
Exploring the Performance Potential of Chapel

in Scientific Computations ∗

Richard F. Barrett, Sadaf Alam, and Stephen W. Poole
Oak Ridge National Laboratory

Oak Ridge, TN 37931

Presented at Cray User Group, Helsinki, Finland, May 7, 2008

Abstract

Languages are being designed that simplify the tasks of creating, extending, and maintaining sci-
entific application specifically for use on parallel computing architectures. Widespread adoption of any
language by the high performance computing (HPC) community is strongly dependent upon achieved
performance of applications. A common presumption is that performance is adversely affected as the
level of abstraction increases. In this paper we report on our investigations into the potential of one such
language, Chapel, to deliver performance while adhering to its code development and maintenance goals.
In particular, we explore how the unconstrained memory model presented by Chapel may be exploited
by the compiler and runtime system in order to efficiently execute computations common to numerous
scientific application programs. Experiments, executed on a Cray X1E, AMD dual-core, and Intel quad-
core processor based systems, reveal that with the appropriate architecture and runtime support, the
Chapel model can achieve performance equal to the best Fortran/MPI, Co-Array Fortran, and OpenMP
implementations, while substantially easing the burden on the application code developer.

1 Introduction

The wealth of emerging high performance computing architectures are of great interest to the scientific
computing community. Features include multi-core, heterogeneous processors, complex memory hierarchies,
and heterogeneous interconnects. Unfortunately current programming models are not capable of fully ex-
ploiting the enormous performance potential of these architectures[1, 17, 23]. Current models are designed
to provide access to low level runtime system mechanisms in order to achieve performance. Although this
approach works well on the relatively homogenous architectures that currently define most high performance
computing (HPC) systems, their low-level approach over constrains the runtime capabilities of these new
architectures.

It is a common belief that a higher level of abstraction necessarily imposes penalties on runtime per-
formance. Yet if viewed from a different perspective, this need not be the case. In fact the very lack of
specification for how a computation should be structured and executed provides the compiler and runtime
system with opportunities for exploiting advanced architectural capabilities that may be ruled out through
the use of lower level models.

The Chapel programming language[8] is designed with a higher-level of abstraction. A component of
the Cray Cascade project, and funded by the DARPA High Productivity Computing Systems (HPCS)
program[14], the goal of Chapel is to satisfy the components of the term “productivity” as they relate to
user requirements. Although productivity is often erroneously viewed as simply a code development issue,
the characteristics of a productive language are programmability, performance, portability, and robustness.
That is, while programs should be easier to write relative to existing methods, such programs must also yield
strong performance across a variety of computing architectures, and these characteristics must be easier to
maintain as an application is developed and extended.

∗This research has been supported by the Laboratory Directed Research and Development Program of Oak Ridge National
Laboratory (ORNL), and used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

1

1.1 Related research 2 ARCHITECTURES

In this report we explore how Chapel may be used to drive performance strategies relative to algorithmic
expressions rather than the finer-grained loop level computations. Specifically, we examine Chapel’s ability
to configure and execute finite difference stencils, computations common to a broad set of scientific applica-
tions. Because a high performance, parallel processing compiler is not yet available, our experiments simulate
the kinds of configurations enabled by Chapel’s higher level abstraction using lower level language imple-
mentations. Implementations are constructed using Fortran and MPI[25, 18], Co-Array Fortran (CAF[21]),
and OpenMP[13]. The construction of these experiments is based on the idea that Chapel’s unconstrained
memory model presents significant opportunities for exploiting architectural characteristics and applying
flexible programming methodologies, including hybrid techniques.

This report is organized as follows: after a brief discussion of related research, we describe the archi-
tectures upon which scientific applications are expected to execute and achieve highest performance. This
motivates the discussion of the Chapel programming language. After a brief overview of the finite dif-
ference approach, we examine important computations used in the algorithm, comparing and contrasting
implementations written using the MPI message passing model, Co-Array Fortran, OpenMP, and Chapel.
Next we describe and discuss experiments constructed to illustrate the performance potential of the Chapel
implementations. Lastly we offer our conclusions and discuss our future research.

1.1 Related research

The message passing model using MPI is the predominant method for creating scientific application programs
for parallel processing architectures. PGAS languages have been developed in order to address some of the
difficulties perceived with MPI-based programs. Although we examine only Co-Array Fortran from that
set in this report, interested readers should be familiar with other alternatives, such as Unified Parallel C
(UPC[26]), a set of extensions to the C programming language; and Titanium[19], a Java-based language.
OpenMP, also used herein, is often combined with MPI in order to span regions of physically shared memory.
Two other notable global-view language development efforts are also underway: Fortress[2] endeavors to
present a mathematically based syntax to the code developer. X10[10] extends Java with support for parallel
programming. We are investigating these languages in a manner similar to that described in this report.

