
 

CUG 2008 Proceedings 

 1 of 8 

 

A Micro-Benchmark Evaluation of Catamount and Cray Linux 

Environment (CLE) Performance 

Jeff Larkin, Cray Inc. 

Jeffery A. Kuehn, Oak Ridge National Laboratory 

ABSTRACT: Over the course of 2007 Cray has put significant effort into optimizing the 

Linux kernel for large-scale supercomputers. Many sites have already replaced 

Catamount on their XT3/XT4 systems and many more will likely make the transition in 

2008. In this paper we will present results from several micro-benchmarks, including 

HPCC and IMB, to categorize the performance differences between Catamount and CLE. 

The purpose of this paper is to provide users and developers a better understanding of 

the effect migrating from Catamount to CLE will have on their applications. 
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1. Introduction 

Since the release of the Cray XT series 

[3,4,5,6,7,18,19] of MPP systems, Cray has touted the 

extreme scalability of the light-weight Catamount 

operating system from Sandia National Laboratory.  To 

achieve its scalability, Catamount sacrificed some 

functionality generally found in more general purpose 

operating systems, including threading, sockets, and I/O 

buffering. While few applications require all of these 

features together, many application development teams 

have requested these features individually to assist with 

portability and performance of their application.  For this 

reason, Cray invested significant resources to scale and 

optimize the Linux operating system kernel for large MPP 

systems, resulting in the Cray Linux Environment (CLE).  

Although Cray continues to support Catamount at this 

time, it is important to assess the performance differences 

that may exist between the two platforms, so that users 

and developers may make informed decisions regarding 

future operating system choices. Moreover, the 

availability of a two maturing operating systems, one 

designed as a lightweight kernel and one customized from 

a traditional UNIX system, provides a unique opportunity 

to compare the results of the two design philosophies on a 

single hardware platform.  This paper takes the approach 

of using micro-benchmark performance to evaluate 

underlying communication characteristics most impacted 

by the differences between Catamount and CLE.  We will 

briefly discuss each operating system and the benchmark 

methodology used.  Next we will present the results of 

several benchmarks and highlight differences between the 

two operating systems.  Finally we will conclude with an 

interpretation of how these results will affect application 

performance. 

2. Operating Systems Tested 

Catamount 

The Catamount OS [14], also known as the 

Quintessential Kernel (Qk), was developed by Sandia 

National Laboratories for the Red Storm [1,2] 

supercomputer.  As Cray built the Cray XT3 architecture, 

based on the Red Storm system, Catamount was adopted 

as the compute node operating system for the XT3 and 

future XT systems.  By restricting the OS to a single 

threaded environment, reducing the number of available 

system calls and interrupts, and simplifying the memory 

model, Catamount was designed from the ground up to 

run applications at scale on large MPP systems.  As dual-

core microprocessors began entering the market, 

Catamount was modified to add Virtual Node (VN) mode, 

in which one processor acts as a master process and the 

second communicates to the rest of the computer through 

this process.   
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Cray Linux Environment (CLE) 

Over the course of 2007 Cray worked to replace 

Catamount kernel with the Linux kernel on the compute 

nodes.  This project was known as Compute Node Linux 

(CNL) [15], which is now a part of the Cray Linux 

Environment (CLE)
1
.  Cray engineers invested significant 

effort into reducing application interruptions from the 

kernel (OS Jitter) and improving the scalability of  Linux 

services on large systems.  The Cray Linux Environment 

reached general availability status in the Fall of 2007 and 

has since been installed at numerous sites (at time of 

writing, CLE has been installed on more than half of all 

installed XT cabinets).  Several of the features supported 

by CLE, but not Catamount, are threading, Unix Sockets, 

and I/O buffering. 

