
 
CUG 2008 Proceedings 1 of 13 

 

Design, Implementation, and Experiences of Third-Party 
Software Administration at the ORNL NCCS 

Nick Jones and Mark Fahey, National Center for 
Computational Sciences, Oak Ridge National Laboratory 

ABSTRACT: At the ORNL NCCS, the structure and policy surrounding how we install 
third-party applications. This change is most notable for its effect on our quad-core Cray 
XT4 (Jaguar) computer. Of particular interest is the addition of many scripts to automate 
installing and testing system software, as well as the addition of automated reporting 
mechanisms. We will present an overview of the design and implementation, and also 
present our experiences to date.  

KEYWORDS: ORNL, NCCS, Cray XT4, software management 

 

1. Introduction 

ORNL NCCS 
The National Center for Computational Sciences 

(NCCS) was established at Oak Ridge National 
Laboratory (ORNL) in 1992 [1]. In 2004 the Secretary of 
Energy designated the center as the Leadership 
Computing Facility for the nation, with the mission of 
delivering world class computing facilities for open 
scientific research. 

The primary goal of the NCCS is to support open 
science and research in areas of interest to the Department 
of Energy (DOE) deems worthy of investigation. This is 
primarily accomplished through the DOE’s Innovative 
and Novel Computational Impact on Theory and 
Experiment (INCITE) program, with over 145 million 
processing hours awarded on ORNL systems for the 2008 
year [2]. INCITE is one of the United States’ primary 
programs for computationally intensive research.  

Supporting INCITE users and their corresponding 
software requirements is one of the primary goals of  
NCCS staff. Each INCITE award recipient is granted a set 
amount of processor hours during which they may run on 
NCCS systems.  Since INCITE awards are made to users 
from research institutions all over the world, there is very 
little homogeneity between the types of applications that 
are run on NCCS systems.  

NCCS staff members support multiple programming 
languages, compilers, and libraries on each system. For 
example, the NCCS currently supports over 60 different 
libraries, tools, and applications on our Cray XT4 system. 
For most applications and libraries the NCCS supports 
multiple versions of the software and multiple builds of 
each version.  In addition, the NCCS currently supports 
more than three significantly different system 
architectures including Power PC (IBM Blue Gene/P), 
vector (Cray X1E), and x86/Opteron (Cray XT4). 
Furthermore, the NCCS staff will be preparing for a new 
petascale Cray XT5 system that will likely be installed in 
late 2008.  

Software Management System 
The authors of this paper have gained a large amount 

of experience managing heterogeneous software 
environments during their tenure at the NCCS. They 
knew that many of the tasks they encountered on a daily 
basis could be automated or streamlined if a consistent 
structure for software management was put in place, 
consistently used, and enforced. Over the course of 
several months a system was designed based on both 
personal experience and input from colleagues. (Hereafter 
referred to as swtools.) Beginning in January 2008, the 
swtools infrastructure began to be actively developed. The 
new design incorporates automation of new software 
installations and testing of existing software installations. 
Additionally, there are several interesting mechanisms in 
place to provide information on currently installed 



 

 
CUG 2008 Proceedings 2 of 13 

software to end users of the systems. In what follows, the 
details of the design and implementation of the software 
management system are given, along with a description of 
the challenges that were faced along the way.  

2.  Description of Problem and Design Goals 

Previous Software Management 
Prior to the deployment of swtools, the NCCS used a 

file system named /apps, an NFS cross-mounted 
directory. In /apps all libraries, tools, and applications 
were installed for all systems. Unfortunately, there were 
problems which hindered the long-term usefulness of the 
/apps directory. Specifically, the NCCS lacked a 
standardized workflow for software installations and 
lacked reporting data for already installed applications. 
The lack of a standardized workflow led to inconsistency 
in naming and directory structure, which made it hard for 
users to use the systems.  This made tasks such as 
inventories and upgrades significantly more labor 
intensive. Since all reporting data was collected by hand, 
inventories and other user support documents were prone 
to becoming quickly out of date. 

Originally, the /apps filesystem was designed as a 
method for organizing and maintaining software. A set of 
rules were defined that would enforce naming and version 
hierarchy within the tree. At the NCCS, there were a large 
number of staff who contributed software installations in 
/apps. Since there were so many different people using 
the system, small idiosyncrasies were introduced into the 
naming and organization of /apps. For example, x86 was 
used to label installs for machine A with interconnect Y, 
which would not work on another x86 machine, B with 
interconnect Z.  Also, when the list in /apps got long, few 
noticed that there were duplicate packages trees due to 
capitalization (APP1 versus App1). Over time, these small 
errors compounded and made it harder for users to find 
software within the tree. These errors were not noticed 
initially, because there were no tools in place to automate 
and enforce the rules that defined the /apps hierarchy. 

