
Domain decomposition performance on
ELMFIRE plasma simulation code

Francisco Ogando1,2, S. Janhunen2. J. Heikkinen3,
T. Kiviniemi2, S. Leerink2 and M. Nora2

1) UNED, Spain
2) TKK-EURATOM Tekes Association, Finland
3) VTT-EURATOM Tekes Association, Finland

ABSTRACT: ELMFIRE is a gyrokinetic full-f plasma simulation code, based on a
particle-in-cell algorithm and parallelized with MPI. The coupled calculation of
electrostatic field and plasma particle dynamics leads to huge memory demands that
can be splitted among processors by the introduction of Domain Decomposition. This
technique modifies the MPI-process topology with influence to collective operations.
This paper shows the performance change due to the new algorithm, as well as the
extension of capabilities in the CSC louhi cluster.

KEYWORDS: Gyrokinetics, domain decomposition, plasma simulation

1 Introduction

Plasma turbulence has shown to be responsible for
the so called anomalous transport that compromises the
magnetic confinement of fusion plasmas. This anomalous
transport takes values hundreds of times higher than
predicted by the neoclassical theory. The study of the
dynamics of turbulent plasmas has become a key issue in
order to control the generation of turbulence in a plasma
and its influence on the degradation of confinement.

With that purpose the ELMFIRE code was developed
as a joint project between VTT and TKK. It is a Monte
Carlo full-f nonlinear gyrokinetic plasma simulation code
in five-dimensional toroidal geometry. The code includes
several physical features like multiple different species,
collisions between them and neutral particle ionization.
The movement equations take into consideration the
existing drifts in tokamak plasmas.

The gyrokinetic model simplifies the description of
motion of charged particle motion by averaging it over
the quick gyration around the magnetic fields lines. This
produces a reduction of phase space to five dimensions
and thus reducing the computational requirements for its
solving. The full-f formulation of the problem includes

solving the whole five dimensional particle distributions,
opposite to the delta-f technique, which for further
simplification considers perturbations from local
Maxwellian distributions. However the full-f technique
included in ELMFIRE produces accurate results even in
the presence of strong gradients or perturbations in the
plasma.

2 ELMFIRE overview

ELMFIRE[2] is a full-f gyrokinetic plasma simulation
code developed as a cooperation between Helsinki
University of Technology (TKK) and VTT Technical
Research Centre of Finland. The code is based on a
particle-in-cell (PIC) algorithm, which calculates the
dynamics of a set (107-109) of markers, each marker
corresponding to about 1010 particle gyrocenters. The
markers are followed in a toroidal geometry inside a
given magnetic field background and a self-consistent
electric field. Since ELMFIRE is a PIC code, from now
on markers will be referred to as particles, taking into
account the difference with actual plasma particles.
Particles are associated with a selected main ionic species

CUG 2008 Proceedings 1 of 7

(normally hydrogen or deuterium), electrons and
optionally higher-Z impurities (e.g. Oxygen). The
treatment of electrons may be either using the PIC
algorithm or with an adiabatic model, which assumes the
electron density ne = <ni>*exp(eΦ/kT), <ni> being a local
average electron density. Collisions between species may
be included in the PIC algorithm. As the code is
computationally highly demanding in both memory and
CPU-time usage, the code has been parallelized using the
MPI[3] (Message Passing Interface) standard.

ELMFIRE calculates plasma dynamics with a
quasineutrality condition that forces ion and electron
charges to neutralize each other every time step over all
system cells. This is justified considering the plasma
frequency and characteristic times. Fields and particles
are evolved consistently in time so that plasma neutrality
is kept at any moment. The calculation of motion,
decomposed as mentioned in the introduction, is
performed partially explicitly and partially implicitly
(consistently with the electric field advanced in time),
depending on the sensitivity of the given motion on the
equation. The electrostatic field is then calculated using
the gyrokinetic Poisson equation, considering implicitly
the previously mentioned drifts

where Φ stands for the electrostatic potential, q, m the
charge and mass of the ionic species, B the magnetic
field, ε0 the vacuum susceptibility, <·> a gyroaveraging
operatorwith Larmor radius, f the particle distribution
function, Ω the ion gyrofrequency and ni,e charge
densities. As the full-f algorithm follows accurately
arbitrarily strong plasma perturbations, the particle
distribution function f has to be sampled every time step
in order to compute the coefficients of the gyrokinetic
Poisson equation. This procedure is different from the
delta-f approach, which requires the construction of the
Poisson equation just once from the assumed particle
background which does not evolve in time. This is why
delta-f codes never had to solve the problem which is the
motivation of this article. It is the construction and
resolution of this implicit problem that leads to a
numerically heavy process of collecting data from
particles placed almost randomly across the toroidal
domain. The optimization of this collection process is the
target of the work presented in this article.

