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ABSTRACT: ELMFIRE is a gyrokinetic  full-f  plasma simulation  code,  based on a  
particle-in-cell  algorithm  and  parallelized  with  MPI.  The  coupled  calculation  of  
electrostatic  field  and plasma particle  dynamics leads to huge memory demands that  
can be splitted among processors by the introduction of Domain Decomposition. This  
technique modifies  the MPI-process topology with influence  to collective  operations.  
This  paper shows the  performance  change due to  the  new algorithm,  as well  as the  
extension of capabilities in the CSC louhi cluster.
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1 Introduction

Plasma turbulence has shown to be responsible for 
the so called anomalous transport that compromises the 
magnetic confinement of fusion plasmas. This anomalous 
transport takes values hundreds of times higher than 
predicted by the neoclassical theory. The study of the 
dynamics of turbulent plasmas has become a key issue in 
order to control the generation of turbulence in a plasma 
and its influence on the degradation of confinement. 

With that purpose the ELMFIRE code was developed 
as a joint project between VTT and TKK. It is a Monte 
Carlo full-f nonlinear gyrokinetic plasma simulation code 
in five-dimensional toroidal geometry. The code includes 
several physical features like multiple different species, 
collisions between them and neutral particle ionization. 
The movement equations take into consideration the 
existing drifts in tokamak plasmas. 

The gyrokinetic model simplifies the description of 
motion of charged particle motion by averaging it over 
the quick gyration around the magnetic fields lines. This 
produces a reduction of phase space to five dimensions 
and thus reducing the computational requirements for its 
solving. The full-f formulation of the problem includes 

solving the whole five dimensional particle distributions, 
opposite to the delta-f technique, which for further 
simplification considers perturbations from local 
Maxwellian distributions. However the full-f technique 
included in ELMFIRE produces accurate results even in 
the presence of strong gradients or perturbations in the 
plasma.

2 ELMFIRE overview

ELMFIRE[2] is a full-f gyrokinetic plasma simulation 
code developed as a cooperation between Helsinki 
University of Technology (TKK) and VTT Technical 
Research Centre of Finland. The code is based on a 
particle-in-cell (PIC) algorithm, which calculates the 
dynamics of a set (107-109) of markers, each marker 
corresponding to about 1010 particle gyrocenters. The 
markers are followed in a toroidal geometry inside a 
given magnetic field background and a self-consistent 
electric field. Since  ELMFIRE is a PIC code, from now 
on markers will be referred to as particles, taking into 
account the difference with actual plasma particles. 
Particles are associated with a selected main ionic species 
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(normally hydrogen or deuterium), electrons and 
optionally higher-Z impurities (e.g. Oxygen). The 
treatment of electrons may be either using the PIC 
algorithm or with an adiabatic model, which assumes the 
electron density ne = <ni>*exp(eΦ/kT), <ni> being a local 
average electron density. Collisions between species may 
be included in the PIC algorithm. As the code is 
computationally highly demanding in both memory and 
CPU-time usage, the code has been parallelized using the 
MPI[3] (Message Passing Interface) standard. 

ELMFIRE calculates plasma dynamics with a 
quasineutrality condition that forces ion and electron 
charges to neutralize each other every time step over all 
system cells. This is justified considering the plasma 
frequency and characteristic times. Fields and particles 
are evolved consistently in time so that plasma neutrality 
is kept at any moment. The calculation of motion, 
decomposed as mentioned in the introduction, is 
performed partially explicitly and partially implicitly 
(consistently with the electric field advanced in time), 
depending on the sensitivity of the given motion on the 
equation. The electrostatic field is then calculated using 
the gyrokinetic Poisson equation, considering implicitly 
the previously mentioned drifts 

where Φ stands for the electrostatic potential, q, m the 
charge and mass of the ionic species, B the magnetic 
field, ε0 the vacuum susceptibility, <·> a gyroaveraging 
operatorwith Larmor radius, f the particle distribution 
function, Ω the ion gyrofrequency and ni,e charge 
densities. As the full-f algorithm follows accurately 
arbitrarily strong plasma perturbations, the particle 
distribution function f has to be sampled every time step 
in order to compute the coefficients of the gyrokinetic 
Poisson equation. This procedure is different from the 
delta-f approach, which requires the construction of the 
Poisson equation just once from the assumed particle 
background which does not evolve in time. This is why 
delta-f codes never had to solve the problem which is the 
motivation of this article. It is the construction and 
resolution of this implicit problem that leads to a 
numerically heavy process of collecting data from 
particles placed almost randomly across the toroidal 
domain. The optimization of this collection process is the 
target of the work presented in this article. 

