A Micro-Benchmark Evaluation of Catamount and Cray Linux Environment (CLE) Performance

Jeff Larkin
Cray Inc.
<larkin@cray.com>

Jeff Kuehn
ORNL
<kuehn@ornl.gov>
Does CLE waddle like a penguin, or run like a catamount?

THE BIG QUESTION!
Overview

Background
- Motivation
- Catamount and CLE
- Benchmarks
- Benchmark System

Benchmark Results
- IMB
- HPCC

Conclusions
BACKGROUND
Motivation

- Last year at CUG “CNL” was in its infancy
- Since CUG07
 - Significant effort spent scaling on large machines
 - CNL reached GA status in Fall 2007
 - Compute Node Linux (CNL) renamed Cray Linux Environment (CLE)
 - A significant number of sites have already made the change
 - Many codes have already ported from Catamount to CLE

Catamount scalability has always been touted, so how does CLE compare?
- Fundamentals of communication performance
 - HPCC
 - IMB

What should sites/users know before they switch?
Background: Catamount

- Developed by Sandia for Red Storm
- Adopted by Cray for the XT3
- Extremely light weight
 - Simple Memory Model
 - No Virtual Memory
 - No mmap
 - Reduced System Calls
 - Single Threaded
 - No Unix Sockets
 - No dynamic libraries
 - Few Interrupts to user codes
- Virtual Node (VN) mode added for Dual-Core
First, we tried a full SUSE Linux Kernel.

Then, we “put Linux on a diet.”

With the help of ORNL and NERSC, we began running at large scale.

By Fall 2007, we released Linux for the compute nodes.

What did we gain?

- Threading
- Unix Sockets
- I/O Buffering
Background: Benchmarks

HPCC

- Suite of several benchmarks, released as part of DARPA HPCS program
 - **MPI performance**
 - Performance for varied temporal and spatial localities
- Benchmarks are run in 3 modes
 - SP – 1 node runs the benchmark
 - EP – Every node runs a copy of the same benchmark
 - **Global – All nodes run benchmark together**

Intel MPI Benchmarks (IMB) 3.0

- Formerly Pallas benchmarks
- Benchmarks standard MPI routines at varying scales and message sizes
Background: Benchmark System

- All benchmarks were run on the same system, “Shark,” and with the latest OS versions as of Spring 2008

System Basics
- Cray XT4
- 2.6 GHz Dual-Core Opterons (Able to run to 1280 Cores)
- DDR2-667 Memory, 2GB/core

Catamount (1.5.61)

CLE, MPT2 (2.0.50)

CLE, MPT3 (2.0.50, xt-mpt 3.0.0.10)
BENCHMARK RESULTS
HPCC
Parallel Transpose (Cores)

GB/s vs Processor Cores

- Catamount SN
- Catamount VN
- CLE MPT2 N1
- CLE MPT2 N2
- CLE MPT3 N1
- CLE MPT3 N2
Parallel Transpose (Sockets)

- Catamount SN
- Catamount VN
- CLE MPT2 N1
- CLE MPT2 N2
- CLE MPT3 N1
- CLE MPT3 N2
MPI Random Access

![Graph showing GUP/s vs Processor Cores for different systems: Catamount SN, Catamount VN, CLE MPT2 N1, CLE MPT2 N2, CLE MPT3 N1, CLE MPT3 N2. The y-axis represents GUP/s and the x-axis represents Processor Cores.](image-url)
MPI-FFT (cores)
MPI-FFT (Sockets)

GFlops/s vs Sockets for different configurations:
- Catamount SN
- Catamount VN
- CLE MPT2 N1
- CLE MPT2 N2
- CLE MPT3 N1
- CLE MPT3 N2

CUG2008
Naturally Ordered Latency

<table>
<thead>
<tr>
<th></th>
<th>Time (usec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catamount SN</td>
<td>6.41346</td>
</tr>
<tr>
<td>CLE MPT2 N1</td>
<td>9.08375</td>
</tr>
<tr>
<td>CLE MPT3 N1</td>
<td>9.41753</td>
</tr>
<tr>
<td>Catamount VN</td>
<td>12.3024</td>
</tr>
<tr>
<td>CLE MPT2 N2</td>
<td>13.8044</td>
</tr>
<tr>
<td>CLE MPT3 N2</td>
<td>9.799</td>
</tr>
</tbody>
</table>
IMB Ping Pong Latency (N1)

Time (usec)

Message Size (B)
IMB Ping Pong Latency (N2)
IMB Ping Pong Bandwidth

![Graph showing IMB Ping Pong Bandwidth with different lines representing Catamount, CLE MPT2, and CLE MPT3. The x-axis represents Message Size (Bytes) ranging from 0 to 1200, and the y-axis represents MB/s ranging from 0 to 600. The graph illustrates the performance of each category as the message size increases.]
MPI Barrier (Lin/Lin)

- **Time (usec)**: The y-axis represents time in microseconds, ranging from 0 to 160.
- **Processor Cores**: The x-axis represents the number of processor cores, ranging from 0 to 1500.

Three lines are plotted on the graph:
- **Catamount**
- **CLE MPT2**
- **CLE MPT3**

The graph shows the performance of different MPI barrier implementations as the number of processor cores increases.
SendRecv (Catamount/CLE MPT2)
SendRecv (Catamount/CLE MPT3)
Broadcast (Catamount/CLE MPT2)
Broadcast (Catamount/CLE MPT3)
Allreduce (Catamount/CLE MPT2)
Allreduce (Catamount/CLE MPT3)
AlltoAll (Catamount/CLE MPT2)
AlltoAll (Catamount/CLE MPT3)

The diagram illustrates the performance of AlltoAll operations on a Catamount/CLE MPT3 system, showing the ratio of times compared to the actual peak performance. The x-axis represents message size, ranging from 2 to 1024, while the y-axis represents the ratio of times, with values from 0 to 2. The graph shows a peak performance near 16 messages, with varying ratios for different message sizes and system configurations.
CONCLUSIONS
What we saw

Catamount
- Handles Single Core (SN/N1) Runs slightly better
- Seems to handle small messages and small core counts slightly better

CLE
- Does very well on dual-core
- Likes large messages and large core counts
- MPT3 helps performance and closes the gap between QK and CLE
What’s left to do?

- We’d really like to try this again on a larger machine
 - Does CLE continue to beat Catamount above 1024, or will the lines converge or cross?
- What about I/O?
 - Linux adds I/O buffering, how does this affect I/O performance at scale?
- How does this translate into application performance?
 - See "Cray XT4 Quadcore: A First Look", Richard Barrett, et.al., Oak Ridge National Laboratory (ORNL)
Does CLE waddle like a penguin, or run like a catamount?

CLE RUNS LIKE A BIG CAT!
Acknowledgements

This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Thanks to Steve, Norm, Howard, and others for help investigating and understanding these results.