2 Architectures

The stated trend of all major processor vendors is based on heterogeneous multi-core processors, increased
memory hierarchies, with larger physical and logical memory spaces, and hierarchical heterogeneous inter-
connects. Processors will consist of scalar, vector, graphics processor unit (GPU), field-programmable gate
arrays (FPGA), multi-threading, and perhaps as yet unspecified processor accelerators. Memory models and
inter-process communication protocols promise to be even more hierarchical and flexible.

2.1 Cray X1E

The X1E is a massively parallel processing (MPP) system, hierarchical in processor, memory, and network
design. The basic building block of the X1E is a compute module, each consisting of four multi-chip modules
(MCM), 16 GBytes of memory, routing logic, and external connectors. Two multi-streaming processors
(MSP) occupy an MCM. An MSP, shown in Figure 1, consists of four single-streaming processors (SSP),
each with two 32-stage 64-bit floating point vector units and one 2-way super-scalar unit. An SSP uses two
clock frequencies: 1.13 GHz for the vector units, and 400 MHz for the scalar units.

The interconnect functions as an extension of the memory system, offering each node direct access to
memory on other nodes at high bandwidth and low latency. Thus for partitioned global address space
languages like CAF, each processor can directly address memory on any other node. These remote memory
accesses are issued directly from the processors as load and store instructions, transparently executed over the
X1E interconnect to the target processor, bypassing the local cache. Access costs are listed in Table 1. Both
scalar and vector loads are blocking primitives, limiting the ability of the system to overlap communication
and computation.

The X1E MSP can be viewed as a heterogeneous (vector and scalar) multi-core (4 SSP per MSP) hierarchi-
cal (4 MSP per module) processor and network design, and thus is representative of the future architectures
that we anticipate will soon dominate the high performance scientific computing community. In particular,

Presented at Cray User Group 2 Helsinki, Finland, May 7, 2008

2.2 Multi-core micro-processor systems 3 CHAPEL OVERVIEW

Figure 1: The Cray X1E MSP. (Image courtesy of Cray, Inc.)

Memory location Relative access time
D-cache 1X
E-cache 2X
Local (node) memory 7X
Remote (off node) memory 10X-32X

Table 1: Cray X1E memory access costs.

the X1E provides support for the kinds of activities necessary for effective execution of Chapel constructs
on multi-core processor based systems.

2.2 Multi-core micro-processor systems

Two multi-core processor based systems were used in this study. The first system consists of eight dual-core
AMD 8216 Opteron sockets, spanning 32 GBytes of shared memory. Each core, with a clock speed of 2.4
GHz, has a 1 MByte L2 cache. The second, an Intel Clovertown system, consists of two Xeon 5160 quad-core
sockets, spanning 4 GBytes of shared memory. Each socket, with a clock speed of 2.4 GHz, shares a 4 MByte
L2 cache. A detailed analysis of this kind of system for use by scientific applications is presented in [24].

3 Chapel Overview

MPI and CAF provide a “local-view” of parallel computation in that they require the code developer to
explicitly manage both the interaction of the parallel processes and the overall data layout. In contrast,
Chapel provides a “global-view” of the computation and associated data1, illustrated in Figure 2. In order
to provide an easier means for writing code for execution on parallel processing architectures.

This approach has been tried before, and the results were unsatisfactory for the majority of the scientific
computing community. Chapel is attempting to overcome this history by, among other things, providing
mechanisms for defining and distributing global data structures, called domains. Domains are first class
objects, constructs which provide the code developer with a means for configuring data structures. Distribu-
tions qualify a domain, defining how data are decomposed across the parallel processes. The overall goal is to
combine a global-view of the program with the tools necessary for injecting high-level programmer “intent”
that the compiler cannot easily discover in more traditional programming models.

In particular, the global-view model eliminates the syntactic distinction between local and remote memory
access that is found in local-view languages. Moreover, Chapel imposes no constraint upon the compiler for
the manner in which multi-dimensional arrays are laid out in memory. (Fortran and C, for example, require

1Chapel also provides access to locality, lower-level constructs, and a task parallelism capability. Although these capabilities
are useful and can supplement the global-view, they are not needed for our current purposes.

Presented at Cray User Group 3 Helsinki, Finland, May 7, 2008

3.1 Remote memory access 3 CHAPEL OVERVIEW

Figure 2: Local-view parallel vs. global-view programing model.
Consider a partial differential equation (here Poisson’s Equation) defined on a two-dimensional domain The
local-view configuration for applying a solution algorithm on a parallel processing computer is shown on the
right. Here the code developer must manage the interaction of the parallel processes as well as the overall
data layout, including explicit control over the sharing of data among the individual blocks. This is usually
accomplished by surrounding each block with a “halo” in order to control data movement (as indicated by
the arrows) and maintain coherency. A global-view language such as Chapel captures data associated with
the problem in a single structure which it (as well as a local model) may then surround with space for
the physical boundary conditions. Although the language may provide semantics for conveying information
regarding parallelism for a particular problem (Chapel does[15]), the code developer is not responsible for
distributing and sharing data among the parallel processes.

column-major and row-major ordering, respectively.) In this section we discuss issues and opportunities
presented by Chapel’s unconstrained memory model.