3. Benchmarks and Methodology 

HPCC 

The HPCC [9,10,11,12] benchmark suite is a 

collection of benchmarks, developed as a part of the 

DARPA HPCS program, that aim to measure whole 

system performance, rather than stressing only certain 

areas of machine performance.  It does this through a 

series of microbenchmarks over varying degrees of spatial 

and temporal locality, ranging from dense linear algebra 

(high locality) to random accesses through memory (low 

locality).  Benchmarks are also performed on a single 

process (SP), every process (EP), and over all processes 

(Global) to measure the performance of the individual 

components and the system as a whole.  Also included in 

the suite of benchmarks are measures of MPI latencies 

and bandwidths under different topological layouts.  By 

measuring the machine through a range of benchmarks, 

HPCC can be used to understand the strengths and 

weaknesses of a machine and the classes of problems for 

which the machine is well suited.  For the purpose of this 

paper, HPCC was run in a weak scaling manner, meaning 

that the problem size was adjusted at each process count 

so that each process has the same amount of work to be 

done.  The benchmark was run at 64, 128, 256, 512, 1024, 

and 1280 processes and using both one and two 

processors per socket. 

Intel MPI Benchmarks (IMB) 

The majority of applications run on large MPP 

machines, such as Cray XT systems, communicate using 

MPI.  For this reason it is valuable to measure the 

performance of the MPI library available on a given 

system.  The Intel MPI Benchmarks (IMB) measure the 

performance of MPI method calls over varying process 

                                                 
1
 For the purpose of this paper, the terms CLE and CNL 

will be used interchangeably, although CNL is actually a 

subset of the software provided in CLE. 

counts and message sizes.  By having an understanding of 

how well a machine performs certain MPI operations, 

application developers can project how their application 

may perform on a given architecture or what changes they 

may need to make in order to take advantages of 

architectural strengths.  This benchmark was run as 

process counts up to 1280 and message sizes up to 1024 

bytes. 

Test System 

The above benchmarks were run on a machine 

known as Shark, a Cray XT4 with 2.6 GHz, dual-core 

processors and 2 GB of DDR2-667 RAM per core.  Tests 

were run while the system was dedicated, so that the 

results could not be affected by other users.  This system 

could be booted to use either Catamount or CLE on the 

compute nodes, a fairly unique opportunity.  Catamount 

tests were run using UNICOS/lc 1.5.61, the most recent 

release as of April 2008.  CLE tests were run on CLE 

2.0.50 using both the default MPI library (MPT2), 

mpt/2.0.50, and the pre-release mpt/3.0.0.10 (MPT3), 

which was released in final form in late April 2008.  The 

major difference between these two MPI libraries is the 

addition of a shared memory device for on node 

communication to MPT3, where on node messages in 

MPT2 were copied in memory after first being sent to the 

network interface.  This new MPI library is only available 

for machines running CLE. 

4. Benchmark Results 

In this section we will present selected results from 

each of the benchmarks detailed above.  Benchmarks that 

emphasized the communication performance differences 

between the two OSes were specifically chosen, as 

benchmarks that emphasize processor or memory 

performance showed little or no discernable differences.  

It is important to note that these benchmarks are only 

intended to be used in comparison of OS configurations 

previously described.  No attempts were made to optimize 

the results, but rather a common set of MPI optimizations 

were chosen and a common set of input data was used.  

With some effort, any or all of these benchmark results 

could likely be improved, but this is outside of the scope 

of this paper.  All tests were run with the following MPI 

environment variables set: MPICH_COLL_OPT_ON=1, 

MPICH_RANK_REORDER_METHOD=1, 

MPICH_FAST_MEMCPY=1. 

HPCC 

Parallel Transpose 

As the name implies, the Parallel Transpose 

(PTRANS) benchmark measures the performance a 

matrix transpose operations for a large, distributed matrix.  

During such an operation, processes communicate in a 
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pair-wise manner, performing a large point-to-point 

send/receive operation.  This benchmark generally 

stresses global network bandwidth.  Figure 1 illustrates 

HPCC PTRANS performance. 

 
Figure 1: HPCC Ptrans performance, higher is better 

The above graph shows two distinct groupings of 

results, corresponding to the single and dual core results.  

