

CUG 2008 Proceedings

 1 of 8

A Micro-Benchmark Evaluation of Catamount and Cray Linux

Environment (CLE) Performance

Jeff Larkin, Cray Inc.

Jeffery A. Kuehn, Oak Ridge National Laboratory

ABSTRACT: Over the course of 2007 Cray has put significant effort into optimizing the

Linux kernel for large-scale supercomputers. Many sites have already replaced

Catamount on their XT3/XT4 systems and many more will likely make the transition in

2008. In this paper we will present results from several micro-benchmarks, including

HPCC and IMB, to categorize the performance differences between Catamount and CLE.

The purpose of this paper is to provide users and developers a better understanding of

the effect migrating from Catamount to CLE will have on their applications.

KEYWORDS: Catamount, Linux, CLE, CNL, HPCC, Benchmark, Cray XT

1. Introduction

Since the release of the Cray XT series

[3,4,5,6,7,18,19] of MPP systems, Cray has touted the

extreme scalability of the light-weight Catamount

operating system from Sandia National Laboratory. To

achieve its scalability, Catamount sacrificed some

functionality generally found in more general purpose

operating systems, including threading, sockets, and I/O

buffering. While few applications require all of these

features together, many application development teams

have requested these features individually to assist with

portability and performance of their application. For this

reason, Cray invested significant resources to scale and

optimize the Linux operating system kernel for large MPP

systems, resulting in the Cray Linux Environment (CLE).

Although Cray continues to support Catamount at this

time, it is important to assess the performance differences

that may exist between the two platforms, so that users

and developers may make informed decisions regarding

future operating system choices. Moreover, the

availability of a two maturing operating systems, one

designed as a lightweight kernel and one customized from

a traditional UNIX system, provides a unique opportunity

to compare the results of the two design philosophies on a

single hardware platform. This paper takes the approach

of using micro-benchmark performance to evaluate

underlying communication characteristics most impacted

by the differences between Catamount and CLE. We will

briefly discuss each operating system and the benchmark

methodology used. Next we will present the results of

several benchmarks and highlight differences between the

two operating systems. Finally we will conclude with an

interpretation of how these results will affect application

performance.

2. Operating Systems Tested

Catamount

The Catamount OS [14], also known as the

Quintessential Kernel (Qk), was developed by Sandia

National Laboratories for the Red Storm [1,2]

supercomputer. As Cray built the Cray XT3 architecture,

based on the Red Storm system, Catamount was adopted

as the compute node operating system for the XT3 and

future XT systems. By restricting the OS to a single

threaded environment, reducing the number of available

system calls and interrupts, and simplifying the memory

model, Catamount was designed from the ground up to

run applications at scale on large MPP systems. As dual-

core microprocessors began entering the market,

Catamount was modified to add Virtual Node (VN) mode,

in which one processor acts as a master process and the

second communicates to the rest of the computer through

this process.

CUG 2008 Proceedings

 2 of 8

Cray Linux Environment (CLE)

Over the course of 2007 Cray worked to replace

Catamount kernel with the Linux kernel on the compute

nodes. This project was known as Compute Node Linux

(CNL) [15], which is now a part of the Cray Linux

Environment (CLE)
1
. Cray engineers invested significant

effort into reducing application interruptions from the

kernel (OS Jitter) and improving the scalability of Linux

services on large systems. The Cray Linux Environment

reached general availability status in the Fall of 2007 and

has since been installed at numerous sites (at time of

writing, CLE has been installed on more than half of all

installed XT cabinets). Several of the features supported

by CLE, but not Catamount, are threading, Unix Sockets,

and I/O buffering.

3. Benchmarks and Methodology

HPCC

The HPCC [9,10,11,12] benchmark suite is a

collection of benchmarks, developed as a part of the

DARPA HPCS program, that aim to measure whole

system performance, rather than stressing only certain

areas of machine performance. It does this through a

series of microbenchmarks over varying degrees of spatial

and temporal locality, ranging from dense linear algebra

(high locality) to random accesses through memory (low

locality). Benchmarks are also performed on a single

process (SP), every process (EP), and over all processes

(Global) to measure the performance of the individual

components and the system as a whole. Also included in

the suite of benchmarks are measures of MPI latencies

and bandwidths under different topological layouts. By

measuring the machine through a range of benchmarks,

HPCC can be used to understand the strengths and

weaknesses of a machine and the classes of problems for

which the machine is well suited. For the purpose of this

paper, HPCC was run in a weak scaling manner, meaning

that the problem size was adjusted at each process count

so that each process has the same amount of work to be

done. The benchmark was run at 64, 128, 256, 512, 1024,

and 1280 processes and using both one and two

processors per socket.