2.1 Calculation sequence
A simulation run in ELMFIRE starts with the 

initialization of the particle coordinates according to 
initial temperature and density profiles, which may 
evolve in time. Using the gyrokinetic model, five phase-
space coordinates are stored for each particle. Particles 
optionally may be unequally weighed (equivalent to 

different number of actual plasma particles), in which 
case it is neccessary to store the particle weight as a sixth 
parameter. Particles can be intuitively initialized using a 
given density profile and local temperature Maxwellian 
velocity distributions consistent with a given temperature 
profile. 

After initialization, and as a first step in every time 
step, particles are propagated explicitly using a Runge-
Kutta algorithm but without consideration of either ion 
polarization or electron parallel acceleration. The electric 
field is considered to be zero before the first time step. 
This particle propagation process demands most of the 
CPU-time during a run, effectively limiting the number 
of particles a single MPI process may treat in order to 
achieve reasonable calculation times. Using current 
processor technology a single processor may well handle 
around 106 particles within a reasonable time. This 
amount of particle coordinates presents no problem 
regarding memory consumption. 

However the number of particles has to be selected 
considering the acceptable level of numerical noise 
which, as it was mentioned before, is considerably higher 
than with the delta-f method. This value depends on the 
problem itself but 2000 particles per cell is a good 
estimate.

An optional collision operator calculates the effect of 
binary collisions on particle positions. Particle collisions 
produce a significant effect on gyrocenter positions, 
contributing to heat transport. 

Once all particles have been partially propagated, 
without the consideration of either ion polarization drift 
or electron parallel acceleration, the electric field is 
calculated from the estimated final positions of the 
particles. This estimation is made consistently with the 
electrostatic field under calculation. 
The electrostatic potential is calculated by solving the 
gyrokinetic Poisson equation on a 3D grid. Cell ordering 
in the matrix is done along poloidal, radial, and toroidal 
directions. The grid size is directly related to global 
memory requirements, hence available memory 
effectively limits the grid size that can be used. The 
refinement in the toroidal direction is lower than the 
refinements in the other directions since the cells are 
field-oriented, following the particle streaming direction. 
The particle charge density is projected onto the grid to 
calculate the rhs source term for the Poisson equation. 

This charge deposition procedure can be time time-
consuming, but it is performed simultaneously to the 
construction of the density influence DI matrix, using 
common interpolated values. The projection of densities 
given the gyrocenter position is performed by sampling 
four positions of the gyro orbit, as proposed by Lee [1]. 
This process does not pose a limit, since the array of cell 
charges is much smaller than the DI matrix. 
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The electrostatic potential to be solved will influence 
the final position of the particles, and therefore also the 
densities on the RHS of the equation. This dependence is 
partially linearized in order to move some of these terms 
to the left hand side. Effectively (by neglecting the effect 
of the Laplace operator in the equation because of the 
quasineutrality condition) the advanced E-field is 
calculated so that the plasma final state is electrically 
neutral. 