3.1 Remote memory access

There is a presumption that particular data decompositions are inherent for particular algorithms, indepen-
dent of the architecture and its runtime system capabilities. However, this presumption is based on language
and model constraints rather than algorithmic and architecture characteristics.

When viewed from the perspective of the algorithm and its computations, inter-process communication
simply presents another level of memory hierarchy. However, this perspective is not clear when using local-
view models since the user must explicitly switch mechanisms to access data on remote processes. For
example, when using MPI, computation is interrupted while user-defined message passing functionality moves
data between the parallel processes, often requiring intermediate buffering. Although asynchronous schemes
can be configured, not all architectures support this capability, often resulting in degradation of performance.
CAF presents a load/store model for accessing data on remote processes, but this too requires explicit coding
by the programmer, preventing the language from injecting any sense of intent of the computation to the
compiler.

The global-view model allows the compiler and runtime system to recognize the intent of a computation
and thus organize computation and communication accordingly. For example, in Chapel, a block decomposi-
tion of the data may not be the optimal distribution on all architectures. Chapel provides other distribution
strategies that could be easily configured, such as a graph-partitioning strategy. More interesting to us is an
option under consideration that would call for a distribution of the data across the parallel processes, but
leaves the decision to the compiler and runtime system[9].

Presented at Cray User Group 4 Helsinki, Finland, May 7, 2008

3.2 Local memory 4 FINITE DIFFERENCE STENCILS

3.2 Local memory

Fortran, C, C++, and other languages common to scientific computing organize the storage of multi-
dimensional arrays in some well-defined fashion. This compels the code developer to order computations
so that data encountered in computations map effectively to the processor architecture. Also, the low level
coding required of these models can result in unnecessary constraints on compiler optimization strategies.

Chapel leaves organization of storage unspecified. Further, it defines tuples, allowing the indices of multi-
dimensional arrays to be combined. Beyond the coding convenience, this provides a flexible model for the
internal ordering of data that could be exploited in concert with the remote memory access requirements
of a computation. Although not investigated herein, we intend to explore opportunities in this realm. SN

transport as implemented in Sweep3d[20], where waves traverse the physical domain, is an algorithm that
could take advantage of this flexibility[3].

The Chapel language specification[12] is at version 0.775. A prototype compiler (pre-release version 0.7)
has been provided to a small group of programmers who are gaining experience and providing feedback to
the Chapel developers.

4 Finite Difference Stencils

A broad range of physical phenomena in science and engineering can be described mathematically using
partial differential equations. Determining the solution of these equations on computers is often accomplished
using finite differencing methods. The algorithmic structure of these methods maps naturally to the data
parallel programming model. However, implementing these algorithms effectively is becoming increasingly
difficult as HPC architectures become more complex.

Finite difference methods are mathematical techniques for approximating derivatives or a differential
operator by replacing the derivatives with some linear combination of discrete function values. An example
of one such differential equation is Poisson’s equation

−(uxx + uyy) = f(x, y), (1)

perhaps defined on
Ω = [0, N]× [0, N],with u = 0 on δΩ.

(This equation is often written as ∇2ϕ = f .) We discretize Ω with resolution 1/h, resulting in (N/h)+1 = n
grid points in each dimension. During an iteration, each grid point is updated as a function of the current
value of it and some combination of its neighbors. This computation is often described as applying a stencil
to each point of the grid (as illustrated in Figure 3).

Figure 3: Solving the 2-D Poisson Equation using a 5-point difference stencil.
The figure on the left shows the Poisson Equation defined on a continuous domain, with Dirichlet boundary
conditions. The center figure shows the domain discretized, with a 5-point difference stencil, in red. The
figure on the right shows the domain divided up as blocks for mapping to a parallel processing computer.

When mapping this algorithm to a parallel processing computer, the typical data decomposition strategy
divides the domain into blocks, assigning one or more block to each process. This creates artificial interior
boundaries, along which each parallel process must access off-process data (called ghosts, shadows, or halos,
etc) in order to compute over the stencil2. Our implementations using Fortran with MPI, Co-Array Fortran,
OpenMP, and Chapel are described in this section.

2A potential non-trivial difference among these implementations is their requirement for user-allocated memory for storing
inter-process boundary data. However, the compiler may allocate buffer space for a pre-fetching scheme.

Presented at Cray User Group 5 Helsinki, Finland, May 7, 2008

4.1 Fortran-MPI 4 FINITE DIFFERENCE STENCILS

real, dimension(nrows loc+2, ncols loc+2) :: grid1, grid2

call exchange boundary (...)

do j = 2, ncols loc-1
do i = 2,nrows loc-1

grid2(i,j) = (&
grid1(i-1,j) + &

grid1(i,j-1) + grid1(i,j) + grid1(i,j+1) + &
grid1(i+1,j)) / 5.0

end do
end do

Figure 4: Fortran 5-point stencil in 2-D.