Due to contention for the shared NIC on dual core runs, 

one would expect lower performance from dual core, 

which we clearly see.  At all processor counts, Catamount 

performed better than CLE when running on just one 

core.  With the exception of one outlier, which is 

repeatable, dual-core performance is indistinguishable 

between Catamount and CLE.  At the highest processor 

counts, CLE appears to be scaling better on dual core, but 

the data is insufficient to conclude that this trend will 

continue at higher scales. 

 

MPI Random Access 

As the name implies, the MPI Random Access (MPI-

RA) benchmark measures the rate at which a machine can 

update random addresses in the global memory space of 

the system.  Given a large enough problem space, this 

benchmark will have virtually no spatial or temporal 

locality and stresses the network latency of a given 

machine.  Figure 2 shows MPI-RA performance.  

The results of MPI-RA are not favourable for CLE.  

Due to contention for the single NIC per node, it is 

expected behavior for single core performance to be 

greater than dual core performance.  What is surprising, 

however, is that Catamount outperforms CLE completely, 

even when comparing Catamount dual core performance 

to CLE single core performance.  Because this benchmark 

does not benefit from on-node performance 

improvements, there is no discernable difference between 

MPT2 and MPT3 performance.   

 

 
Figure 2: HPCC MPI Random Access performance, higher 

is better 

The results of this benchmark were surprising, but the 

authors believe that the performance degradation is 

related to results presented in [17].  In this presentation 

the author noted that performance of the Parallel Ocean 

Problem (POP) had a significant degradation in 

performance when running on CLE unless MPI receives 

are pre-posted.  By posting receives before the associated 

sends occur, the MPI library is able to more efficiently 

handle messages as they are delivered to the receiver.  

The authors of this paper believe that the performance lost 

in MPI-RA can be attributed to the fact that the 

benchmark does not pre-post receives. 

 

MPI-FFT 

The MPI-FFT benchmark performs a Fast Fourier 

Transform (FFT) over the global memory space.  While 

this operation stresses the network in a very similar 

manner to PTRANS, it has a more significant on-node 

computation aspect.  Figure 3 shows MPI-FFT 

performance. 

 
Figure 3: HPCC MPI-FFT performance, higher is better 
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As was the case with PTRANS, two clear clusters 

appear in Figure 3, one for single core and the other for 

dual core performance.  Looking first at the single core 

performance, we see that Catamount is scaling to higher 

processor counts significantly better than CLE.  Dual-core 

performance, however, shows no discernable difference in 

performance between Catamount and CLE.  As was the 

case with PTRANS, larger scale runs would be needed to 

determine whether CLE will continue to perform better 

than Catamount at scales larger than 1024 processor 

cores. 

 

Latency and Bandwidth 

HPCC reports latencies and bandwidths with five 

different metrics, minimum, maximum, and average, 

which should be self explanatory, and also Natural Ring, 

where each processes communicates with the next MPI 

ranks, and Random Ring, where processors are ordered 

randomly.  The graphs below will show Natural and 

Random Ring results, as these results are generally the 

most telling. 

 Figure 4 shows lower single core latency when 

running Catamount, while CLE appears slightly better 

when running on two cores.  However Naturally Ordered 

Latency shows a more significant difference between the 

two OSes.  In Figure 5 Catamount once again has lower 

latency than CLE when using just one core.  When 

running on two cores, CLE with MPT2 has worse latency 

than Catamount, but CLE with MPT3 has significantly 

better latency, on par with single core performance.  

Although the latency is still several microseconds higher 

than single core Catamount results, it is notable that CLE 

with MPT3 has almost no latency increase when going 

from single core to dual core. 