2.1 Calculation sequence
A simulation run in ELMFIRE starts with the

initialization of the particle coordinates according to
initial temperature and density profiles, which may
evolve in time. Using the gyrokinetic model, five phase-
space coordinates are stored for each particle. Particles
optionally may be unequally weighed (equivalent to

different number of actual plasma particles), in which
case it is neccessary to store the particle weight as a sixth
parameter. Particles can be intuitively initialized using a
given density profile and local temperature Maxwellian
velocity distributions consistent with a given temperature
profile.

After initialization, and as a first step in every time
step, particles are propagated explicitly using a Runge-
Kutta algorithm but without consideration of either ion
polarization or electron parallel acceleration. The electric
field is considered to be zero before the first time step.
This particle propagation process demands most of the
CPU-time during a run, effectively limiting the number
of particles a single MPI process may treat in order to
achieve reasonable calculation times. Using current
processor technology a single processor may well handle
around 106 particles within a reasonable time. This
amount of particle coordinates presents no problem
regarding memory consumption.

However the number of particles has to be selected
considering the acceptable level of numerical noise
which, as it was mentioned before, is considerably higher
than with the delta-f method. This value depends on the
problem itself but 2000 particles per cell is a good
estimate.

An optional collision operator calculates the effect of
binary collisions on particle positions. Particle collisions
produce a significant effect on gyrocenter positions,
contributing to heat transport.

Once all particles have been partially propagated,
without the consideration of either ion polarization drift
or electron parallel acceleration, the electric field is
calculated from the estimated final positions of the
particles. This estimation is made consistently with the
electrostatic field under calculation.
The electrostatic potential is calculated by solving the
gyrokinetic Poisson equation on a 3D grid. Cell ordering
in the matrix is done along poloidal, radial, and toroidal
directions. The grid size is directly related to global
memory requirements, hence available memory
effectively limits the grid size that can be used. The
refinement in the toroidal direction is lower than the
refinements in the other directions since the cells are
field-oriented, following the particle streaming direction.
The particle charge density is projected onto the grid to
calculate the rhs source term for the Poisson equation.

This charge deposition procedure can be time time-
consuming, but it is performed simultaneously to the
construction of the density influence DI matrix, using
common interpolated values. The projection of densities
given the gyrocenter position is performed by sampling
four positions of the gyro orbit, as proposed by Lee [1].
This process does not pose a limit, since the array of cell
charges is much smaller than the DI matrix.

CUG 2008 Proceedings 2 of 7

∇ ٢ q٢

mB ٠
∫[−〈 〉 ∂〈 f 〉

∂
− m
q

〈 f 〉 ∇ p
٢ 〈〉]dv=−١

٠
q n i−ene

The electrostatic potential to be solved will influence
the final position of the particles, and therefore also the
densities on the RHS of the equation. This dependence is
partially linearized in order to move some of these terms
to the left hand side. Effectively (by neglecting the effect
of the Laplace operator in the equation because of the
quasineutrality condition) the advanced E-field is
calculated so that the plasma final state is electrically
neutral.

The construction of the density influence matrix
representing the influence of advanced E-field on the cell
densities is a CPU-time and memory demanding process.
The matrix is constructed from every particle, whose
position can in principle be considered random inside the
calculation system. The ratio of particles to cells is
directly related to the numerical noise of the PIC
algorithm, and is kept at values around 2000. This means
that the matrix elements are filled in random order and
with many contributions to the same element. Even
particles stored and handled by different MPI processes
may contribute to the same matrix element. These
contributions have to be interchanged between the
processes and the matrix has to be split in order to let a
parallel algebra package invert it.
The resulting matrix is sparse since it represents the
effect of cell-averaged potential values onto the cell-
averaged charge density. The charge density depends on
final particle positions, which are influenced by both ion
polarization drift and electron acceleration. Both
displacements have a spatially limited dependence on the
E-field, that is, the charge density has spatially limited
dependence on potential values. This locality has a
characteristic length of several local ion gyration
(Larmor) radii. Since the numerical implementation of
the gyrokinetic theory becomes easily impractical with
cell sizes lower than the local Larmor radius, we can
estimate the Φ → n interaction locality within several
(~10) cells around in the poloidal plane, and one in the
toroidal direction. Due to the cell ordering this matrix
structure produces a multidiagonal sparse matrix, where
diagonals correspond to non-zero interactions with
neighboring poloidal, radial and toroidal cells. Boundary
conditions can be set to either a fixed potential or a fixed
electric field.