The construction of the density influence matrix 
representing the influence of advanced E-field on the cell 
densities is a CPU-time and memory demanding process. 
The matrix is constructed from every particle, whose 
position can in principle be considered random inside the 
calculation system. The ratio of particles to cells is 
directly related to the numerical noise of the PIC 
algorithm, and is kept at values around 2000. This means 
that the matrix elements are filled in random order and 
with many contributions to the same element. Even 
particles stored and handled by different MPI processes 
may contribute to the same matrix element. These 
contributions have to be interchanged between the 
processes and the matrix has to be split in order to let a 
parallel algebra package invert it. 
The resulting matrix is sparse since it represents the 
effect of cell-averaged potential values onto the cell-
averaged charge density. The charge density depends on 
final particle positions, which are influenced by both ion 
polarization drift and electron acceleration. Both 
displacements have a spatially limited dependence on the 
E-field, that is, the charge density has spatially limited 
dependence on potential values. This locality has a 
characteristic length of several local ion gyration 
(Larmor) radii. Since the numerical implementation of 
the gyrokinetic theory becomes easily impractical with 
cell sizes lower than the local Larmor radius, we can 
estimate the Φ → n interaction locality within several 
(~10) cells around in the poloidal plane, and one in the 
toroidal direction. Due to the cell ordering this matrix 
structure produces a multidiagonal sparse matrix, where 
diagonals correspond to non-zero interactions with 
neighboring poloidal, radial and toroidal cells. Boundary 
conditions can be set to either a fixed potential or a fixed 
electric field. 

This whole matrix has to be inverted in order to 
solve the electrostatic potential. Some codes reduce the 
problem to a bidimensional one, since the fluctuations 
along the field lines are much lower than across them. 
However, since those toroidal differences have a strong 
influence on electron parallel dynamics, ELMFIRE 
solves the complete 3D problem for every timestep, with 
implicit consideration of electron parallel acceleration.

3 Construction of the linear problem matrix

As it has been already mentioned, the matrix 
associated to the gyrokinetic Poisson equation is not 
dense, but may contain around 500 non-zero values in 
every row. This matrix has to be constructed from the 
particle data at every timestep, and every particle 
produces contributions to several (~16) matrix elements. 
That means that most matrix elements will be updated 
many times during matrix construction, which justifies 
the need of a special storage structure optimized for 
element location and updating. The used sparse algebra 
packages (PESSL, PETSc) are effective for adding matrix 
elements, but the update of an already included element 
is not processed with an acceptable performance.

3.1 Block-based storage

The first implementation of a matrix structure made 
use of the physics involved in the matrix construction. 
The influence of the potential on some cells on a certain 
cell density (that is the nonzero coefficients) comes from 
the implementation of the following physical processes.

● The implicit consideration of the ionic polarization 
drift. This process takes into account that actual 
particles rotate around the gyrocenter with a 
approximately circular trajectory perpendicular to 
the magnetic field line with Larmor radius. This 
efectively relates every cell's density to the the 
potential of cells lying on the same toroidal plane at 
a distance lower than twice the Larmor radius which 
can be calculated analytically. This distance may 
correspond to up to 15 cell lenghts. As the 
polarization process require a big amount of cells for 
its stencil, it is considered that the particle is situated 
toroidally in the coordinate of the center of the cell, 
so that this process is restricted to a given plane, not 
coupling different toroidal planes (which will take 
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much more memory). This is an approximation 
which has so far proven not to invalidate the 
solution.

● The implicit consideration of electron acceleration 
component parallel to the magnetic field line 
involves calculating a derivative following that 
direction. This makes use of the neighboring cells 
along the toroidal direction.

Coming from these two descriptions one can see that 
the non-zero matrix coefficients will come from 
surrounding cells, but located in a somehow special 
structure of diagonals which may add up to 500 or more. 
For this reason the matrix structure was constructed 
following the actual cell distribution around every given 
cell, with the pattern shown in figure 2.

This figure represents, for a given cell density under 
consideration (that is, a matrix row), three toroidal 
planes with the estimated non-zero matrix coefficients in 
each of them. The central plane contains in the center the 
cell corresponding to the matrix row. Surrounding this 
cell in the central plane there is a block of cells whose 
potential may be linked to the row-cell density through 
the explained ion polarization process.

The neighboring planes, containing much less cells 
(precisely a block of 9) include the effect of derivatives 
along the toroidal direction, which are implicitly 
calculated with a two-point stencil. This stencil may take 
the forward and central planes, or the central and 
backward planes, depending on the particle position 
relative to the central plane.

This pattern of matrix row (which may contain over 
500 cells) is repeated for every system cell in all 
processes, since any given particle in every process may 
fill one of the estimated non-zero positions. The search 
operation is very fast, since it is based on matrix 
coordinated for all cells. Once every process has gathered 
its contribution to the matrix, the resulting matrix is 
summed and splitted among processes using a single 

MPI_REDUCE_SCATTER instruction which is effective 
but requires high network usage since the matrix storage 
may be about 500 MB in size.

