = 1, ..., n is the product of the
PMFs associated with the n jobs:

L(λ{i|i∈{kj}}) =
n∏
j=1

e−λkj
∆tj (λkj

∆tj)mj

mj !
.

The maximum likelihood estimates (MLEs) of the k-
node application interrupt rates that are estimable
are obtained by maximizing the above function with
respect to the λ′is. It is equivalent to maximize the
log of the likelihood function or the log-likelihood:

`(λ{i|i∈{kj}}) =
n∑
j=1

(
mj ln(λkj

∆tj)− ln(mj !)− λkj
∆tj

)
with respect to the λ′is. Since the logarithm trans-
forms the product into a summation, this simplifies
the numerical procedure for large numbers of jobs
involving small individual failure rates by reducing
the amount of required numerical precision. Using
the results of [9], we parameterize the k-node appli-
cation interrupt rate in terms of M1, the application
mean time to fatal error (MTTFE) of a single node
job, and MN , the MTTFE for a full system job:

λk(M1,MN) = M−1
1

N − k
N − 1

+M−1
N

k − 1
N − 1

.

The MLEs of M1 and MN are computed by setting
the partial derivatives of the log-likelihood function
with respect toM1 andMN equal to zero and solving
the resulting equation:

∂Λ(M1,MN)
∂M1

=
∂Λ(M1,MN)

∂MN
= 0 .

Although we could have calculated the MLEs of
the k-node application interrupt rates that are es-
timable, by using the preceding parameterization we
used an approximation based on two parameters, M1

and MN , that allows us to estimate the failure rate
for any value of k, including values of k for which
we have no application monitoring data. Thus, we
do not have to measure the failure rate of specific
job sizes to characterize the system, but instead we
can use the job sizes available as part of the nor-
mal system workload to estimate the failure rates
for job sizes that may not have been run as part of
that workload. Figure 3 provides the likelihood as
a function of M1 and Mn for simulated job event

data. To get this simulated data, M1 = 1000 and
Mn = 10 were used to calculate values of λk. The
number of nodes for each simulated job was picked
from a uniform distribution between 1 and 1024, and
the job duration was picked from a normal distribu-
tion with mean 500 and standard deviation 200 that
was truncated to be greater than 0.1. The number of
interrupts each simulated job experienced was then
generated from the corresponding Poisson distribu-
tion.

The failure rate of the application must be esti-
mated in order to compute runtime efficiency, which
is in turn a contributor to the application through-
put for the system [7]. We have outlined a method
for estimating application failure rates based on data
that has been gathered from application monitor-
ing. Application monitoring data can provide in-
sight into other metrics such as performance, utiliza-
tion and availability that are also required to quan-
tify throughput.

Application performance could be approximated
by measuring the frequency or amount of output
generated, for instance. Machine learning tech-
niques [2] might be employed in conjunction with
such feedback to determine when applications are
running abnormally fast or slow. Utilization is rel-
atively simple to extract from the given application
data assuming that one knows the size of the system,
in terms of number of compute nodes, and the time
period over which the data were collected. Availabil-
ity is more subtle. We know that system availability
is bounded by the utilization and 100%. To narrow
it down further, one must determine what fraction
of the unutilized time results from downtime, as op-
posed to shortage of work, using the application data
collected by application monitoring. These are sub-
jects for future research.

4 The Application Monitoring
Project at DOE

In 2008, the DOE TriPOD software effort chartered
a working group to review Application Monitoring
issues, and to develop the requirements for a com-
mon monitoring system [8]. The largest hurdles to
implementing application monitoring for production
computing across the tri-lab may not be technical
but logistical. The level of inter-lab and intra-lab co-
ordination required among the user, developer, and
HPC communities makes TriPOD is an ideal vehicle

8

0.15
0.35

0.35

0.55

0.75

0.95

0 500 1000 1500 2000

9.6

9.8

10.0

10.2

10.4

M1

M
N

0.15

0.35
0.550.750.95

0 500 1000 1500 2000

9.6

9.8

10.0

10.2

10.4

M1

M
N

Figure 3: Two examples using simulated job data to
estimate application MTTFEs for a single-node ap-
plication, M1, and for an application that uses the
full system, MN . Contours represent the scaled like-
lihood function with 1.0 being the maximum. The
figure on top shows the likelihood function for 100
jobs run on a 1024 node platform, while the figure
on the bottom presents the likelihood function for
5000 jobs run on the same platform. This demon-
strates how additional job data can be used to refine
the estimate of the application MTTFE.

for implementing an extensible application monitor-
ing framework, tools, and interfaces to the appli-
cations that would complement system monitoring
efforts already in progress at each of the labs. We
emphatically do not wish to create a set of tools that
are of no value for production work. To avoid this
pitfall, we are forming a team of users and develop-
ers, each one of whom is well respected in their com-
munity, and with whom we will collaborate closely as
we design and implement a suite of tools with hooks
and interfaces that conform to the requirements of
the tri-lab developer and user communities.

Building on application monitoring prototypes by
and the experiences of Daly [4] and Ballance [1], we
will work with tri-lab users and developers from B-
Division (LLNL), the Crestone project (LANL), and
the Sierra project (SNL) to design and implement
system tools that will facilitate automated monitor-
ing of production applications. We will be focused
on answering basic questions about a user job, such
as the following:

• Is the job making progress?

• At what rate is it making progress?

• How frequently is it interrupted?

• What are the causes and symptoms of the in-
terrupts?

• Should the system intervene (e.g., to kill or
restart the job)?

• Should the system operators or the user be no-
tified?

• How much time and storage is spent preparing
for restarts?