In addition to these problems of organization, there 
was also a lack of documentation for the software that 
was installed. Although the installed software was still 
usable, upgrades to future versions often required a 
significant amount of effort to discover the proper 
compiler flags and build options. This was clearly 
inefficient since the work to discover this information had 
already been done by the installer of the previous version 
of the software. 

Additionally, there were no automated reporting 
mechanisms in place for use with /apps. This meant that 
all user documentation, inventory, and other reporting 
data were created by hand. This led to additional work 
because the installers and the people writing the user 
documentation were often different people. This made it 

even harder to keep documentation and inventories up to 
date.  

Goals for New System 
After having gained significant experience with the 

/apps tree, the authors had several distinct goals in mind 
when they approached the task of designing the NCCS’ 
new software management system swtools. The main goal 
of the new design was to have a system that was strongly 
hierarchical, with rules for naming, installing, and 
documenting that could be enforced in automated way. In 
addition, the authors sought to automate as much of the 
software maintenance process as possible. Several new 
features were implemented to accomplish this goal.  

Foremost, the authors wished to be able to build, link, 
or test any installed application on any system at any 
time.  One problem that all software installers and 
maintainers face is the problem of upgrades, whether 
those happen to be compiler upgrades, operating system 
upgrades or application upgrades. Any time one of those 
events occurs, a huge amount of work has to be done. At 
the very least, the upgrade has to be installed, and all 
applications that depend on it must be retested. In the case 
of OS upgrades, the maintainer may have to relink a 
significant number of the applications on the system in 
order to fix problems relating to new system libraries. 
Compiler upgrades are somewhat simpler in that they 
usually do not break any of the existing system 
applications, but nonetheless, any third party libraries that 
are provided on that system should be compiled with the 
new compiler – a simple regression test of the compiler. 

The authors also sought to automate the collection of 
as much reporting data as possible. In the new system, all 
NCCS-provided documentation will be written by the 
application installers. This theoretically will keep the 
documentation as up to date as possible. Also, inventory 
and user documentation will be kept up to date 
dynamically. That is, the same documentation that the 
installer writes for local users of the system will be made 
available online, and all web based inventory information 
will be dynamically updated. This begs the question, what 
keeps the application installer from writing poor 
documentation? A workflow has been defined that 
includes a review process by a software administrator. 
This administrator will ultimately be responsible for 
making sure all applications and packages conform to the 
rules that have been set out, and that all information 
presented is high quality in nature. 

3. Implementation 

Directory Structure 
When designing the directory structure for the new 

software management system, we chose a hierarchical 
structure that was strongly tied to having individual 
documentation and software installations for each 



 

 
CUG 2008 Proceedings 3 of 13 

machine (Figure 1.)  At the root of the system, we created 
a single folder for each machine (Figure 2).  A 
compromise was made, however, concerning the issue of 
folders for machines that are nearly identical in usage and 
hardware. The primary examples of this are the Cray XT4 
systems. The NCCS is fortunate to have multiple Cray 
XT4 systems, and because of this we chose to create a 
single directory for all XT4 software and documentation. 
This is in an attempt to find the solution that balances the 
duplication of work and the risk of incompatibility across 
machines. Thus all of the XT4 systems share executables 
and software. The majority of the other machines within 
the NCCS do not share any software and use only 
software that was specifically compiled for that system. 

Inside each machine directory, there is a folder for 
each application that is installed on the machine (Figure 
3.) In addition, we have a directory called modulefiles 
that also resides at this level. It is used to store modules 
(for use with the GNU Modules application [3]) for each 
piece of installed software. At this level of the directory 
structure we use only generic, version unspecific software 
names. For example, in our Cray XT4 tree, we have 
folders for python and szip, and not python2.5.1 or 
szip2.0. 

Inside each application folder, there is a folder for 
each version of that software. Each version folder is 
named using the version number. In the case of more 
complexly-versioned applications (e.g. GAMESS which 
uses a combination of dates and version numbers), a 
version naming standard on a per-application basis is 
adopted and used from then on. A folder for each build of 
the software is created inside the version directory. These 
build directories are named using the 
os_compiler[_options] naming format. For example, a 
build on Jaguar might be named sles9.2_pgi7.0.7_i8. 
The first abbreviation is for the OS, in this case Suse 
Linux Enterprise Server 9.2. The second abbreviation is 
for the compiler, which in this case is the Portland Group 
Incorporated group of compilers. The last abbreviation in 
this case is i8, which signifies that this build has been 
compiled with eight-byte integer support.  