This method has two main disadvantages:
1. The Larmor radius of gyration, which is directly 

related to the block sizes, is different for different 
radial positions and/or particle velocity. In order to 
maintain the matricial search structure a single 
conservative radius has to be selected, producing 
efectively an overestimation of non-zero values. 
During a normal run, about 25% of the estimated 
non-zeros are actually filled.

2. Since particles are distributed almost randomly in 
the whole system for every process, all of them have 
to keep in memory the estimated non-zero positions 
for the whole torus.
Because of the previous undesirable features of this 

scheme, there is a considerable amount of misused 
memory, and the system behaves poorly when scaling to 
higher number of processors, since in any case all of 
them will have to maintain data from the whole system.

During many years, the supercomputers availability 
to the ELMFIRE group was moderate enough so that 
scalability was not a big issue and memory consumption 
was not a bottleneck for the simulations performed. 
However, the available computing power at CSC has 
been growing exponentially and the access to 
multihundred or even thousand processor runs have 
introduced the need for finer optimization of the code.

3.2 Domain decomposition
Mainly trying to overcome the second undesirable 

feature of the block-based storage (detailed in previous 
section) the domain decomposition method was studied 
for implementation into ELMFIRE. Through this 
method, the system is somehow divided into subsystems 
(a.k.a. domains) in such way that the processes of a 
certain domain only keeps data about itself.

The first consideration in order to implement domain 
decomposition is the kind of system division to consider. 
The main concern for this task lies in the domain 
boundary conditions, that is, the data that a certain 
domain needs to know about the surrounding ones. As it 
is shown in figure 2, the non-zero values of the matrix 
span several cells in the poloidal and radial directions, 
while only one cell along the toroidal. This is the reason 
why the toroidal onedimensional decomposition has been 
implemented as a first option.

If somehow all the particles handled by a certain 
process are always kept in the domain it belongs to, the 
matrix coefficients produced by those particles can be 
also bounded to certain matrix rows and columns. As the 
matrix Aij contains the effect of potential values of a cell j 
on the density of a cell i, this text is going to follow the 
notation of i-cells and j-cells referring to those defining 
matrix row and column respectively. An i-cell is a cell 
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whose density is going to be affected by a certain particle 
(corresponding to a matrix row), while a j-cell (related to 
a certain i-cell) is a cell, whose potential is going to affect 
the particle trajectory in a way that will affect the density 
of the corresponding i-cell (corresponding to a matrix 
coefficient Aij).

The main advantage of domain decomposition is 
that, while the traditional storage method forced to store 
data from all i-cells, the process of keeping all handled 
particles in a certain domain will restrict the space of 
possible i-cells affected by those particles.

Considering again the physical processes described 
in section 3.1, both the polarization drift and the electron 
parallel acceleration will require the already described 
cell stencil for every considered cell. The main difference 
now is that there is no need anymore to keep that stencil 
for all the cells of the system.

Since the polarization drift is considered assuming 
the particle centered in the domain cell, it will affect only 
i-cells belonging to that domain. That is, the polarization 
process will only affect i-cells lying in the given domain.

The implicit treatment electron parallel acceleration 
does not consider that the particle is centered toroidally 
in the cell, so a given particle may produce density 
variations on cells of the neighboring domains (part of 
the particle may lay outside its domain). This is the most 
accurate consideration that will (in the future) be applied 
to the polarization drift, and in this case it is enforced 
since the stencil for this electron process is much smaller 
than the one of polarization drift. As it was previously 
detailed, the stencil is only the needed for calculating a 
derivative along the toroidal direction in a 3D grid.

The stencil resulting of taking into account both 
processes will contain the original one plus the possible 
effect of a particle on the neighboring domain's density 
through the limited stencil of electron parallel 
acceleration. The overall resulting stencil is represented 
in figure 3.