4.1 Fortran-MPI

The MPI specification provides several methods for moving data from one parallel process to another. We
abstract the mechanics of the difference stencil halo exchange into procedure exchange boundary. Our
Fortran implementation is shown in Figure 4. More sophisticated implementations might enable latency
hiding, at the expense of increased coding complexity.

For our experiements, we first post the non-blocking receives (MPI Irecv), followed by the non-blocking
sends, followed by a loop over MPI Waitany. This increases the opportunity for executing in “expected
message” mode, which can reduce intermediate buffering.

4.2 Co-Array Fortran

The computational loop for our CAF implementation, shown in Figure 5, makes no distinction between
local and remote array accesses. This “load-it-as-you-need-it” style provides flexibility to the compiler and

real, dimension(nrows loc, ncols loc)[*] :: grid1, grid2

call sync team (neighbors)

do j = 1, lcols
do i = 1, lrows

left = grid1(ii(i,j-1),jj(i,j-1))[img loc(i,j-1)]
top = grid1(ii(i-1,j),jj(i-1,j))[img loc(i-1,j)]
center = grid1(i,j)
bottom = grid1(ii(i+1,j),jj(i+1,j))[img loc(i+1,j)]
right = grid1(ii(i,j+1),jj(i,j+1))[img loc(i,j+1)]

grid2(i,j) = (left+top+center+bottom+right) / 5.0
end do

end do

Figure 5: CAF 5-point stencil in 2-D.

runtime system with regard to pre-fetching, pipelining, and other scheduling mechanisms, and therefore
should provide the best chance for hiding remote image load latencies. Viewed another way, this places all
responsibility for load/store scheduling on the compiler, yet no specific information regarding inter-image
data sharing is available until runtime. Further, as discussed in Section 5.3, compilers inject overhead due
to the presence of the co-array bracket notation in spite of the fact that O(N2) loads will be local to the
image compared with O(N) off-image. The indirect addressing within arrays will probably also degrade
performance.

We will employ two additional strategies that could be configured by a CAF code developer, though it
is our contention that these implementations are not the “natural” use of CAF and thus do not conform to
the intended model, an issue discussed in [6]. However, these approaches could be employed by a Chapel
compiler.

First, analogous to the MPI model, the compiler could simply recognize that the block decomposition
creates regular boundaries that must be shared among the parallel processes. It could then exchange bound-
aries in bulk using CAF remote loads of arrays segments into local process ghost zones. The code fragment
implementing this strategy is shown in Figure 6. For convenience we will subsequently refer to this as the

Presented at Cray User Group 6 Helsinki, Finland, May 7, 2008

4.3 OpenMP 4 FINITE DIFFERENCE STENCILS

real, dimension(nrows loc+2, ncols loc+2)[*] :: grid1, grid2

call sync team(neigh)

if (neigh(south) /= my image) & ! Get south boundary.
grid1(lrows+2,2:lcols+1) = grid1(2,2:lcols+1)[neigh(south)]

if (neigh(north) /= my image) & ! Get north boundary.
grid1(1,2:lcols+1) = grid1(lrows+1,2:lcols+1)[neigh(north)]

if (neigh(west) /= my image) & ! Get west boundary.
grid1(2:lrows+1,1) = grid1(2:lrows+1,lcols+1)[neigh(west)]

if (neigh(east) /= my image) & ! Get east boundary.
grid1(2:lrows+1,lcols+2) = grid1(2:lrows+1,2)[neigh(east)]

call sync team(neigh)

! Begin computation: all data now local.

Figure 6: Shmem model.

CAF-Shmem version.
The compiler could recognize that off-image data is needed only for grid points along inter-image bound-

aries, and therefore set up several separate computational loops: one operating solely on the inner grid (no
remote data accesses required), and one loop along each boundary. The latter are intended to inform the
compiler of the regular data access patterns. This also eliminates the need for the co-array notation for each
array point, required for the CAF version. A code fragment illustrating the idea is shown in Figure 7. For

real, dimension(nrows loc, ncols loc)[*] :: grid1, grid2

if (neigh(north) /= my image) then
do j = 2, lcols-1

grid2(1,j) = &
(grid1(lrows,j)[neigh(north)] + &

grid1(1,j-1)+ grid1(1,j) + grid1(1,j+1) + &
grid1(1,j)) / 5.0

end do
else

do j = 2, lcols-1
grid2(1,j) = &

(grid1(1,j-1) + grid1(1,j) + grid1(1,j+1) + &
grid1(2,j)) / 5.0

end do
end if

Figure 7: Segmented model.
The computation across the north boundary of the local grid points, interleaving local and remote data ac-
cesses.

convenience, we will subsequently refer to this as the CAF-Segmented version.