 
Directory Structure: 
 

<root>/<machine>/<application>/<version>/<build> 
 

Example: 
/sw/xt/hdf5/1.6.7/sles9.2_gnu4.2.1 

 
Figure 1: Example Directory Stucture 

Files used by swtools  
Inside each level of the software management system 

there are several files that are used by the system to store 
information and automate tasks. In Figure 4 you can see 
that the first level at which these files occur is at the 

application level. Each application folder contains a folder 
for each version of the application installed on the 
machine. Additionally, there are four files used by the 
software tools. The first file, .check4newver stores a date. 
The date in the file is the date on which swtools should 
check for a new version of the software. By default, the 
system uses a time span of 90 days in between version 
checks. However, this can be modified to any time span 
that the installer finds appropriate. The swversion script 
(which will be run in cron) will traverse all of these files 
and email the owner if it is time to check for a new 
version. 

 
Root Level (i.e. Files inside the root folder): 
 <Machine Folder 1> 
 <Machine Folder 2> 
 <Machine Folder 3> 
 … 

 
Figure 2: Bottom Level File Hierarchy 

 
Machine Level: 
 modulefiles 
 <Application Folder 1> 
 <Application Folder 2> 
 <Application Folder 3> 

… 
Figure 3: Machine Level File Hierarchy 

 
Application Level: 
 .check4newver 
 description 

support 
 versions 
 <Version Folder 1> 
 <Version Folder 2> 
 … 
Figure 4: Application Level File Hierarchy 

 
 Another file is description. This file is an html 
description of the application and its usage. It uses basic 
standard html tags such as <h1>, <h2>, <p>, and <pre>. No 
styling is incorporated into the file beyond this basic 
level. The idea behind this file is that the installer of the 
application will most likely be the person most qualified 
to write end user documentation about the application. 
The installer is most likely familiar with the package, and 
is certainly familiar with any idiosyncrasies particular to 
the builds on this system. Thus it is hoped that there will 
be only one source of documentation for both local 
system documentation and also external web-provided 
documentation. The only caveat to this design is that local 
shell users of the documentation may have to overlook 
some HTML syntax. However, since all styling of the 
documentation is handled through CSS, the description 
files are generally very readable regardless of the html 
embedded within them. 



 

 
CUG 2008 Proceedings 4 of 13 

The third file found in every application directory is 
the support file. This file is used by swtools to document 
the support level that the NCCS will provide to end users 
for this application. There are four valid keywords that 
may be used in this file: nccs, vendor, nccs+vendor, or 
unsupported. The nccs keyword implies that this 
application was installed by the NCCS and that it is a 
supported application. The vendor keyword implies that 
the application was provided with the system and that the 
system vendor will provide support. nccs+vendor 
signifies that both a vendor-provided version and an 
NCCS-provided version are installed on the system. The 
version the user is running will determine which avenue 
support requests will be directed to. Lastly, the 
unsupported keyword implies that the NCCS will not 
provide support for this application. This is used for non-
essential packages that are often installed, but has 
peripheral usage. Examples of these might be IDEs or 
rarely-used (at the NCCS) applications. In these 
situations, the NCCS staff will make a good faith effort to 
install the application correctly and insure it is working. 
However, if problems are encountered, only minimal 
support will be given. 

The fourth file in the application directory is the 
versions file. The versions file is used by swtools to 
determine the current, development, and deprecated 
versions of each application. This file contains version 
tags, identifying words combined with version numbers 
that correlates to those words. All applications posess the 
current tag. Thus an application might have a line that 
says current: 4.3b in its versions file. It is extremely 
important that it is always up to date, because it is used by 
swtools to perform actions on all applications a specific 
tag. Thus one common action might be to retest all 
applications with the current tag. 

At the version level there are no special files used by 
swtools. There is simply a folder for each build present 
within the version folder (Figure 5.) 

 
Version Level: 
 <Build Folder 1> 
 <Build Folder 2> 
 <Build Folder 3> 
 … 
 

Figure 5: Version Level File Hierarchy 
 

At the build level there are seven separate files that 
are used by swtools (Figure 6.) The first three files 
[rebuild, relink, and retest] all serve a similar 
purpose. They are scripts written by the application 
installer to perform the eponymous action. For example, a 
rebuild script should completely clean out any existing 
installations and then build the application anew. One key 
component of this design is the use of the GNU Modules 
application in order to set up programming environments. 