Despite the stencil being somehow bigger, it is only 
stored in every process for the group of cells belonging to 
its domain. That is, assuming an optimal division of one 
toroidal cell per domain, the reduction of stored matrix 
positions may be several times lower. The search 

procedure is still based on matricial lookup, which is the 
fastest possible. Now there is, however an extra lookup 
step, to decide to what of the i-cell blocks the coefficient 
belongs. Basically the matrix construction time is very 
similar to the original one.

However, the combination of all matrix components 
is different from the original algorithm, since the stored 
parts of the matrix in every process may be different, and 
in some cases overlapping. The combination procedure in 
decomposed into two different operations.
1. Inside every domain processes are internally ordered. 

Two processes are called correspondent in they share 
the same internal order in two different domains. 
The first operation sends and receives data from the 
correspondent processes of neighboring domains. 
The exchanged data relates to the stored i-cells that 
do no belong the the proper domain but to the 
neighboring ones. After this exchange operation 
(which is simultaneously done through a 
MPI_SENDRECV call) all processes store data 
related only to its own domain.

2. At this stage all processes belonging to the same 
domain store data related to the same cells (all the 
cells of their domain), so that they now add up all 
local contributions inside every domain and split it 
accordingly to a matrix row division to all processes. 
This operation is simultaneously done by means of a 
MPI_REDUCE_SCATTER call, but using a different 
communicator in every domain.
After these two operation, every process holds 

exactly the same data that it would have got using the 
original algorithm, being ready to feed this data to the 
proper algebra package (PESSL, PETSc...).

4 Test performance

In order to test the performance of the new domain 
decomposition method some representative runs have 
been performed in louhi, the most powerful machine of 
CSC. Louhi is a Cray-XT4 supercomputer consisting of 
1012 nodes of 1 dual-core AMD Opteron processors. The 
overall sustained performance is around 10 Tflops.

The sample run is representative in the sense that it 
is taken from a series of test runs on the DIII-D tokamak, 
that is, a real tokamak machine. The simulation 
parameters, however, have been chosen to be favorable to 
the domain decomposition method. The benefits  from 
domain decomposition are enhanced in the following 
cases:
● When the linear problem matrix takes much memory 

space. That is, when the potential grid has many 
cells.

● When the system is solved with high toroidal 
resolution, that is when the system can be divided in 
as many domains as possible.
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 The simulation makes use of 107 million particles 
and 160 thousand cells in the potential grid with 16 
toroidal levels.  Several runs have been performed with 
varying number of processors, in the sense of a scalability 
hard test. The results of the test are shown in figure 4.

The upper histograms show, for a timestep, the total 
time (cpu*s) comparing the traditional method (named as 
“old” and the domain decomposition (named as “dd”), 
with a variety of processor number in the range 32-128. 
Please note that the figure has not a lower range of zero 
in the Y axis, in order to get better detail of the 
subdivision in different operations.

The lower part of the figure shows the maximum 
resident memory consumption, measured in the code at 
runtime for several code operations. Maximum memory 
use takes place for with the traditional method for matrix 
construction, while for domain decomposition it is during 
the process of finding what particles have to be moved to 
another process (and the matrix storage is active at the 
same time). Two main conclusions can be extracted from 
the graph:

The domain decomposition method do not  introduce 
significative overheads regarding CPU-time.

The maximum memory use during code operation is 
reduced strongly, even more in the case with high 
processor number, when less particles are assigned to 
each process (and most memory is taken by the matrix).

For the case of 128 processors (where still there are 
many particles handled by each process) the memory use 
is less than half the original one.

5 Conclusions

A well established method like the domain 
decomposition has been successfully developed and 

implemented into the ELMFIRE code for the GK-Poisson 
matrix construction. This method has shown to reduce 
the memory demands to less than 50% of the original 
values, while not introducing overheads regarding 
computing time. This method will provide the code an 
immediate extension of capabilities, specially important 
in supercomputers designed to hold limited memory per 
node (which is actually the current trend). Also specific 
parallel-mode analysis, with high resolution along the 
toroidal direction, are now extended by a much higher 
factor, depending on the number of toroidal domains that 
can be defined in the system.

Future work on this matter include the study of 
domain decomposition along the other directions, and the 
joint development of storage structure which minimizes 
the allocation of null elements of the matrix [4].
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