This whole matrix has to be inverted in order to
solve the electrostatic potential. Some codes reduce the
problem to a bidimensional one, since the fluctuations
along the field lines are much lower than across them.
However, since those toroidal differences have a strong
influence on electron parallel dynamics, ELMFIRE
solves the complete 3D problem for every timestep, with
implicit consideration of electron parallel acceleration.

3 Construction of the linear problem matrix

As it has been already mentioned, the matrix
associated to the gyrokinetic Poisson equation is not
dense, but may contain around 500 non-zero values in
every row. This matrix has to be constructed from the
particle data at every timestep, and every particle
produces contributions to several (~16) matrix elements.
That means that most matrix elements will be updated
many times during matrix construction, which justifies
the need of a special storage structure optimized for
element location and updating. The used sparse algebra
packages (PESSL, PETSc) are effective for adding matrix
elements, but the update of an already included element
is not processed with an acceptable performance.

3.1 Block-based storage

The first implementation of a matrix structure made
use of the physics involved in the matrix construction.
The influence of the potential on some cells on a certain
cell density (that is the nonzero coefficients) comes from
the implementation of the following physical processes.

● The implicit consideration of the ionic polarization
drift. This process takes into account that actual
particles rotate around the gyrocenter with a
approximately circular trajectory perpendicular to
the magnetic field line with Larmor radius. This
efectively relates every cell's density to the the
potential of cells lying on the same toroidal plane at
a distance lower than twice the Larmor radius which
can be calculated analytically. This distance may
correspond to up to 15 cell lenghts. As the
polarization process require a big amount of cells for
its stencil, it is considered that the particle is situated
toroidally in the coordinate of the center of the cell,
so that this process is restricted to a given plane, not
coupling different toroidal planes (which will take

CUG 2008 Proceedings 3 of 7

Figure 1: Toroidal geometry description

much more memory). This is an approximation
which has so far proven not to invalidate the
solution.

● The implicit consideration of electron acceleration
component parallel to the magnetic field line
involves calculating a derivative following that
direction. This makes use of the neighboring cells
along the toroidal direction.

Coming from these two descriptions one can see that
the non-zero matrix coefficients will come from
surrounding cells, but located in a somehow special
structure of diagonals which may add up to 500 or more.
For this reason the matrix structure was constructed
following the actual cell distribution around every given
cell, with the pattern shown in figure 2.

This figure represents, for a given cell density under
consideration (that is, a matrix row), three toroidal
planes with the estimated non-zero matrix coefficients in
each of them. The central plane contains in the center the
cell corresponding to the matrix row. Surrounding this
cell in the central plane there is a block of cells whose
potential may be linked to the row-cell density through
the explained ion polarization process.

The neighboring planes, containing much less cells
(precisely a block of 9) include the effect of derivatives
along the toroidal direction, which are implicitly
calculated with a two-point stencil. This stencil may take
the forward and central planes, or the central and
backward planes, depending on the particle position
relative to the central plane.

This pattern of matrix row (which may contain over
500 cells) is repeated for every system cell in all
processes, since any given particle in every process may
fill one of the estimated non-zero positions. The search
operation is very fast, since it is based on matrix
coordinated for all cells. Once every process has gathered
its contribution to the matrix, the resulting matrix is
summed and splitted among processes using a single

MPI_REDUCE_SCATTER instruction which is effective
but requires high network usage since the matrix storage
may be about 500 MB in size.

This method has two main disadvantages:
1. The Larmor radius of gyration, which is directly

related to the block sizes, is different for different
radial positions and/or particle velocity. In order to
maintain the matricial search structure a single
conservative radius has to be selected, producing
efectively an overestimation of non-zero values.
During a normal run, about 25% of the estimated
non-zeros are actually filled.