By using modules, a script that was written for an older 
version of a compiler can easily be migrated to use a 
newer programming environment The only thing that is 
usually necessary is to modify which programming 
environment module is loaded. 

The next file found at the build level is the .owners 
file, which is used by the system to document which staff 
member is currently responsible for maintaining this 
package. This file is automatically created when the 
application is installed, with the installer’s username set 
as the initial value.  

The fifth file used by swtools at the build level is the 
status file. This is a vital piece of the system; it lets 
NCCS staff know if an application is ready to be used and 
in complete working order. The status file is created by 
the retest script. Based upon whether the application 
passes its own internal tests we set the status file to either 
verified or unverified. If the retest script fails before 
the tests complete, then no status file will be created.  

build-notes is the sixth file used by swtools at the 
build level. build-notes is not a mandatory file; it is a 
place for installers to document any special steps they had 
to take when compiling this application. If no special 
steps were taken, then the installer is free to leave this file 
empty. 

Finally, the dependencies file is used by swtools to 
document any applications that are needed in order for 
this application to be built. Currently, this information is 
stored for reference use. An area of future work is to 
implement a graph algorithm to fully resolve all 
dependencies on the entire software tree.  

 
Build Level: 
 rebuild 
 relink 
 retest 
 .owners 

status 
build-notes 
dependencies 
<Source Folder>  

 
Figure 6: Build Level File Hierarchy 

 

Exceptions 
There is one additional file that plays a key role in the 

swtools system. The .exceptions file can be placed 
inside either an application or version folder. There are 
three keywords that can be used in conjunction with the 
.exceptions file: controlled, noweb, and vendor. 

Controlled implies that this application or version of 
the software is not open to the general user base of the 
system. In these situations, access will usually be 
controlled via group permissions. One caveat for 
structuring the system in this way is that only people in 
the group that owns the directory will be able to rebuild, 
relink, or retest the application. In some situations, not all 



 

 
CUG 2008 Proceedings 5 of 13 

NCCS staff will have the proper permissions to run these 
actions. Thus when we are doing large batch style 
operations, unless the person running the batch job is a 
member of all controlled groups, they will be unable to 
perform actions on some files.  

The noweb keyword implies that this application or 
version should not appear on the website. This exception 
is used by swreport when generating html 
documentation. 

The third exception that we define is the vendor 
exception. This vendor exception is used by the swtools 
so that versions or applications that are marked as vendor 
provided appear only on the web site and are ignored by 
all other aspects of the swtools infrastructure. For 
example we often use this keyword in conjunction with 
vendor provided compilers such as pathscale and gcc. 
When using this keyword, we still write a description 
file for end user documentation, and that file still appears 
online. 

4. Command Line Utilities 
After having defined goals that needed to be 

accomplished, the authors were then faced with the 
challenge of developing tools that could accomplish these 
tasks. Python was chosen as the primary language for the 
system, although many shell scripts were used in the final 
product. This decision was based on several factors. First, 
python was already installed and being used by other 
projects at the NCCS. Secondly, python offers a very 
clean syntax and is easily tested. Additionally, python 
offers an extensive library of modules to perform shell 
and OS level operations.  However, Python 2.5 is required 
for some key functionality not available in earlier 
versions. 

swaddpackage and swaddbuild 
swaddpackage and swaddbuild are two scripts that 

were developed to ease the process of installing new 
applications.  The first script, swaddpackage is used by 
staff members to install a new application. The script 
creates the application directory, automatically placing it 
within the proper architecture directory. To determine the 
correct architecture, it automatically detects the machine 
upon which the script is running.  After creating the 
application directory, swaddpackage copies several 
template files into the newly created directory and 
populates them with as much information as possible.  