These questions need to be answered in terms of
the implementation challenges posed and the po-
tential productivity impacts to both parties, i.e.
users/developers and HPC. We propose to develop
an application monitoring strategy and a list of im-
plementation priorities. Further, we expect to de-
sign, code, test, and implement a basic set of moni-
toring tools, along with their system and application
interfaces. The anticipated result will be a function-
ing, extensible tool that can serve as a framework
for future application monitoring functionality.

This work addresses several areas of particular
concerns:

9

Application Performance Application monitor-
ing and application performance are two sides
of the same coin called application throughput.
Daly [7] and others [11] have suggested that as
many as two-thirds of the system errors that
prevent application progress are not currently
tracked by system monitoring. An effective im-
plementation of application monitoring could
conceivably provide data that might be used to
improve end-to-end application throughput by
a factor of three or more. You might want to
justify the factor of 3 that is used here.

Standardization Both the prototype application
monitoring tools developed by Daly [4] and Bal-
lance [1] employ common user interfaces across
all of the compute platforms at each of the labs.
We intend to maintain this same level of stan-
dardization in the design and implementation of
any production level tools that we develop. Part
of the work being proposed includes leveraging
these two developments to create a common in-
formation infrastructure.

Shared Environment By creating a standard
user interface for application monitoring we are
creating a monitoring environment that can be
closely coupled to the system software stack at
the level of the job scheduler and resource man-
ager. Ballance[1] has developed a beta-level
prototype that uses a shared relational database
to track application progress checks and to dis-
tribute application status via command line,
email, and web interfaces. Other distribution
tools such as RSS feeds can be easily incorpo-
rated.

Cost Reduction Daly demonstrated the feasibil-
ity of performing 2.5 million PE hours of com-
putational work, not just accumulated runtime,
per week over a 16 week period at a user cost
of 0.25 FTEs by the use of an effective applica-
tion monitoring toolset [3]. If one assumes that
the combined capability and capacity program-
matic resources of the tri-labs is 100k Purple
equivalent PEs then the application throughput
for the entire complex can in principle be main-
tained at a cost in user time of approximately
1.5-2.0 FTEs.

System Resilience Runtime efficiency and opera-
tional utilization are necessary to compute the

productive work rate and application through-
put. Resilience is a measure of the ability of an
application to sustain a throughput of produc-
tive work in the face of system hardware and
software failures. Application monitoring, or
the ability to determine the extent to which an
application is making progress, fills a fundamen-
tal gap in the ability to quantify the resilience of
a system by providing data to accurately mea-
sure runtime efficiency and operational utiliza-
tion.

User Support Support requirements provided by
the users represented on the application mon-
itoring team will be integrated into the design
and implementation of the production toolset.

5 Acknowledgments

The authors have had many fruitful discussions with
coworkers. While any errors or omissions are en-
tirely our own, we especially wish to acknowledge
Michael R. Collette (LLNL), Application Developer;
Kim Cupps (LLNL), System Monitoring, Michael
W. Glass (SNL), Application Developer; Lori A.
Pritchett-Sheats (LANL), Application User; Rand
Rheinheimer (LANL), System Monitoring; Thomas
E. Spelce (LLNL), Applications Support; and James
L. Tomkins (SNL), System Architecture.

6 Bibliography

References

[1] Robert A. Ballance. Job monitor: a platform-
independent tool for application progress mon-
itoring. in preparation.

[2] M. Chen, A.X. Zheng, J. Lloyd, M. I. Jordan,
and E. Brewer. Failure diagnosis using deci-
sion trees. In International Conference on Au-
tonomic Computing (ICAC-04), 2004.

[3] J. T. Daly. The capability workload: keeping
big systems busy. Los Alamos Technical Report
LA-UR-07-2950, Los Alamos National Labora-
tory, 2007.

[4] J. T. Daly. Facilitating high-throughput asc cal-
culations. ADTSC Nuclear Weapons Highlights
2007, pages 204–205, 2007.

10

[5] J. T. Daly and S. E. Michalak. Proposed met-
rics for lanl hpc. Los Alamos Technical Report
LA-UR-06-8512, Los Alamos National Labora-
tory, 2006.

[6] John T. Daly. Cis external review: A customer
perspective on red storm. Los Alamos Technical
Report LA-UR-06-3802, Los Alamos National
Laboratory, 2006.

[7] John T. Daly. Methodology and metrics for
quantifying application throughput. Proceed-
ings of the Nuclear Explosives Code Developers
Conference, 2006.

[8] John T. Daly, Robert A. Ballance, Thomas E.
Spelce, Michael R. Collette, Lori A. Pritchett-
Sheats (tentative), Michael W. Glass John T.
Daly, Robert A. Ballance, Thomas E. Spelce,
Michael R. Collette, Lori A. Pritchett-Sheats
(tentative), and Michael W. Glass. Application
monitoring fy08 tripod proposal. Proposal sub-
mitted to ASC TriPOD management team.

[9] J.T. Daly, L.A. Pritchett-Sheats, and S.E.
Michalak. Application mttfe vs. platform mtbf:
A fresh perspective on system reliability and ap-
plication throughput for computations at scale.
In Proceedings of the 2008 Workshop on Re-
siliency in HPC, 8th IEEE International Sym-
posium on Cluster Computing and the Grid,
2008.

[10] W. M. Jones, J.T. Daly, and N.A. De-
Bardeleben. Application resilience: Making
progress in spite of failure. In Proceedings
of the 2008 Workshop on Resiliency in HPC,
8th IEEE International Symposium on Cluster
Computing and the Grid, 2008.

[11] D. A. Reed, C. Lu, and C. L. Mendes. Relia-
bility challenges in large systems. Future Gen-
eration Computer Systems 22, pages 293–302,
2006.

11