 

 
Figure 4: HPCC Random Ring Latency, lower is better 

 
Figure 5: HPCC Naturally Ordered Latency, lower is better 

 
Figure 6: HPCC Random Ring Bandwidth, higher is better 

 
Figure 7: HPCC Naturally Ordered Bandwidth, higher is 

better 
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We see in Figure 6 the HPCC Random Ring 

Bandwidth.  As before, Catamount performs better than 

CLE with MPT2 on a single core, but CLE with MPT3 

actually outperforms both by a small margin.  CLE again 

outperforms Catamount when run on two cores, this time 

MPT2 slightly outperforming MPT3. 

IMB 

IMB results are presented in two different forms below.  

For Ping Pong and Barrier benchmarks, the results will be 

presented as a line graph, where time is along the vertical 

axis and lower is better.  For the remaining tests a 3D 

surface plot is used, showing the ratio of CLE 

performance over Catamount performance.  For these 

surface plots, it can be assumed that results below 1.0 are 

in favor of Catamount and results above 1.0 are in favor 

of CLE.  Both single and dual core performance will be 

presented for the Ping Pong operation, but only dual core 

results will be presented for all other operations.  

 

 
Figure 8: IMB Single and Dual Core Ping Pong Latency, 

lower is better 

 

Ping Pong 

The IMB Ping Pong test measures the time needed to 

pass a message back and forth, one round trip, between 

two MPI ranks.  Two neighboring ranks are used for this 

test, so it is generally a best case scenario.  The graphs in 

Figure 8 show the latency of a Ping Pong operation in 

single and dual core.  Notice that Catamount has a lower 

latency when run on a single processor core and MPT 

version appears irrelevant in the CLE runs.  However, the 

dual core results are significantly different.  First notice 

that CLE with MPT2 drops significantly when compared 

to the single core runs outperforming Catamount.  This 

latency decrease is due to the fact the CLE is able to 

recognize that the message is remaining on the same node 

and short circuit the message to use a memory copy.  

MPT3 introduces a shared memory device driver, which 

simplifies on-node message passing and further improves 

CLE latency. While this is a key practical difference, it 

should be noted that there is no theoretical barrier to 

providing similar functionality on Catamount. 

 

 
Figure 9: IMB Barrier, top: linear scale, bottom: log scale, 

lower is better 

 

Barrier 

The Barrier benchmark measures the time needed to 

synchronize all processes using the MPI_Barrier routine.  

This is a notoriously poor scaling routine, due to the fact 

that all processors must communicate their participation 

in the synchronization.  Figure 9 show the performance of 

MPI_Barrier in both linear/linear (top) and log/log 

(bottom) scales.  We clearly see that MPT3 outperforms 

MPT2, due to the improved on-node performance, and 
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Catamount outperforms CLE, until some point between 

512 and 1024 processor cores, where it is likely that an 

algorithmic change occurs within the MPI 

implementation.  By switching to a logarithmic scale we 

are able to see two things that were not obvious in the 

linear scale.  First, notice that MPT3 actually performs 

better than Catamount up to roughly 8 processes, due to 

the aforementioned on-node performance improvements.  

Secondly, although CLE with MPT3 does have better 

absolute performance, the three lines do appear to 

converge such that the performance differences at larger 

scales are small. 

 

SendRecv 

The SendRecv benchmark measures the time needed 

to perform a point to point send and receive operation at 

varying message sizes and processor counts.  In the top 

graph of Figure 10 we see that for small message sizes 

and for processor counts below 1024, Catamount 

performs better than CLE with MPT2.  At some point 

between 512 and 1024, CLE catches up to and surpasses 

Catamount performance.   

 

 
Figure 10: IMB SendRecv 

When MPT3 is used with CLE instead, we see that 

the two OSes perform more similarly.  At small processor 

counts, MPT3 outperforms Catamount by a factor of 15, 

due to the shared memory device. At moderate processor 

counts the two perform equally well, but as with MPT2 

we see CLE outperforming Catamount at larger processor 

counts with the crossover again appearing between 512 

and 1024 processors.   