The second script, swaddbuild performs a similar 
function for builds. swaddbuild creates the appropriate 
template files in the build directory.  

aIn addition to this, one important role that 
swaddpackage and swaddbuild fulfill is correctly setting 
permissions. On NCCS systems, by default most files are 
not created as group writeable. However, in order to 
accommodate the large number of staff who need to be 

able to modify installed software, all files managed by 
swtools need staff group write permissions. 

swbuild, swlink, and swtest 
 swbuild, swlink, and swtest all perform very 

similar functions. Each script executes the appropriate 
build script, i.e., swbuild executes rebuild scripts and 
swlink executes relink scripts. They support  a number 
of advanced features that make doing large operations 
significantly easier. For example, each script 
automatically fixes all file permissions after running the 
corresponding [rebuild, relink, retest] script.  

swversion 
swversion is a tool to be used by NCCS staff to 

proactively update as many applications as possible. 
When an application is installed, a date is recorded in that 
applications .check4newver file. swversion is a script 
that is designed to run in cron. When run, it checks all 
applications’ .check4newver file for a due date, that is, a 
date  upon which we need to check for updates to this 
package.  If the application has passed its due date, then 
an email will be sent to the owner (as defined in the 
.owners file). 

swduplicate 
swduplicate is a script that is designed to automate 

the process of performing upgrades and updates. Using 
swduplicate, you can take an already existing build and 
move it to another location. When the build is moved, you 
can then substitute the existing module commands with 
new module commands. Thus, if a new compiler version 
is installed, we could copy all builds made with Pathscale 
2.5 into new directories appropriately renamed. 
Additionally, as they are copied, the appropriate sections 
of the rebuild, relink, and retest scripts will be 
modified so that they automatically load the new 
environment. After performing this operation, we could 
then execute the newly modified rebuild and retest 
scripts to perform a test of the new programming 
environment. 

swreport 
All reporting features of swtools are encapsulated 

within swreport. Currently, swreport supports three 
modes of operation: conform, html, and text. One of the 
above three keywords is used as an argument on the 
command line when swreport is run.  

When the conform argument is specified, swreport 
generates a report on stdout that lists problems that it has 
found with currently installed builds (see Figure 7.) 

When the html argument is specified, swreport 
generates html pages for all software installed using the 
swtools infrastructure. Figure 8 shows one of the 
generated status pages.  It lists all software installed on all 
machines, and presents a table showing which machines 
each piece of software is installed upon. 



 

 
CUG 2008 Proceedings 6 of 13 

 Alternatively, swreport can generate a category-
based view of the tables. This is particularly useful for 
users who are trying to get a general feel for what 
software is available on a particular system.  

 
Example Output (abridged): 
/xt 
        /arpack (support status: nccs) 
        /atlas (support status: unsupported) 
        /aztec (support status: unsupported) 
        /blacs (support status: vendor) 
            no modulefiles folder 
        /blas (support status: nccs+vendor) 
        /cmake (support status: unsupported) 
        /craypat (support status: vendor) 
            no modulefiles folder 
        /doxygen (support status: nccs) 
            /1.5.4 
                 /sles9.2_gnu4.2.1(owner: nai) 
                      status : not gW  
        /ferret (support status: unsupported) 
        /fftpack (support status: unsupported) 
        /fftw (support status: nccs+vendor) 
            /2.1.5 
              version does not have modulefile 
            /3.1.1 
              version does not have modulefile 

 
Figure 7: Example Output from  

swreport conform 
 
Additionally, swreport takes the html description 

files that were written by the original installer and 
generates complete description pages for each 
application. In addition to presenting the information that 
the installer wrote, the application page shows the support 
status of each individual piece of installed software. At 
the bottom of each application status page is a list of 
available builds. The tables shows what versions are 
available, and what builds of each version are available. 
Next to each build the status of the build is displayed. We 
display a “v” for verified and a “u” for unverified.  This is 
the build status inform the status file generated by the 
retest script.  

swreport text is the third type of report that is 
generated by swreport. It generates a listing of all 
currently installed applications on all machines. This 
listing shows the status, support level, and build owner in 
an easily accessible format. The purpose of the text 
keyword is to generate a listing that will quickly allow 
NCCS staff to ascertain the status of all installed software 
on all machines.  

Development Challenges 
During the development of the swtools, a number of 

challenges were encountered. One of the most daunting 
challenges was the problem of file permissions. During 
the process of testing this system, it was discovered that 

several applications supports incorporate chmod 
commands into their make or make install scripts. This 
caused numerous problems – the swtools system is 
structured around the idea that each staff member will 
install applications using their own username, not using 
elevated root permissions. Because of this, it was 
imperative that all files remain group writeable at all 
times. To fix this, it was necessary to incorporate chmods 
into our swbuild, swtest, and swlink scripts.  

 

 
Figure 8: Screenshot of Inventory Page from 

www.nccs.gov 
 

Advanced Functionality 
One of the key design goals for our system is the 

ability to do large batch-style operations, and to combine 
multiple actions into a single command. To do this, a 
script known as swdriver was developed. One example 
of a batch operation that is routinely performed is a 
“duplicate build test.” This action takes a set of current 
builds and copies them to a new location. After copying, 
they are then built anew, and finally they are tested. This 
is a great way to perform basic regression testing on all 
applications without destroying the current installed 
copies.  