Intel MPI Benchmarks (IMB)

The majority of applications run on large MPP

machines, such as Cray XT systems, communicate using

MPI. For this reason it is valuable to measure the

performance of the MPI library available on a given

system. The Intel MPI Benchmarks (IMB) measure the

performance of MPI method calls over varying process

1
 For the purpose of this paper, the terms CLE and CNL

will be used interchangeably, although CNL is actually a

subset of the software provided in CLE.

counts and message sizes. By having an understanding of

how well a machine performs certain MPI operations,

application developers can project how their application

may perform on a given architecture or what changes they

may need to make in order to take advantages of

architectural strengths. This benchmark was run as

process counts up to 1280 and message sizes up to 1024

bytes.

Test System

The above benchmarks were run on a machine

known as Shark, a Cray XT4 with 2.6 GHz, dual-core

processors and 2 GB of DDR2-667 RAM per core. Tests

were run while the system was dedicated, so that the

results could not be affected by other users. This system

could be booted to use either Catamount or CLE on the

compute nodes, a fairly unique opportunity. Catamount

tests were run using UNICOS/lc 1.5.61, the most recent

release as of April 2008. CLE tests were run on CLE

2.0.50 using both the default MPI library (MPT2),

mpt/2.0.50, and the pre-release mpt/3.0.0.10 (MPT3),

which was released in final form in late April 2008. The

major difference between these two MPI libraries is the

addition of a shared memory device for on node

communication to MPT3, where on node messages in

MPT2 were copied in memory after first being sent to the

network interface. This new MPI library is only available

for machines running CLE.

4. Benchmark Results

In this section we will present selected results from

each of the benchmarks detailed above. Benchmarks that

emphasized the communication performance differences

between the two OSes were specifically chosen, as

benchmarks that emphasize processor or memory

performance showed little or no discernable differences.

It is important to note that these benchmarks are only

intended to be used in comparison of OS configurations

previously described. No attempts were made to optimize

the results, but rather a common set of MPI optimizations

were chosen and a common set of input data was used.

With some effort, any or all of these benchmark results

could likely be improved, but this is outside of the scope

of this paper. All tests were run with the following MPI

environment variables set: MPICH_COLL_OPT_ON=1,

MPICH_RANK_REORDER_METHOD=1,

MPICH_FAST_MEMCPY=1.

HPCC

Parallel Transpose

As the name implies, the Parallel Transpose

(PTRANS) benchmark measures the performance a

matrix transpose operations for a large, distributed matrix.

During such an operation, processes communicate in a

CUG 2008 Proceedings

 3 of 8

pair-wise manner, performing a large point-to-point

send/receive operation. This benchmark generally

stresses global network bandwidth. Figure 1 illustrates

HPCC PTRANS performance.

Figure 1: HPCC Ptrans performance, higher is better

The above graph shows two distinct groupings of

results, corresponding to the single and dual core results.

Due to contention for the shared NIC on dual core runs,

one would expect lower performance from dual core,

which we clearly see. At all processor counts, Catamount

performed better than CLE when running on just one

core. With the exception of one outlier, which is

repeatable, dual-core performance is indistinguishable

between Catamount and CLE. At the highest processor

counts, CLE appears to be scaling better on dual core, but

the data is insufficient to conclude that this trend will

continue at higher scales.

MPI Random Access

As the name implies, the MPI Random Access (MPI-

RA) benchmark measures the rate at which a machine can

update random addresses in the global memory space of

the system. Given a large enough problem space, this

benchmark will have virtually no spatial or temporal

locality and stresses the network latency of a given

machine. Figure 2 shows MPI-RA performance.

The results of MPI-RA are not favourable for CLE.

Due to contention for the single NIC per node, it is

expected behavior for single core performance to be

greater than dual core performance. What is surprising,

however, is that Catamount outperforms CLE completely,

even when comparing Catamount dual core performance

to CLE single core performance. Because this benchmark

does not benefit from on-node performance

improvements, there is no discernable difference between

MPT2 and MPT3 performance.

Figure 2: HPCC MPI Random Access performance, higher

is better

The results of this benchmark were surprising, but the

authors believe that the performance degradation is

related to results presented in [17]. In this presentation

the author noted that performance of the Parallel Ocean

Problem (POP) had a significant degradation in

performance when running on CLE unless MPI receives

are pre-posted. By posting receives before the associated

sends occur, the MPI library is able to more efficiently

handle messages as they are delivered to the receiver.