4.3 OpenMP

OpenMP compiler directives let us easily create a multi-processor threaded implementation from our serial
Fortran implementation. In this case, we simply surround the source code in Figure 4 with a parallel DO
directive. In order to prevent thread startup costs from being included, we surround this code (and some
administrative code) with a PARALLEL region, and precede the timed computation with a barrier.

4.4 Chapel

Although we could simply create a syntactic translation of the Fortran implementation to Chapel, we can
better express the intent of the computation by viewing the stencil as a reduction. In this section we describe
this approach. (A detailed discussion of these implementations and their use in scientific applications is
presented in [5, 6].) We begin with the 9-point stencil.

Presented at Cray User Group 7 Helsinki, Finland, May 7, 2008

5 EXPERIMENTAL RESULTS

An arithmetic domain describing the grid points in the physical space is defined. From it, we derive a
second domain, which adds space for applying boundary conditions. Arrays are allocated using this boundary
space, while iteration is controlled by the physical space. We combine the two dimension indices into a tuple.
By viewing the stencil operation as a reduction over a set of grid points, we can more clearly express the
intent of this computation. In addition to producing more readable code, this conveys to the compiler the
intent of the stencil computation within the context of the data structure. The code for this implementation
is shown in Figure 8.

const PhysicalSpace :
domain(2) distributed(Block) = [1..m, 1..n],

AllSpace = PhysicalSpace.expand(1);

const Stencil9pt = [-1..1, -1..1];

var Grid1, Grid2 : [AllSpace] real;

forall i in PhysicalSpace do
Grid2(i) = (+ reduce [k in Stencil] Grid1(i+k)) / 9.0;

Note: The notation [k in Stencil] is equivalent to
forall k in Stencil do

Figure 8: Chapel 9-point stencil in 2-D.

The 5-point stencil can be viewed as a subset of the 9-point stencil when implementing it using For-
tran+MPI, CAF, and an analogous Chapel translation. However, it does not map directly to the Chapel
reduction configuration we prefer since we cannot define the stencil as a regular block required by the arith-
metic domain. We could use the 9-point stencil domain by setting corner coefficients to zero (with the
associated multiplication perhaps recognized and eliminated by a compiler[16]). This has the advantage of
simplicity, and could result in strong performance associated with regular blocks. However, we do not want
to make such assumptions here, and more importantly, a language should be able to support this operation
as well as it supports the 9-point stencil.

Chapel does provide such support by letting us configure the stencil as a sparse domain, defined as a
subset of the 9-point stencil arithmetic domain, shown in Figure 9. The sparse domain creates the 5-point

// Same declarations as Figure 8, plus:

const
Stencil: sparse subdomain(Stencil9pt) =

((-1,0), (0,-1), (0,0), (0,1), (1,0));

forall i in PhysicalSpace do
Grid2(i) = (+ reduce [k in Stencil] Grid1(i+k) / 5.0;

Figure 9: Chapel 5-point stencil in 2-D.

stencil by selecting a subset of the dense arithmetic domain which defines the 9-point stencil. As with the
9-point stencil, the reduction operator is controlled by the Stencil domain, providing access into the grid
point data and their weights. The stencil pattern can be set several ways, including as a runtime conditional
statement, which might be useful in other situations.

5 Experimental Results

In this section we present results of experiments run on the architectures described in Section 2. From these
we discuss the performance potential of the Chapel language global-view abstraction.

5.1 Weak Scaling Performance Evaluation

Experiments designed to illustrate weak scaling for large processor counts were run on Phoenix, the 1,024
MSP Cray X1E located at Oak Ridge National Laboratory[22]. The largest local grid dimension shown in

Presented at Cray User Group 8 Helsinki, Finland, May 7, 2008

5.2 Multi-core performance evaluation 5 EXPERIMENTAL RESULTS

these results is 8000, which consumes about half of the memory available for each MSP. However, grid dimen-
sions that consumed practically all available memory (14,000) showed the same performance characteristics.

Our stencil implementations are straightforward, clearly exposing the work required for parallel process-
ing. The computational workload is captured in a doubly nested loop, which maps well to the X1E MSP
processor, where it operates entirely in vector and multi-stream mode3. All experiments were run in MSP
mode under the UNICOS operating system, release 3.1.0.7, within the default programming environment,
version 5.5.0.1.

The performance of the various 5-point stencil implementations are shown in Appendix A. For small local
grid dimensions, CAF-Shmem and CAF-Segmented significantly out perform the CAF version, which in turn
out performs the MPI version. We attribute this to three factors. First, the co-array protocol for loading
(and storing) data from and to remote images takes advantage of the X1E inter-processor communication
infrastructure. Second, the CAF version incurs the co-array cost for local data. Third, message latencies
dominate the MPI implementation.

However, as the local grid dimension increases, the cost of the co-array semantic for local references
in the CAF version increases linearly with O(N2) computational intensity. It is further limited by the
indirect addressing, and thus its performance stays flat. CAF-Shmem and CAF-Segmented do not incur
the unnecessary co-array cost because we have explicitly incorporated knowledge of their inter-image data
sharing requirements, and thus their performance increases with the computational intensity. The fixed cost
(latency) of the MPI version is amortized across the larger message sizes, and thus its performance increases
as well.