5. Experiences to Date 
The software tools were first shown to other NCCS 

staff beginning on March 4, 2008. This was done in 
anticipation of migrating all software currently installed 
in the /apps filesystem to the new /sw filesystem that is 
managed by the swtools.  



 

 
CUG 2008 Proceedings 7 of 13 

 
Figure 9: Example application description page 



 

 
CUG 2008 Proceedings 8 of 13 

 

Unveiling 
During the time period when the software tools were 

being developed, the NCCS leadership Cray XT4 system 
was experiencing downtime due to a major system 
upgrade. This afforded staff a good opportunity to make 
major system software changes. After the swtools system 
was initially unveiled to NCCS staff, each staff member 
was assigned a set of applications to reinstall in the new 
/sw tree using the tools. 

Over a span of four weeks, approximately 60 
applications were installed by 17 staff members.  The 
swtools infrastructure worked fine with only a few bugs 
found.  Every day as the process progressed, a report was 
generated listing the status of each application.  This 
report was used by the swtools team to quickly address 
non-conformance with the hierarchy/rules (one of the 
design goals).   

During this time, a feature was discovered in the 
SLES man command whereby man pages could not be 
found if there was a “+” somewhere in the pathname.  So 
instead of building a new version of man and installing 
that on all SLES systems, it was decided that all build 
names would be changed from using a “+” to an “_”.  
Starting on a Friday, all builds were renamed, and then 
scripts were used to rebuild all the application builds.  
This processed finished the following day.  Some bugs 
were found in the rebuild and retest scripts, but overall 
this was a huge success in that over 60 packages and all 
their respective versions and builds were rebuilt in a day. 

Jaguar Upgrade 
A similar situation (where all packages are rebuilt) 

may occur when the upgraded Jaguar becomes available.  
At that time, the OS and MPI will have sufficiently 
changed enough that that most software may need to be 
rebuilt.  First, everything will be tested.  For those 
packages that fail, a determination of whether a relink or 
rebuild is needed will be determined on an application 
specific basis. 

Compiler Naming Schemes 
To date, the compiler names chosen for the XT have 

worked out well.  Essentially, pgi, pathscale, and gnu are 
used to label all compilers.  These names will likely be 
used on future Opteron clusters. However, on machines 
with IBM (BG/P) or Intel compilers, the compiler naming 
scheme is not so simple.  Since the Fortran and C 
compilers on these systems are versioned independently 
of one another, the compiler naming scheme will have to 
be reworked to include both the Fortran and C compiler 
versions when naming builds.  For example, a build on 
BG/P might look like cnk1.0_mpixlc9.0mpixlf11.1. 

6. Future Goals 
Although significant progress has been made to date, 

there are still several areas where the system could be 
expanded. Although the system was designed with HPC 
systems in mind, it is still a daunting challenge to deal 
with the many exceptions that are encountered with the 
extremely complex system architectures that are present 
in a non platform-homogenous HPC center like the 
NCCS. Sensitive applications, vendor applications, and 
special filesystems are just some of the challenges that 
were dealt with in the design of this system. 

Complete Systems Migration 
After completing the Jaguar migration, it 

serendipitously occurred that the NCCS had three other 
new systems to unveil immediately thereafter. The NCCS 
will unveil three new systems – Lens, Smoky, and 
Eugene; these are a visualization, development, and 
scientific (i.e. production) cluster, respectively.  They are 
currently scheduled to be unveiled May 5, 2008 – after 
the publication of this paper. 

Many of these systems are running Scientific Linux 5 
and have an x86/Opteron-based architecture. Initially, it 
was thought that one of the systems would need a 
different MPI than the other two systems. Due to this, the 
first two systems were given a shared tree in the swtools 
infrastructure while the third one was not. However, after 
some time it was decided that the third machine would 
use the same MPI as the first two. This has created an 
interesting situation in that there are now three nearly 
identical machines, and two of the machines will share 
software while the third machine will not. This situation 
will be an ongoing test of the effectiveness of sharing 
software in an HPC environment. 

Additional Features 
The main feature that swtools currently lacks is the 

ability to resolve application dependencies when 
rebuilding large numbers of applications. Future work 
could be done to build an acyclic graph of application 
dependencies and then generate a properly ordered list of 
applications to build. 

