
Application Monitoring

Robert A. Ballance, SNL
John T. Daly, LANL

Sarah Michalak, LANL

Presented at CUG 2008, Helsinki, Finland
Unclassified Unlimited Release

SAND Number: 2008-2932C

What is it?

Application monitoring is the automated process of
tracking the real progress of an application over

time

–It is not platform monitoring
–It is not queue monitoring
–It is not utilization monitoring

But it can be used to inform all of these processes!

Application monitoring stems
from a simple premise

What if

your jobs

could talk?

What if

you knew

how to listen?

> cd ../../over/^H^H^H^H/back/somedir.d

> ls

> ls -l | less

#! wrong directory. Where did I …?

> cd ../../back^H^H^H^Hover/down/dir.2

> ls

> head -100 myrandomoutput.log | tail

What if

Ballance knew

how to listen?

Telephone rings….
Hi John

Hi Bob

Looks like your job has stalled
(again)

Thanks!

But how did he know that?

Register in your scheduler job script

module load jobmonitor
monitor -o myjob.out --check=size

MySQL

monitor

System UserUser

monitor_job.pl

monitor_cron.sh (command)
update_monitored_jobs.pl

job_status
job_status.pl

jobmonitor.cgiWeb

.monitor

jobmonitor.conf

System Scheduler

Start

Initial OK

Stalled

Con!g
Errors

Check
Failed

Check
Timeout

FS
Timeout

Probably
Hung

Exited

DequeuedQueued

N
Any running

state

Holding states

Running

What can it check?

File size increasing decreasing

Access time increasing

Modification time increasing

GREP out number increasing decreasing

Still running?

Count files matching increasing decreasing

Count files on remote
system

increasing decreasing

Where can you check?

✓ Where can you check
✓ job_status (command line)
✓ Web

✓ What can you see?
✓ You can see your jobs’ status
✓ Your jobs’ history, including the succession of

comparison values
✓ Job description, state, etc.

✓ Administrators can view all jobs

What if

your job

had meaningful things to say?

Why isn’t system monitoring good enough?

•Preliminary investigations at Los Alamos indicate
that as much as two-thirds of system unavailability
to the application may be unaccounted for in
system monitoring data because
–System software interrupts (est. 50% of total interrupts)

are frequently not tracked
–Common-cause failures that may interrupt multiple

applications are frequently counted as a single interrupt
by system monitoring

•NEED: A method of monitoring reliability from the
application’s perspective

Application MTTI is a better metric than system
MTBF for quantifying the user’s experience

A -- Inverse Proportionality
B -- First Order Approximation
C -- Exact (Contiguous Nodes)
D -- Exact (Random Nodes)
E -- Exact (Worst Case Nodes)
k -- number of processors

First order approximation
of application mean time to
fatal error demonstrates
super-linear per processor
reliability scaling

What application data is required?

• kj ─ # of nodes allocation to the application

• ∆tj ─ time that the application spent running

• mj ─ # of interrupts that occurred during the run

These should be measured for each job “j”

0.15

0.35

0.35

0.55

0.75

0.95

0 500 1000 1500 2000

9.6

9.8

10.0

10.2

10.4

M1

M
N

0.15

0.35

0.550.75
0.95

0 500 1000 1500 2000

9.6

9.8

10.0

10.2

10.4

M1

M
N

The paper provides the
mathematical and
statistical basis

Data from application
monitoring can be used
to predict how
effectively jobs of
various sizes will run

What else can app monitoring data reveal?

Utilization?

Others...?

Availability?

Scaling?

Performance?

Questions only the job can answer

•Is the job making progress?
•At what rate is it making progress?
•How frequently is it interrupted?
•What are the causes and symptoms of the
interrupts?

•Should the system intervene (e.g., to kill or restart
the job)?

•Should the system operators or user be notified?
•How much time and storage are spent preparing
for restarts?

•Tri-Lab (LANL, LLNL, SNL) Application Monitoring
Project

•Phase 1 is this year
•Tools, techniques, libraries, algorithms to enable a
platform-independent app monitoring system