The 9-point stencil introduces up to four new (diagonal) partner processes, each contributing only a
single grid point. This should not present any problems to the CAF version since its simply another load.
It also plays to a particular strength of the message passing model, since with a little attention to message
coordination, the programmer can avoid increasing the number of messages required for the 5-point stencil,
albeit at the expense of an extra inter-neighbor synchronization point: complete the boundary transfer with
north and south neighbors, then exchange boundaries with east and west neighbors. The first exchange
places the single point from each diagonal neighbor onto the horizontal neighbor, which is then properly
shared in the east-west exchange. (Of course the order could be east-west, then north-south.) This method
is also applied in the CAF-Shmem implementation.

The performance of the four 9-point stencil implementations is shown in Appendix B. For the smallest
grid size, the relative performance stays about the same as with the 5-point stencil, although the CAF-
Segmented and CAF-Shmem versions are about even for the middle sizes. All implementations outperform
their 5-point counterparts, due to the increased computation relative to the amount of communication.

For larger grid sizes, unlike the 5-point stencil, the MPI version becomes the best performer. We expected
it to outperform the CAF-Segmented version since it (CAF-Segmented) must load the diagonal elements as
four single coefficients, each from a different image. As with MPI, the CAF-Shmem version requires two
synchronization points, between pairs of processes/images; we speculate that the asynchronous nature of
MPI outperforms the two calls to SYNC TEAM, a notion we will examine more closely in future work.

5.2 Multi-core performance evaluation

Performance evaluation of a parallel program begins with examining performance on a single processor.
However, the definition of a “single” processor depends on the view presented to the programmer. For
example, the X1E MSP can be programmed as if it were a single processor, even using local-view language
models, yet it consists of four SSPs; further, the local-view can also be narrowed to a single SSP. Similarly
a multi-core micro-processor can be programmed as a collection of its CPUs or at the individual CPU level.
These local views are then tied together using MPI or some other protocol. Although Chapel would hide
these details from the programmer, the compiler would still have to address the single processor view at
some level, and therefore we examine the performance opportunities afforded by various mechanisms.

Figures 10(a) and 10(b) show performance within an X1E processor (MSP) in the following modes:

• serial, i.e., compiler-managed parallelism,

• OpenMP, i.e., explicit compiler directive managed parallelism,
3Verified by the compiler-generated loopmark listing files as well as the Cray Performance Analysis Tools hardware perfor-

mance counter reports.

Presented at Cray User Group 9 Helsinki, Finland, May 7, 2008

5.3 Discussion 5 EXPERIMENTAL RESULTS

(a) X1E MSP 5-point stencil (b) X1E MSP 9-point stenci

Figure 10: X1E Single MSP performance

• MPI, i.e., message passing between Fortran processes running on each SSP,

• and Co-Array Fortran, i.e., shared memory loads and stores among local view Fortran processes on
each SSP.

For the 5-point stencil, the compiler-generated parallelism is superior to all other implementations (except
for very small local grid sizes). Interestingly, for the 9-point stencil, the SSP MPI version is the clear winner.
This helps explain the performance of the multi-MSP experiments, where CAF-Shmem and CAF-Segmented
outperform MPI for the 5-point stencil but MPI is the best for the 9-point stencil.

Multi-core micro-processor based parallel performance is shown in Figures 11(a) and 11(b). On the AMD

(a) 8 AMD dual-core Opterons (16 cores) (b) Intel Clovertown

Figure 11: Multi-core micro-processor parallel performance

system, all code was compiled using an Intel Fortran compiler, with SSE instructions enabled (flag -fastsse).
On the Clovertown system, all code was compiled using the Intel Fortran compiler with optimization flag
-fast. Again we see differences between the various implementations and stencils. (For both systems, lower
process counts mirror the relative performance of the full process counts. In the interest of space, these
results are not included.)

5.3 Discussion

The above experiments illustrate how realized performance of even a relatively simple computation can
vary significantly based on architecture, algorithm, problem size, and programming model and language.

Presented at Cray User Group 10 Helsinki, Finland, May 7, 2008

7 CONCLUSIONS AND FUTURE WORK

Because these stencil computations permeate so many different scientific areas and algorithms, extracting
available performance is a critical component of overall performance of many large scale application programs.
However, the code developer should not be required to implement stencils in all of these different models and
their variants. Instead, a language should enable expression of algorithms at a level of abstraction that does
not constrain the compiler and run time system, allowing them to take advantage of architecture capabilities.
The Chapel language abstraction allows the compiler and runtime system to choose the most appropriate
inter-process communication protocol. (Precedent for this approach is shown in [11].)

On the X1E, the CAF-Segmented and CAF-Shmem 5-point stencils outperform the message passing
model. For the 9-point stencil, this is also the case until the message length exceeds some threshold where
the message latency is smeared across the actual data transmission cost. On machines without support for
remote loads and stores, Chapel may be configured using the MPI model.