The authors of this paper believe that the performance lost

in MPI-RA can be attributed to the fact that the

benchmark does not pre-post receives.

MPI-FFT

The MPI-FFT benchmark performs a Fast Fourier

Transform (FFT) over the global memory space. While

this operation stresses the network in a very similar

manner to PTRANS, it has a more significant on-node

computation aspect. Figure 3 shows MPI-FFT

performance.

Figure 3: HPCC MPI-FFT performance, higher is better

CUG 2008 Proceedings

 4 of 8

As was the case with PTRANS, two clear clusters

appear in Figure 3, one for single core and the other for

dual core performance. Looking first at the single core

performance, we see that Catamount is scaling to higher

processor counts significantly better than CLE. Dual-core

performance, however, shows no discernable difference in

performance between Catamount and CLE. As was the

case with PTRANS, larger scale runs would be needed to

determine whether CLE will continue to perform better

than Catamount at scales larger than 1024 processor

cores.

Latency and Bandwidth

HPCC reports latencies and bandwidths with five

different metrics, minimum, maximum, and average,

which should be self explanatory, and also Natural Ring,

where each processes communicates with the next MPI

ranks, and Random Ring, where processors are ordered

randomly. The graphs below will show Natural and

Random Ring results, as these results are generally the

most telling.

 Figure 4 shows lower single core latency when

running Catamount, while CLE appears slightly better

when running on two cores. However Naturally Ordered

Latency shows a more significant difference between the

two OSes. In Figure 5 Catamount once again has lower

latency than CLE when using just one core. When

running on two cores, CLE with MPT2 has worse latency

than Catamount, but CLE with MPT3 has significantly

better latency, on par with single core performance.

Although the latency is still several microseconds higher

than single core Catamount results, it is notable that CLE

with MPT3 has almost no latency increase when going

from single core to dual core.

Figure 4: HPCC Random Ring Latency, lower is better

Figure 5: HPCC Naturally Ordered Latency, lower is better

Figure 6: HPCC Random Ring Bandwidth, higher is better

Figure 7: HPCC Naturally Ordered Bandwidth, higher is

better

CUG 2008 Proceedings

 5 of 8

We see in Figure 6 the HPCC Random Ring

Bandwidth. As before, Catamount performs better than

CLE with MPT2 on a single core, but CLE with MPT3

actually outperforms both by a small margin. CLE again

outperforms Catamount when run on two cores, this time

MPT2 slightly outperforming MPT3.

IMB

IMB results are presented in two different forms below.

For Ping Pong and Barrier benchmarks, the results will be

presented as a line graph, where time is along the vertical

axis and lower is better. For the remaining tests a 3D

surface plot is used, showing the ratio of CLE

performance over Catamount performance. For these

surface plots, it can be assumed that results below 1.0 are

in favor of Catamount and results above 1.0 are in favor

of CLE. Both single and dual core performance will be

presented for the Ping Pong operation, but only dual core

results will be presented for all other operations.

Figure 8: IMB Single and Dual Core Ping Pong Latency,

lower is better

Ping Pong

The IMB Ping Pong test measures the time needed to

pass a message back and forth, one round trip, between

two MPI ranks. Two neighboring ranks are used for this

test, so it is generally a best case scenario. The graphs in

Figure 8 show the latency of a Ping Pong operation in

single and dual core. Notice that Catamount has a lower

latency when run on a single processor core and MPT

version appears irrelevant in the CLE runs. However, the

dual core results are significantly different. First notice

that CLE with MPT2 drops significantly when compared

to the single core runs outperforming Catamount. This

latency decrease is due to the fact the CLE is able to

recognize that the message is remaining on the same node

and short circuit the message to use a memory copy.

MPT3 introduces a shared memory device driver, which

simplifies on-node message passing and further improves

CLE latency. While this is a key practical difference, it

should be noted that there is no theoretical barrier to

providing similar functionality on Catamount.

Figure 9: IMB Barrier, top: linear scale, bottom: log scale,

lower is better

Barrier

The Barrier benchmark measures the time needed to

synchronize all processes using the MPI_Barrier routine.

