

## The Lustre Centre of Excellence at ORNL

Makia Minich Clustre Monkey, HPC Software Stack Lustre Group

May 2008



# Introduction

- Lustre Centre of Excellence (LCE)
  - Established Nov 2006 by Cluster File Systems, Inc. (acquired by Sun in Sept 2007) in the National Center for Computational Sciences (NCCS) at Oak Ridge National Lab (ORNL).
- ORNL deploying a peta-scale supercomputer at by the end of 2008, needs a matching filesystem.
- Scientific application teams could benefit from closer interaction with filesystems architects to increase I/O performance.
- Performance and scalability as systems keep growing larger.



# **Goals for the LCE**

- Enhance the scalability of the Lustre File System to meet the performance requirements of petascale systems
- Build Lustre expertise through training and workshops
- Assist scientific application teams in getting the maximum I/O performance from their applications.



# **LCE Resources**

- Several resources allocated to the LCE
  - > Three senior engineers on site at ORNL
  - Other senior engineers and architects from Lustre Team provide guidance as and when required.
  - > Quality Engineering resources.
  - > Support Engineering resources.
  - > Program Management resources.



# LCE: 2008 Milestones

- January June 2008
  - Mitigate risk of Cray supplied Lustre
  - Organize a Lustre Summit at ORNL
  - Establish a baseline peak and delivered performance numbers for a scalable unit.
  - Complete implementation and verify improvements for scalability studies from the previous contract period
  - Organize an application workshop (early 2008)
  - Ongoing Lustre support and I/O optimisations for applications
  - Provide early access to a ZFS based release
  - Assist in identifying and correcting deficiencies in Lustre and LNET encountered at ORNL



# LCE: 2008 Milestones

#### • July – December 2008

- Support the deployment of 1PF system
- Ongoing Lustre support and I/O optimizations for applications
- Provide Lustre Internals training
- Demonstrate the delivery of at least 85% of the peak aggregate I/O bandwidth across the entire PF storage system to Lustre clients.
- On-going operational support in deploying a center wide file system based on Lustre at ORNL
- Address the goal of taking scalability, performance, and robustness of Lustre to the level required by multi-petaflop systems.
- November 2008 develop milestones for the third year



# LCE Summit

- Held February, 2008 in Burlington, MA
- Attendees from most of our customers.
- "Achievements and Vision Going Forward" was the theme of the summit



## Lustre – Achievements so far

| Issue                         | Result                                                  |
|-------------------------------|---------------------------------------------------------|
| The most scalable HPC FS      | Good – 5 years in a row now, 7 of the top 10            |
| Offering high product quality | Improving, but far from a Skype or OS X like experience |
| Broad adoption                | Not yet, not on track for it                            |



# Lustre Vision going forward

| Facet                   | Activity                                                                                          | Difficulty | Priority | Timeframe   |
|-------------------------|---------------------------------------------------------------------------------------------------|------------|----------|-------------|
| Product<br>Quality      | Major work is needed, except on networking                                                        | High       | High     | 2008        |
| Performance<br>fixes    | Systematic benchmarking & tuning                                                                  | Low        | Medium   | 2009        |
| More HPC<br>Scalability | Clustered MDS, Flash cache, WB cache, <i>Request Scheduling</i> , Resource management, <i>ZFS</i> | Medium     | Medium   | 2009 - 2012 |
| Wide area<br>features   | Security, WAN performance, proxies, replicas                                                      | Medium     | Medium   | 2009 - 2012 |
| Broad<br>adoption       | Combined pNFS / Lustre exports                                                                    | High       | Low      | 2009 - 2012 |

Note: These are visions, not commitments



# **LCE Summit: Users Top 5 Priorities**

- System and File System Administration
- Improved support for multi-clustered environments
- Data Integrity
- Evolve Lustre towards a more community driven development model
- Support for ultra-large clusters and WAN



# **Enhancing I/O Efficiency**

- As system size and filesystem size grow, applications need to modify their I/O handling.
- Case Study on improving the performance for the Parallel Ocean Program (POP) on the Jaguar system at NCCS in Oak Ridge National Laboratory.
- Results of paper submitted by:
  - > Wang Di (Sun Microsystems)
  - > Galen Shipman (ORNL)
  - > Sarp Oral (ORNL)
  - > Shane Canon (ORNL)



# **POP Background**

- "POP is an ocean circulation model which solves the three-dimension primitive equations for fluid motions on the sphere."
- Grid dimension for this testing: 3600x2800x42
  > 42 is the depth of the ocean chosen for this testing.



http://climate.lanl.gov/Models/POP/



# **POP I/O Pattern**

- POP is an ocean circulation model for resolving the three-dimensional primitives equation.
  - > Creates 4 files: history, movie, restart and tavg.
  - > Only restart and tavg file are relatively big. (tavg 13G, restart 28G).
  - In most cases, the I/O size is 65M from each client - 3600 \* 2400 \* byte-length of the element
- It was seen that the history file dominated most of the I/O, so work focused on the I/O for this file.
  - > File is segmented by horizontal layering of the ocean.
  - > 42 Segments for our configuration.



#### POP IO model

#### > General Scientific application IO layer



Figure 1. HPC application software stack



### POP originally implements I/O in one of two ways

- > POSIX(Fortran Record)
  - 42 clients, the performance is ok, but not very convenient.
- > NetCDF

- Does not support parallel I/O. And the performance is very bad.



- HDF5 porting
  - > HDF5 is one of the most popular scientific I/O LIB right now.
  - > It supports parallel I/O by MPI-IO.
  - Re-implement POP with HDF5 for investigating performance of POP + HDF5 + Lustre.



### HDF5 performance investigation

- > HDF5 manages data and metadata in the single file by setting different data\_set.
- > Writing extra metadata block for each HDF5 file. (overhead)
- > HDF5 support different I/O API. (POSIX, Independent, collective)



- Several HDF5 parallel I/O features.
  - > Open existing file (TRUNC flags) will cause all the clients to call MPI\_Set\_file\_size(truncate) at the same time.
  - If open HDF5 file with write flag, then it will call flush when close the file.
  - Improper using data-sieving(read-modify-write) in HDF5 collective write mode.
    - Read-modify-write is very expensive for liblustre, since no client cache there.



• Performance Results

| I/O Method       | I/O Processes | Time Step     | Duration of | Overhead |
|------------------|---------------|---------------|-------------|----------|
|                  |               | Length (mins) | I/O (mins)  | %        |
| NetCDF           | 1             | 60            | 26          | 43       |
| Fortran record   | 1             | 60            | 9           | 15       |
| HDF5 Collective  | 42            | 60            | 12          | 20       |
| HDF5 Independent | 42            | 60            | 2           | 3        |



- Lustre ADIO driver
  - The final target is to resolve all the improper I/O problems in Lustre ADIO driver
  - > For POP
    - Fix that improper read-modify-write in ADIO driver.
    - Split big I/O size to stripe size I/O, because application could achieve best I/O performance with stripe size I/O.



# Links

### ORNL's LCE Site

> http://ornl-lce.clusterfs.com

LCE Summit Slides

http://ornl-lce.clusterfs.com/images/c/c6/LCESummitSlides.pdf



# **Thank You**



## The Lustre Centre of Excellence at ORNL

Makia Minich (makia@sun.com) Clustre Monkey, HPC Software Stack Lustre Group

May 2008