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Overview

• System Introductions

• Synthetic Benchmark Results

• Application Benchmark Results

• Conclusions
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• HPCx (Phase 3): 160 IBM e-Server p575 nodes
– SMP cluster, 16 Power5 1.5 GHz cores per node
– 32 GB of RAM per node (2 GB per core)
– IBM HPS interconnect (aka Federation)
– 12.9 TFLOP/s Linpack, No 101 on top500

• HECToR (Phase 1): Cray XT4
– MPP, 5664 nodes, 2 Opteron 2.8 GHz cores per node
– 6 GB of RAM per node (3 GB per core)
– Cray Seastar2 torus network 
– 54.6 TFLOP/s Linpack, No 17 on top500

• Also included in some plots:
– HECToR Test and Development system (TDS)

– Cray XT4, 64 nodes: 2.6 GHz dual core, 4 GB RAM/node

Systems for comparison
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System Comparison (cont)
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Synthetic Benchmarks

• Memory Bandwidth
– Streams

• MPI Bandwidth
– Intel MPI Benchmarks

– PingPing
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Memory bandwidth - Streams
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Memory bandwidth - Streams

• Can clearly see caches

• HECToR better at L1, slightly better on main memory
– HPCx has advantage for intermediate array sizes.

• Underpopulating nodes (1 core per chip) gives improvements 
on both systems
– memory bandwidth cannot sustain 2 cores per chip
– HECToR worse than HPCx, especially on main memory
– Of course, 1 core/chip means double the resource for same no. tasks

• TDS has lower clock rate than HECToR, but has higher 
bandwidth from main memory!
– 4=2+2 GB RAM on TDS is symmetric, interleaving possible
– 6=4+2 GB RAM  on HECToR only allows partial interleaving
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MPI bandwidth - PingPing

Intel MPI Multi Ping Ping Benchmark
System Comparison 
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HPCx: 16 cores per node

HPCx reaches 
saturation point 
earlier – HECToR
may scale better

On both systems the 
latency (via IMB 
PingPong) ~5.5µs

AlltoAll - HPCx has 
the advantage for 
small (<100 bytes) 
messages, HECToR
outperforms HPCx
for larger messages 

140 MB/s

720 MB/s
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Applications

• Fluid Dynamics
– PDNS3D
– Ludwig

• Fusion
– Centori
– GS2

• Ocean Modelling
– POLCOMS

• Molecular Dynamics
– DL_POLY
– LAMMPS
– GROMACS (see paper)
– NAMD
– AMBER (see paper)
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• Finite difference code for Turbulent Flow

– shock/boundary layer interaction (SBLI)

• Simulates the flow of fluids to study turbulence

• T3 benchmark - Involves a 360x360x360 grid

• Developed by Neil Sandham, University of Southampton

Fluid Dynamics: PDNS3D (PCHAN)
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PDNS3D – compilation optimization

PDNS3D T3 Benchmark
HECToR PGI Compilation Flag Comparison, 64 cores
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PDNS3D – system comparison

PDNS3D T3 Benchmark
 System Comparison
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PDNS3D Memory Bandwidth sensitivity

PDNS3D T3 Benchmark
HECToR 
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PDNS3D T3 Benchmark
HPCx
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• Underpopulating nodes gives huge improvement (in terms of 
performance/core) on HECToR, slight improvement on HPCx

• TDS outperforms HECToR

• c.f. streams
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PDNS3D – Optimised version

• New optimised version less sensitive to memory bandwidth

PDNS3D T3 Benchmark
 System Comparison

20000

30000

40000

50000

60000

70000

80000

90000

10 100 1000 10000

Cores

Ti
m

e 
*  

C
or

es
 (s

)

HECToR 
HPCx Phase 3
HECToR, Opt
HPCx, Opt
HECToR, Opt, 1 c/n



CUG May 5-8th 2008 16

PDNS3D – Optimised version

• PathScale gives a further 10-15% improvement

PDNS3D T3 Benchmark
 System Comparison
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Fluid dynamics - Ludwig

• Ludwig
– Lattice Boltzmann code for solving 

the incompressible Navier-Stokes 
equations

– Used to study complex fluids
– Code uses a regular domain 

decomposition with local boundary 
exchanges between the subdomains

– Two problems considered, one with 
a binary fluid mixture, the other with 
shear flow 
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Ludwig 256x512x256 lattice
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Fusion

• Centori
– simulates the fluid flow inside a 

tokamak reactor developed by 
UKAEA Fusion in collaboration with 
EPCC

• GS2
– Gyrokinetic simulations of low-

frequency turbulence in tokamak
developed by Bill Dorland et al.

ITER tokamak reactor 
(www.iter.org)



CUG May 5-8th 2008 20

CENTORI

Centori, 128x128x128 problem
 System Comparison
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GS2 NEV02 benchmark
 System Comparison
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Ocean Modelling: POLCOMS

• Proudman Oceanographic 
Laboratory Coastal Ocean 
Modelling System (POLCOMS) 
– Simulation of the marine environment
– Applications include coastal 

engineering, offshore industries, 
fisheries management, marine pollution 
monitoring, weather forecasting and 
climate research 

– Uses 3-dimensional hydrodynamic 
model 
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Ocean Modelling: POLCOMS
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Molecular dynamics

• DL_POLY
– general purpose molecular dynamics 

package which can be used to 
simulate systems with very large 
numbers of atoms

• LAMMPS
– Classical Molecular Dynamics - can 

simulate wide range of materials
• NAMD

– classical molecular dynamics code 
designed for high-performance 
simulation of large biomolecular
systems

• AMBER
– General purpose biomolecular

simulation package 
• GROMACS

– General purpose MD package -
specialises in biochemical systems, 
e.g. protiens, lipids etc

Protein Dihydrofolate Reductase
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DL_POLY – system comparison

DL_POLY 3.08 - GRAMICIDIN A WITH WATER SOLVATING 
(792960 atoms)

System Comparison
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DL_POLY – system comparison

DL_POLY 3.08 - GRAMICIDIN A WITH WATER SOLVATING 
(792960 atoms)

HECToR
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LAMMPS

LAMMPS Rhodopsin benchmark, 4096000 atoms
System Comparison  
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LAMMPS Rhodopsin benchmark, 4096000 atoms
HECToR  
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LAMMPS

• On HECToR we can run a 
problem with 500 million particles

• On HPCx the limit is ~100 million 
particles

– Fewer cores available
– Less memory for per core
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NAMD

NAMD Benchmarks
 System Comparison
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Conclusions

• On a core by core basis, not much difference between 
HECToR and HPCx in terms of application performance
– But HECToR has many more cores and a more scalable 

interconnect

• Scaling better at high core counts on HECToR
– HECToR can also run much bigger problems, e.g. LAMMPS 

• Memory bandwidth cannot sustain fully populated nodes 
for both systems
– general problem for HPC systems these days
– This is seen in performance of memory bandwidth sensitive 

applications
– Problem is worse for HECToR, especially with current non-

symmetric memory setup.