 

Broadcast 

During an MPI Broadcast operation, one processor in 

the communicator sends some piece of data to all other 

processors in the communicator.  This operation can be 

very expensive and details of how it is performed vary 

significantly between MPI implementations. We see in 

the both graphs of Figure 11 a distinctive bath tub shape, 

where CLE performs better at the extreme ends of 

processor counts, but Catamount performs better, by a 

large margin, in the middle.  It does appear that CLE and 

Catamount performance are roughly equivalent by 1280 

processor cores, but without further data we are unable to 

say whether this trend continues to larger processor 

counts. 

 

 
Figure 11: IMB Broadcast 

Allreduce 
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The Allreduce benchmark measures the time needed 

to perform some operation over data from all processors 

in a communicator and report the result back to all 

processors.  For example, an Allreduce may take a scalar 

value from each processor and report their sum back to all 

of the processors.  In the top graph of figure Figure 12 we 

see that for nearly every processor count and message 

size, Catamount outperforms CLE with MPT2, although 

there are signs that CLE may begin to perform equally 

well at some point beyond 1280 processors.  Due to the 

shared memory device in MPT3, the bottom graph of 

Figure 12 tells a significantly different story.  The on-

node performance benefits of MPT3 are obvious out to 

roughly 16 processors, at which point Catamount begins 

performing slightly better. Once again, a transition occurs 

between 512 and 1024 processors with the performance 

ratio favoring CLE at larger processor counts. Though 

further work is required to determine if this represents a 

consistent trend, we see that the underlying algorithm 

used in the MPT3 implementation of Allreduce is able to 

benefit significantly from on-node communication 

improvements. 

 

 
Figure 12: IMB Allreduce 

AlltoAll 

As the name implies, the MPI AlltoAll operation 

sends some message from each process in a 

communicator to each other process in that 

communicator.  This operation has a significant memory 

requirements at large processor counts and message sizes.  

For this reason, AlltoAll was only measured up to 1024 

processors.  We see in Figure 13 that Catamount 

outperforms CLE with MPT2 across all message sizes and 

processor counts, although MPT2 appears to improve in 

comparison around 1024 processors.  With the exception 

of extremely low processor counts, the same can be said 

for CLE with MPT3, although MPT3 does seem to 

outperform MPT2. 

 

 
Figure 13: IMB AlltoAll 

5. Conclusions and Further Work 

While Catamount is a significantly more mature 

compute node operating system significant progress has 

been made in making Linux a lightweight and scalable 

compute node OS.   

Given that Catamount is single-threaded and 

originally designed for single-process nodes, it is not 

surprising that Catamount has a performance advantage 

when running on just one core of a dual-core node.  

However, since Linux evolved in the workstation and 

server space, where multi-threading is a necessity, it is 

reasonable to expect it to demonstrate strong competition 

on multi-core nodes.  Applications more sensitive to 

network latency and bandwidth rather floating point 
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potential may still benefit from running on Catamount 

using one processor core per node. 

MPT3 seems to level the playing field between 

Catamount and CLE for almost every kernel we analyzed.  

On-node communication improvements were particularly 

beneficial to several benchmarks.  Applications that 

perform primarily nearest-neighbor communications will 

likely see a significant performance improvement with 

CLE.   

For reasons that we have not yet identified, numerous 

benchmarks showed a performance advantage for CLE at 

above 1024 processors.  Based on the HPCC results, we 

speculate that this may be due to improved latency and 

bandwidth for CLE due to improved sharing of the NIC 

between the cores. We look forward to extending this 

study to larger processor counts. 

When viewing this data as a whole, we can say that 

CLE, with MPT3, performs comparably to Catamount.  

And while individual application performance may vary, 

we see no reason, given the above data, for applications to 

perform significantly worse under CLE.  In the future we 

would like to revisit these results in the context of 

application data.   

Given the opportunity to perform further experiments 

in such a controlled environment, we’d like to also 

explore the effects of Linux buffering on I/O performance 

at scale.  We are also seeking opportunities to repeat these 

experiments at larger scales.   
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