This is a notoriously poor scaling routine, due to the fact

that all processors must communicate their participation

in the synchronization. Figure 9 show the performance of

MPI_Barrier in both linear/linear (top) and log/log

(bottom) scales. We clearly see that MPT3 outperforms

MPT2, due to the improved on-node performance, and

CUG 2008 Proceedings

 6 of 8

Catamount outperforms CLE, until some point between

512 and 1024 processor cores, where it is likely that an

algorithmic change occurs within the MPI

implementation. By switching to a logarithmic scale we

are able to see two things that were not obvious in the

linear scale. First, notice that MPT3 actually performs

better than Catamount up to roughly 8 processes, due to

the aforementioned on-node performance improvements.

Secondly, although CLE with MPT3 does have better

absolute performance, the three lines do appear to

converge such that the performance differences at larger

scales are small.

SendRecv

The SendRecv benchmark measures the time needed

to perform a point to point send and receive operation at

varying message sizes and processor counts. In the top

graph of Figure 10 we see that for small message sizes

and for processor counts below 1024, Catamount

performs better than CLE with MPT2. At some point

between 512 and 1024, CLE catches up to and surpasses

Catamount performance.

Figure 10: IMB SendRecv

When MPT3 is used with CLE instead, we see that

the two OSes perform more similarly. At small processor

counts, MPT3 outperforms Catamount by a factor of 15,

due to the shared memory device. At moderate processor

counts the two perform equally well, but as with MPT2

we see CLE outperforming Catamount at larger processor

counts with the crossover again appearing between 512

and 1024 processors.

Broadcast

During an MPI Broadcast operation, one processor in

the communicator sends some piece of data to all other

processors in the communicator. This operation can be

very expensive and details of how it is performed vary

significantly between MPI implementations. We see in

the both graphs of Figure 11 a distinctive bath tub shape,

where CLE performs better at the extreme ends of

processor counts, but Catamount performs better, by a

large margin, in the middle. It does appear that CLE and

Catamount performance are roughly equivalent by 1280

processor cores, but without further data we are unable to

say whether this trend continues to larger processor

counts.

Figure 11: IMB Broadcast

Allreduce

CUG 2008 Proceedings

 7 of 8

The Allreduce benchmark measures the time needed

to perform some operation over data from all processors

in a communicator and report the result back to all

processors. For example, an Allreduce may take a scalar

value from each processor and report their sum back to all

of the processors. In the top graph of figure Figure 12 we

see that for nearly every processor count and message

size, Catamount outperforms CLE with MPT2, although

there are signs that CLE may begin to perform equally

well at some point beyond 1280 processors. Due to the

shared memory device in MPT3, the bottom graph of

Figure 12 tells a significantly different story. The on-

node performance benefits of MPT3 are obvious out to

roughly 16 processors, at which point Catamount begins

performing slightly better. Once again, a transition occurs

between 512 and 1024 processors with the performance

ratio favoring CLE at larger processor counts. Though

further work is required to determine if this represents a

consistent trend, we see that the underlying algorithm

used in the MPT3 implementation of Allreduce is able to

benefit significantly from on-node communication

improvements.

Figure 12: IMB Allreduce

AlltoAll

As the name implies, the MPI AlltoAll operation

sends some message from each process in a

communicator to each other process in that

communicator. This operation has a significant memory

requirements at large processor counts and message sizes.

For this reason, AlltoAll was only measured up to 1024

processors. We see in Figure 13 that Catamount

outperforms CLE with MPT2 across all message sizes and

processor counts, although MPT2 appears to improve in

comparison around 1024 processors. With the exception

of extremely low processor counts, the same can be said

for CLE with MPT3, although MPT3 does seem to

outperform MPT2.

Figure 13: IMB AlltoAll

5. Conclusions and Further Work

While Catamount is a significantly more mature

compute node operating system significant progress has

been made in making Linux a lightweight and scalable

compute node OS.

Given that Catamount is single-threaded and

originally designed for single-process nodes, it is not

surprising that Catamount has a performance advantage

when running on just one core of a dual-core node.

However, since Linux evolved in the workstation and

server space, where multi-threading is a necessity, it is

reasonable to expect it to demonstrate strong competition

on multi-core nodes. Applications more sensitive to

network latency and bandwidth rather floating point

CUG 2008 Proceedings

 8 of 8

potential may still benefit from running on Catamount

using one processor core per node.

MPT3 seems to level the playing field between

Catamount and CLE for almost every kernel we analyzed.

On-node communication improvements were particularly

beneficial to several benchmarks. Applications that

perform primarily nearest-neighbor communications will

likely see a significant performance improvement with

CLE.