In addition to work that could be done resolving 
dependencies, additional reporting information could be 
generated. Currently, there is excellent information 
available about what software is currently installed on the 
system, but that information would ideally be integrated 
with information regarding the usage level of different 
applications. Ideally, the NCCS would like to know how 
many users are using each application, which projects 
those users are involved with, and what specific pieces of 
each application the users are using. This information 
would be valuable in allocating resources for future 
projects.  



 

 
CUG 2008 Proceedings 9 of 13 

7. Conclusion 
Overall, the NCCS software management system has 

been a great challenge and a great learning opportunity. 
This system has been structured to meet the unique 
requirements present at the NCCS; however, the authors 
hope that this information will be useful to other centers 
or organizations with similar problems.    

Retrospective 
The largest challenge that was encountered in 

developing and designing this system were the many 
exceptions to every rule that are present in HPC systems. 
This project began with a relatively simplistic model for 
managing software and was then modified as problems 
were encountered. The largest problem that anyone 
considering a system of this kind needs to consider are the 
ways in which they will deal with software that is not well 
suited to a management system of this type. A few 
examples from the experiences at the NCCS are binary 
applications, sensitive applications, vendor-provided 
applications, permissions, and more. 

Final Remarks 
Overall, this project has been a success. The primary 

goals that were set out at the beginning of the process 
have been achieved, and we continue to make 
improvements in the system. Ultimately, the system has 
proven itself already in that we have been able to rebuild 
more than 100 builds (the complete XT4 tree) in a single 
day. Hopefully this will inspire others to continue this 
work and to expand upon it.  

Acknowledgments 
The authors would like to thank our colleagues for 

their help and input during the deployment of this 
management system. In particular, we would like to thank 
Tom Barron who helped prototype some of the 
functionality. 

This research was sponsored by the Mathematical, 
Information, and Computational Sciences Division, 
Office of Advanced Scientific Computing Research, U.S. 
Department of Energy under contract number DE-AC05-
00OR22725 with UT-Battelle, LLC. 

This research used the resources of the NCCS at 
ORNL, which is supported by the Office of Science of the 
U.S. Department of Energy under contract number DE-
AC05-00OR22725. 

The authors would also like to thank the 
HERE@ORNL program and the Oak Ridge Institute for 
Science and Education for their sponsorship of Nick 
Jones’ internship.  

About the Authors 
Mark Fahey is a Computational Scientist in the 

National Center for Computational Sciences at Oak Ridge 
National Laboratory. He is a long-time CUG member and 
currently serves as the CUG Treasurer. He can be reached 
at Oak Ridge National Laboratory, Building 5600, Room 
C111, P.O. Box 2008 MS6008, Oak Ridge, TN 37831-
6008, E-Mail: faheymr@ornl.gov.  

Nick Jones is a Scientific Computing Intern in the 
National Center for Computational Sciences at Oak Ridge 
National Laboratory. In addition to working at ORNL, 
Nick is currently pursuing a double major in Computer 
Engineering and Computer Science at the University of 
Tennessee. Nick can be reached at Oak Ridge National 
Laboratory, Building 5600, Room A109, P.O. Box 2008 
MS6008, Oak Ridge, TN 37831-6008, E-Mail: 
njones11@eecs.utk.edu 

References 
1. “Overview”, National Center for Computational 

Sciences, http://www.nccs.gov/about/nccs-overview/ 
 
2. “Oak Ridge leads DOE INCITE Effort in 2008”, 

National Center for Computational Sciences, 
http://www.nccs.gov/2008/01/17/oak-ridge-leads-doe-
incite-effort-in-2008/ 

 
3. “Modules – Software Environment Management”,  

Sourceforge.net, http://modules.sourceforge.net/



 

 
CUG 2008 Proceedings 10 of 13 

Appendix 

Example Rebuild Script 
 
#!/bin/ksh 
 
############################## standard interface to /sw tools 
# Input: 
#   Environment variables 
#     SW_BLDDIR    current directory (PWD) minus /autofs/na1_ stuff 
#     SW_ENVFILE   file to be sourced which has alternate prog environment 
#                     only to be used in special circumstances 
#     SW_WORKDIR   unique work dir that local script can use 
# Output 
#   Return code of 0=success or 1=failure  
############################## 
 