Within a multi-core processor socket, we continue to see MPI-based implementations out perform their
OpenMP counterparts. However, we should not presume this trend will continue as the number of pro-
cessor cores increases on a socket. Furthermore, other programming models may emerge that make more
effective use of the multi-core architecture. In fact CAF implementations may appear that are capable of
outperforming MPI.

On yet other machines a combination of approaches might be optimal, or an entirely different protocol
might be appropriate4. It is not hard to envision a compiler that could recognize this situation, and configure
the executable for runtime system decision making. A code developer could do this (as we did), but that
works against the other requirements for productive computing.

As previously discussed, Chapel provides a flexible means for distributing the data across the parallel pro-
cesses. Here we examined only the block decomposition; we intend to experiment with other decompositions
on other architectures as they become available.

6 SN transport

The SN transport is used to model neutron transport in a deterministic manner. Computation is driven as
waves “sweep” across the grid as illustrated in Figure 12(a). On a parallel processing architecture, data must
travel with the wave from one distributed parallel process to the next. In a message passing implementation,
the relatively small amount of computation required during each time step forces synchronization of runtime
execution due to the message passing requirements (illustrated in Figure 12(b)).

A locality-aware implementation was configured[4] for use on a cluster of SGI Origin 2000s, which sig-
nificantly improved performance on that platform. However, a Chapel implementation would enable this,
as well as the message passing implementation, as well as any other implementation, with no changes to
user code. For another example, a version was created for use on the Thinking Machines CM-200 which
reorganized layout of data in memory so that data would be accessed in a manner closer to the requirements
of the algorithm[3]. The sweep algorithm is well-suited for execution on a multi-threaded architecture, such
as the MTA-2. However, a message passing version would yield a poor performance; one configured using
multi-threading capabilities performs well[7].

The problem is that each of the above implementations requires distinct coding models. Chapel’s global-
view combined with its unconstrained memory model could create each of these implementations from the
same code.

7 Conclusions and Future Work

We have demonstrated that the global-view parallel programming model as defined by the Chapel program-
ming language provides a level of abstraction that could allow applications to perform at the highest level
achievable by the ubiquitous Fortran-MPI model as well as the Co-Array Fortran and OpenMP models. More
importantly, Chapel does so in a manner that gives the compiler the flexibility to exploit architecture-specific
runtime system capabilities, resulting in easier-to-write, performance-portable code.

We recognize that in order to achieve this level of performance, the compiler and runtime system may
need to take on tasks not normally required of them. And we temper our expectations with the need to
properly set expectations: the capabilities discussed in this paper and others will only be possible as the

4Current examples include the Cray XMT and the IBM Cell processor. Future architectures promise even greater flexibility.

Presented at Cray User Group 11 Helsinki, Finland, May 7, 2008

REFERENCES REFERENCES

(a) SN transport (b) Message passing

(c) Message aggregation model (d) CM-200 sweeping on a 3d grid

Figure 12: SN transport implementations

compiler technology matures. However, these tasks are relatively well-defined and tractable. For example,
selecting the appropriate inter-process communication mechanism is simply a matter of understanding the
capabilities of the architecture with regard to the amount of data that must be transmitted between the
parallel processes.

We look forward to tracking the progress of the Chapel specification and prototype compiler, both as
a means of exploring the expressiveness of the language within the context of important applications and
its performance capabilities and potential. We are studying other classes of computations using Chapel,
as well as Fortress and X10. More interesting (and more challenging!) are our investigations into how
Chapel constructs might influence the development and choice of algorithms for posing computational science
experiments.

References

[1] S.R. Alam, R.F. Barrett, J.A. Kuehn, P.C. Roth, and J.S. Vetter. Characterization of Scientific Work-
loads on Systems with Multi-core Processors. In IEEE International Symposium on Workload Charac-
terization, 2006.

[2] E. Allen, D. Chase, J. Hallet, V. Luchangco, J. Maessen, S. Ryu, G. L. Steele Jr, and S. Tobin-Hochstadt.
The Fortress Language Specification, version 1.0.β. Technical report, Sun Microsystems, Inc., 2007.

[3] R.S. Baker and K.R. Koch. An Sn Algorithm for the Massively Parallel CM-200 computer. Nuclear
Science and Engineering, 128, 1997.

[4] R.F. Barrett. Simplifying performance on clusters of shared-memory multi-
processor computers. In BITS: Computing and Communications News, 2000.
http://library.lanl.gov/cgi-bin/getfile?00393581.pdf.

Presented at Cray User Group 12 Helsinki, Finland, May 7, 2008

REFERENCES REFERENCES

[5] R.F. Barrett, S.W. Poole, and S. R. Alam. Expressing POP from a Global View Using Chapel: Towards
a More Productive Ocean Model. Technical Report TM-2007/122, Oak Ridge National Laboratory, 2007.