For reasons that we have not yet identified, numerous

benchmarks showed a performance advantage for CLE at

above 1024 processors. Based on the HPCC results, we

speculate that this may be due to improved latency and

bandwidth for CLE due to improved sharing of the NIC

between the cores. We look forward to extending this

study to larger processor counts.

When viewing this data as a whole, we can say that

CLE, with MPT3, performs comparably to Catamount.

And while individual application performance may vary,

we see no reason, given the above data, for applications to

perform significantly worse under CLE. In the future we

would like to revisit these results in the context of

application data.

Given the opportunity to perform further experiments

in such a controlled environment, we’d like to also

explore the effects of Linux buffering on I/O performance

at scale. We are also seeking opportunities to repeat these

experiments at larger scales.

6. References

1. W. J. Camp and J. L. Tomkins, “Thor’s hammer: The

first version of the Red Storm MPP architecture,”

Proceedings of the SC 2002 Conference on High

Performance Networking and Computing, Baltimore,

MD, November 2002.

2. Sandia Red Storm System.

3. S. R. Alam, R. F. Barrett, M. R. Fahey, J. A. Kuehn,

O. E. B. Messer, R. T. Mills, P. C. Roth, J. S. Vetter,

and P. H. Worley, “An Evaluation of the ORNL Cray

XT3,” International Journal of High Performance

Computing Applications, 2006.

4. J. S. Vetter, S. R. Alam, et al., “Early Evaluation of

the Cray XT3,” Proc. IEEE International Parallel and

Distributed Processing Symposium (IPDPS), 2006.

5. Cray XT3 Data Sheet,

http://cray.com/downloads/Cray_XT3_Datasheet.pdf

6. Cray XT4 Data Sheet,

http://cray.com/downloads/Cray_XT4_Datasheet.pdf

7. J.A. Kuehn and N.L. Wichmann, “HPCC update and

analysis,” Proc. Cray Users Group 2006 Annual

Meeting, 2006.

8. D. Weisser, N. Nystrom et al., “Performance of

applications on the Cray XT3,” Proc. Cray Users

Group 2006 Annual Meeting, 2006.

9. P. Luszczek, J. Dongarra, D. Koester, R.

Rabenseifner, B. Lucas, J. Kepner, J. McCalpin, D.

Bailey, D. Takahashi, “Introduction to the HPC

Challenge Benchmark Suite,” March, 2005.

10. J. Dongarra, P. Luszczek, “Introduction to the

HPCChallenge Benchmark Suite,” ICL Technical

Report, ICL-UT-05-01, (Also appears as CS Dept.

Tech Report UT-CS-05-544), 2005.

11. P. Luszczek, D. Koester, “HPC Challenge v1.x

Benchmark Suite,” SC|05 Tutorial-S13, Seattle,

Washington, November 13, 2005.

12. High Performance Computing Challenge Benchmark

Suite Website, http://icl.cs.utk.edu/hpcc/

13. Studham, R.S., Kuehn, J.A., White, J.B., Fahey,

M.R., Carter, S., and Nichols, J.A., “Leadership

Computing at Oak Ridge National Laboratory”, Proc.

Cray User Group Meeting

14. Kelly, Suzanne, Brightwell, Ron, “Software

Architecture of the Lightweight Kernel, Catamount,”

Proc. Cray Users Group 2005 Annual Meeting, 2005.

15. Wallace, Dave, “Compute Node Linux: Overview,

Roadmap & Progress to Date,” Proc. Cray Users

Group 2007 Annual Meeting, 2007.

16. Intel MPI Benchmarks: Users Guide and

Methodology Description, Intel GmbH,

Hermülheimer Str. 8a D-50321 Brühl, Germany, June

2006.

17. Worley, Patrick H., “More fun with the Parallel

Ocean Problem”, Second Annual North American

Cray Technical Workshop, 2008.

18. Kuehn, Jeffery A., Larkin, Jeff, Wichmann, Nathan,

“An Analysis of HPCC Results on the Cray XT4,”

Proc. Cray Users Group 2007 Annual Meeting, 2007.

19. Alam, S.R., Barrett, R.F., Fahey, M.R., Kuehn, J.A.,

Larkin, J.M., Sankaran, R., Worley, P.H., “Cray

XT4: An Early Evaluation for Petascale Scientific

Simulation,” Proc. Of the SC07 International

Conference on High Performance Computing,

Networking, Storage, and Analysis, Reno, NV,

November 2007.