# exit 3 is a signal to the sw infrastructure that this template has not  
# been updated; please delete it when ready 
exit 3 
 
if [ -z $SW_ENVFILE ]; then 
  ### Set Environment (do not remove this line only change what is in between) 
  . ${MODULESHOME}/init/ksh 
  module unload PrgEnv-pgi 
  module unload PrgEnv-pathscale 
  module unload PrgEnv-gnu 
  module load PrgEnv-gnu 
  module swap gcc gcc/4.2.1 
  ### End Environment (do not remove this line only change what is in between) 
else 
  . $SW_ENVFILE 
fi 
 
############################## app specific section 
#   
 
if [ -z $SW_BLDDIR ]; then 
  echo "Error: SW_BLDDIR not set!" 
  exit 1 
else 
  cd $SW_BLDDIR 
fi 
 
PACKAGE=netcdf 
 
# clear out old installation to prevent potential libtool chmod  
# commands from failing when reinstalled by another person 
rm -rf bin lib include doc share man etc libexec info 
 
#clear out status file since re-making 
rm -f status 
 
cd netcdf-3.6.2 



 

 
CUG 2008 Proceedings 11 of 13 

 
make distclean 
 
#export CC=cc 
#export CXX="CC -DMPICH_IGNORE_CXX_SEEK" 
export CC=gcc 
export CXX=g++ 
#export F77=ftn 
#export F90=ftn 
#export F9C=ftn 
export F77=gfortran 
export F90=gfortran 
export F9C=gfortran 
#export CPPFLAGS=-DpgiFortran 
 
./configure --prefix=$SW_BLDDIR \ 
--disable-shared 
#--disable-fortran-compiler-check 
#--host=x86_64-unknown-linux-gnu 
if [ $? -ne 0 ] ; then 
  echo "$PACKAGE configure failed" 
  exit 1 
fi 
 
make all 
  if [ $? -ne 0 ] ; then 
    echo "$PACKAGE make failed" 
    exit 1 
  fi 
 
make install 
if [ $? -ne 0 ] ; then 
  echo "$PACKAGE install failed" 
  exit 1 
fi 
 
cd ../ 
 
############################### if this far, return 0 
exit 0 
 



 

 
CUG 2008 Proceedings 12 of 13 

Example Retest Script 
 
#!/bin/ksh 
 
############################## standard interface to /sw tools 
# Input: 
#   Environment variables 
#     SW_BLDDIR    current directory (PWD) minus /autofs/na1_ stuff 
#     SW_ENVFILE   file to be sourced which has alternate prog environment 
#                     only to be used in special circumstances 
#     SW_WORKDIR   work dir that local script can use 
# Output: 
#   Return code of 0=success or 1=failure   or 2=job submitted 
# 
# Notes: 
#   If this script is called from swtest, then swtest requires  
#   SW_WORKDIR to be set.  Then swtest adds a unique path to what  
#   user gave swtest (action+timestamp+build) and provides this 
#   script with a uniquely valued SW_WORKDIR.  swtest will 
#   automatically remove this unique workspace when retest is done. 
################################################################## 
 
# exit 3 is a signal to the sw infrastructure that this template has not  
# been updated; please delete it when ready 
exit 3 
 
if [ -z $SW_ENVFILE ]; then 
  ### Set Environment (do not remove this line only change what is in between) 
  . ${MODULESHOME}/init/ksh 
  module unload PrgEnv-pgi 
  module unload PrgEnv-pathscale 
  module unload PrgEnv-gnu 
  module load PrgEnv-gnu 
  module swap gcc gcc/4.2.1 
  ### End Environment (do not remove this line only change what is in between) 
else 
  . $SW_ENVFILE 
fi 
 
############################## app specific section 
#   
 
if [ -z $SW_BLDDIR ]; then 
  echo "Error: SW_BLDDIR not set!" 
  exit 1 
else 
  cd $SW_BLDDIR 
fi 
 
PACKAGE=netcdf 
 
#clear out status file since re-testing 
rm -f status  
 
cd netcdf-3.6.2 



 

 
CUG 2008 Proceedings 13 of 13 

 
make test > $SW_BLDDIR/test.log 2>&1 
  if [ $? -ne 0 ] ; then 
    echo "$PACKAGE make test failed " 
    exit 1 
  fi 
 
testspassed=`grep -G "All [0123456789]" ../test.log | awk '{total += $2} END {print total}'` 
if [[ $testspassed -ne 49 ]]; then 
  # error 
  echo $testspassed tests passed! 
  echo unverified > $SW_BLDDIR/status 
  exit 1 
else 
  echo $testspassed tests passed! 
  echo verified > $SW_BLDDIR/status 
  exit 0 
fi 
 
cd ../ 
 
############################### if this far, return 0 
exit 0 
 