2. Since particles are distributed almost randomly in
the whole system for every process, all of them have
to keep in memory the estimated non-zero positions
for the whole torus.
Because of the previous undesirable features of this

scheme, there is a considerable amount of misused
memory, and the system behaves poorly when scaling to
higher number of processors, since in any case all of
them will have to maintain data from the whole system.

During many years, the supercomputers availability
to the ELMFIRE group was moderate enough so that
scalability was not a big issue and memory consumption
was not a bottleneck for the simulations performed.
However, the available computing power at CSC has
been growing exponentially and the access to
multihundred or even thousand processor runs have
introduced the need for finer optimization of the code.

3.2 Domain decomposition
Mainly trying to overcome the second undesirable

feature of the block-based storage (detailed in previous
section) the domain decomposition method was studied
for implementation into ELMFIRE. Through this
method, the system is somehow divided into subsystems
(a.k.a. domains) in such way that the processes of a
certain domain only keeps data about itself.

The first consideration in order to implement domain
decomposition is the kind of system division to consider.
The main concern for this task lies in the domain
boundary conditions, that is, the data that a certain
domain needs to know about the surrounding ones. As it
is shown in figure 2, the non-zero values of the matrix
span several cells in the poloidal and radial directions,
while only one cell along the toroidal. This is the reason
why the toroidal onedimensional decomposition has been
implemented as a first option.

If somehow all the particles handled by a certain
process are always kept in the domain it belongs to, the
matrix coefficients produced by those particles can be
also bounded to certain matrix rows and columns. As the
matrix Aij contains the effect of potential values of a cell j
on the density of a cell i, this text is going to follow the
notation of i-cells and j-cells referring to those defining
matrix row and column respectively. An i-cell is a cell

CUG 2008 Proceedings 4 of 7

Figure 2: Non-zero coefficient stencil around a given
cell

whose density is going to be affected by a certain particle
(corresponding to a matrix row), while a j-cell (related to
a certain i-cell) is a cell, whose potential is going to affect
the particle trajectory in a way that will affect the density
of the corresponding i-cell (corresponding to a matrix
coefficient Aij).

The main advantage of domain decomposition is
that, while the traditional storage method forced to store
data from all i-cells, the process of keeping all handled
particles in a certain domain will restrict the space of
possible i-cells affected by those particles.

Considering again the physical processes described
in section 3.1, both the polarization drift and the electron
parallel acceleration will require the already described
cell stencil for every considered cell. The main difference
now is that there is no need anymore to keep that stencil
for all the cells of the system.

Since the polarization drift is considered assuming
the particle centered in the domain cell, it will affect only
i-cells belonging to that domain. That is, the polarization
process will only affect i-cells lying in the given domain.

The implicit treatment electron parallel acceleration
does not consider that the particle is centered toroidally
in the cell, so a given particle may produce density
variations on cells of the neighboring domains (part of
the particle may lay outside its domain). This is the most
accurate consideration that will (in the future) be applied
to the polarization drift, and in this case it is enforced
since the stencil for this electron process is much smaller
than the one of polarization drift. As it was previously
detailed, the stencil is only the needed for calculating a
derivative along the toroidal direction in a 3D grid.

The stencil resulting of taking into account both
processes will contain the original one plus the possible
effect of a particle on the neighboring domain's density
through the limited stencil of electron parallel
acceleration. The overall resulting stencil is represented
in figure 3.

Despite the stencil being somehow bigger, it is only
stored in every process for the group of cells belonging to
its domain. That is, assuming an optimal division of one
toroidal cell per domain, the reduction of stored matrix
positions may be several times lower. The search

procedure is still based on matricial lookup, which is the
fastest possible. Now there is, however an extra lookup
step, to decide to what of the i-cell blocks the coefficient
belongs. Basically the matrix construction time is very
similar to the original one.

However, the combination of all matrix components
is different from the original algorithm, since the stored
parts of the matrix in every process may be different, and
in some cases overlapping. The combination procedure in
decomposed into two different operations.
1. Inside every domain processes are internally ordered.

Two processes are called correspondent in they share
the same internal order in two different domains.
The first operation sends and receives data from the
correspondent processes of neighboring domains.
The exchanged data relates to the stored i-cells that
do no belong the the proper domain but to the
neighboring ones. After this exchange operation
(which is simultaneously done through a
MPI_SENDRECV call) all processes store data
related only to its own domain.