[6] R.F. Barrett, P.C. Roth, and S.W. Poole. Finite Difference Stencils Implemented Using Chapel. Tech-
nical Report TM-2007/119, Oak Ridge National Laboratory, 2007.

[7] Larry Carter, John Feo, and Allan Snavely. Performance and programming experience on the tera mta.
In PPSC, 1999.

[8] B.L. Chamberlain, D.Callahan, and H.P. Zima. Parallel programming and the Chapel language. Inter-
national Journal on High Performance Computer Applications, 21(3):291–312, 2007.

[9] Brad Chamberlain. Chapel development team, Private communication, 2005-07.

[10] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kielstra, C. von Praun, V. Saraswat, and V. Sarkar.
X10: An object-oriented approach to non-uniform cluster computing. In Proceedings of Object-Oriented
Programming, Systems, Languages, and Applications(OOPSLA), October 2005.

[11] Sung-Eun Choi and Lawrence Snyder. Quantifying the effects of communication optimizations. In IEEE
International Conference on Parallel Processing, 1997.

[12] Cray, Inc. Chapel Language Specification 0.750. http://chapel.cs.washington.edu, 2007.

[13] L. Dagum and R. Menon. OpenMP: An industry-standard API for shared-memory programming. IEEE
Computational Science and Engineering, 5(1), 1998.

[14] DARPA. High Productivity Computing Systems program. http://highproductivity.org, 1999.

[15] R.E. Diaconescu and H.P. Zima. An Approach to Data Distribution in Chapel. International Journal
on High Performance Computer Applications, 21(3), 2007.

[16] S. J. Dietz, B.L. Chamberlain, and L. Snyder. Eliminating redundancies in sum-of-product array
computations. In Proceedings of the ACM International Conference on Supercomputing, 2001.

[17] J. Dongarra, D. Gannon, G. Fox, and K. Kennedy. The Impact of Multicore on Computational Science
Software. CTWatchQuarterly, 3(1), February 2007.

[18] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and M. Snir. MPI: The
Complete Reference: Volume 2 - The MPI-2 Extentions. The MIT Press, 1998.

[19] P. Hilfinger, D. Bonachea, K. Datta, D. Gay, S. Graham, B. Liblit, G. Pike, J. Su, and K. Yelick.
Titanium language reference manual. Technical Report UCB/EECS-2005-15, University of Califoria,
Berkeley, 2005.

[20] Accelerated Stratigic Computing Initiative. The ASCI SWEEP3D Benchmark Code.
http://www.llnl.gov/asci benchmarks, 1995.

[21] R.W. Numrich and J.K. Reid. Co-Array Fortran for parallel programming. ACM Fortran Forum,
17(2):1–31, 1998.

[22] Phoenix. Cray X1E at Oak Ridge National Lab. http://info.nccs.gov/resources/phoenix.

[23] D.E. Post and L.G. Votta. Computational Science Demands a New Paradigm. Physics Today, 58(1),
January 2005.

[24] P.C. Roth and J.S. Vetter. Intel Woodcrest: An Evaluation for Scientific Computing. In 8th LCI
International Conference on High-Performance Clustered Computing, 2007.

[25] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Complete Reference:
Volume 1 - 2nd Edition. The MIT Press, 1998.

[26] UPC. Consortium, UPC Language Specification. May 31 2005.

Presented at Cray User Group 13 Helsinki, Finland, May 7, 2008

A 5-PT STENCIL PERFORMANCE ON CRAY X1E

A 5-pt stencil performance on Cray X1E

Cray X1E weak scaling performance of the 5-point difference stencil for various MPI and CAF implemen-
tations is shown below, for various (local) grid sizes. The x-axis represents the number of MSP processors,
the y-axis is GFLOPS. The per processor square grid dimension (Ldim) is increasing from the top left graph
to the bottom right.

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

numpes

G
FL
O
PS

CAF
CAF segmented
CAF shmem
MPI

Ldim=100

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

Ldim=500

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

Ldim=1000

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

Ldim=2000

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

Ldim=4000

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

Ldim=8000

Presented at Cray User Group 14 Helsinki, Finland, May 7, 2008

B 9-PT STENCIL PERFORMANCE ON CRAY X1E

B 9-pt stencil performance on Cray X1E

Cray X1E weak scaling performance of the 9-point difference stencil for various MPI and CAF implemen-
tations is shown below, for various (local) grid sizes. The x-axis represents the number of MSP processors,
the y-axis is GFLOPS. The per processor square grid dimension (Ldim) is increasing from the top left graph
to the bottom right.

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600

numpes

G
FL
O
PS

CAF
CAF segmented
CAF shmem
MPI

Ldim=100

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600

Ldim=500

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600

Ldim=1000

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600

Ldim=2000

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600

Ldim=4000

0

200

400

600

800

1000

1200

1400

1600

0 100 200 300 400 500 600

Ldim=8000

Presented at Cray User Group 15 Helsinki, Finland, May 7, 2008