2. At this stage all processes belonging to the same
domain store data related to the same cells (all the
cells of their domain), so that they now add up all
local contributions inside every domain and split it
accordingly to a matrix row division to all processes.
This operation is simultaneously done by means of a
MPI_REDUCE_SCATTER call, but using a different
communicator in every domain.
After these two operation, every process holds

exactly the same data that it would have got using the
original algorithm, being ready to feed this data to the
proper algebra package (PESSL, PETSc...).

4 Test performance

In order to test the performance of the new domain
decomposition method some representative runs have
been performed in louhi, the most powerful machine of
CSC. Louhi is a Cray-XT4 supercomputer consisting of
1012 nodes of 1 dual-core AMD Opteron processors. The
overall sustained performance is around 10 Tflops.

The sample run is representative in the sense that it
is taken from a series of test runs on the DIII-D tokamak,
that is, a real tokamak machine. The simulation
parameters, however, have been chosen to be favorable to
the domain decomposition method. The benefits from
domain decomposition are enhanced in the following
cases:
● When the linear problem matrix takes much memory

space. That is, when the potential grid has many
cells.

● When the system is solved with high toroidal
resolution, that is when the system can be divided in
as many domains as possible.

CUG 2008 Proceedings 5 of 7

Figure 3: Extended stencil for domain decomposition

 The simulation makes use of 107 million particles
and 160 thousand cells in the potential grid with 16
toroidal levels. Several runs have been performed with
varying number of processors, in the sense of a scalability
hard test. The results of the test are shown in figure 4.

The upper histograms show, for a timestep, the total
time (cpu*s) comparing the traditional method (named as
“old” and the domain decomposition (named as “dd”),
with a variety of processor number in the range 32-128.
Please note that the figure has not a lower range of zero
in the Y axis, in order to get better detail of the
subdivision in different operations.

The lower part of the figure shows the maximum
resident memory consumption, measured in the code at
runtime for several code operations. Maximum memory
use takes place for with the traditional method for matrix
construction, while for domain decomposition it is during
the process of finding what particles have to be moved to
another process (and the matrix storage is active at the
same time). Two main conclusions can be extracted from
the graph:

The domain decomposition method do not introduce
significative overheads regarding CPU-time.

The maximum memory use during code operation is
reduced strongly, even more in the case with high
processor number, when less particles are assigned to
each process (and most memory is taken by the matrix).

For the case of 128 processors (where still there are
many particles handled by each process) the memory use
is less than half the original one.

5 Conclusions

A well established method like the domain
decomposition has been successfully developed and

implemented into the ELMFIRE code for the GK-Poisson
matrix construction. This method has shown to reduce
the memory demands to less than 50% of the original
values, while not introducing overheads regarding
computing time. This method will provide the code an
immediate extension of capabilities, specially important
in supercomputers designed to hold limited memory per
node (which is actually the current trend). Also specific
parallel-mode analysis, with high resolution along the
toroidal direction, are now extended by a much higher
factor, depending on the number of toroidal domains that
can be defined in the system.

Future work on this matter include the study of
domain decomposition along the other directions, and the
joint development of storage structure which minimizes
the allocation of null elements of the matrix [4].

6 Acknowledgements

The facilities of CSC (Finnish IT Center for Science)
have been used for this work. This project has received
funding from the European Commision and support from
the CIEMAT-EURATOM association.

7 References

[1] W.W. Lee, Gyrokinetic particle simulation model, J.
Comput. Phys 72 (1987) 243-269

[2] J.A. Heikkinen, S.J. Janhunen, T.P. Kiviniemi and
F. Ogando, Full-f gyrokinetic method for particle
simulation of tokamak transport, Journal Comput.
Phys. 227 (2008) 5582-5609.

[3] William Gropp, Ewing Lusk and Anthony Skjellum,
Using MPI: Portable Parallel Programming with the
Message-Passing Interface MIT Press 1994

CUG 2008 Proceedings 6 of 7

Figure 4: Sample test at louhi: comparison results for different processor number

[4] A. Signell, et al, Scalable plasma simulation with
ELMFIRE using efficient data structures for process
communicationAccepted for publication in CPC
(2008).

CUG 2008 Proceedings 7 of 7

	1Introduction
	2ELMFIRE overview
	2.1Calculation sequence

	3Construction of the linear problem matrix
	3.1Block-based storage
	3.2Domain decomposition

	4Test performance
	5Conclusions
	6Acknowledgements
	7References

