Application performance on the UK's new HECToR service

Fiona Reid^{1,2}, Mike Ashworth^{1,3}, Thomas Edwards²,
 Alan Gray^{1,2}, Joachim Hein^{1,2}, Alan Simpson^{1,2},
 Peter Knight⁴, Kevin Stratford^{1,2}, Michele Weiland^{1,2}

¹HPCX Consortium ²EPCC, The University of Edinburgh ³STFC Daresbury Laboratory ⁴EURATOM/UKAEA Fusion Association

CUG May 5-8th 2008

Acknowledgements

- STFC: Roderick Johnstone
- Colin Roach, UKAEA and Bill Dorland, University of Maryland for assistance porting GS2 to HECToR and supplying the NEV02 benchmark
- Jim Philips, UIUC and Ghengbin Zheng, UIUC for their assistance installing NAMD on HECToR

Overview

- Synthetic Benchmark Results
- Application Benchmark Results
- Conclusions

Systems for comparison

- HPCx (Phase 3): 160 IBM e-Server p575 nodes
 - SMP cluster, 16 Power5 1.5 GHz cores per node
 - 32 GB of RAM per node (2 GB per core)
 - IBM HPS interconnect (aka Federation)
 - 12.9 TFLOP/s Linpack, No 101 on top500
- HECToR (Phase 1): Cray XT4
 - MPP, 5664 nodes, 2 Opteron 2.8 GHz cores per node
 - 6 GB of RAM per node (3 GB per core)
 - Cray Seastar2 torus network
 - 54.6 TFLOP/s Linpack, No 17 on top500
- Also included in some plots:
 - HECToR Test and Development system (TDS)
 - Cray XT4, 64 nodes: 2.6 GHz dual core, 4 GB RAM/node

System Comparison (cont)

	НРСх	HECToR
Chip	IBM Power5 (dual core)	AMD Opteron (dual core)
Clock	1.5 GHz	2.8 GHz
FPUs	2 FMA	1 M, 1 A
Peak	6.0 GFlop/s	5.6 GFlop/s
Perf/core		
cores	2560	11328
Peak Perf	15.4 TFLOP/s	63.4 TFLOP/s
Linpack	12.9 TFLOP/s	54.6 TFLOP/s

Synthetic Benchmarks

- Memory Bandwidth
 - Streams
- MPI Bandwidth
 - Intel MPI Benchmarks
 - PingPing

Memory bandwidth - Streams

Memory bandwidth - Streams

- Can clearly see caches
- HECToR better at L1, slightly better on main memory
 HPCx has advantage for intermediate array sizes.
- Underpopulating nodes (1 core per chip) gives improvements on both systems
 - memory bandwidth cannot sustain 2 cores per chip
 - HECToR worse than HPCx, especially on main memory
 - Of course, 1 core/chip means double the resource for same no. tasks
- TDS has lower clock rate than HECToR, but has higher bandwidth from main memory!
 - 4=2+2 GB RAM on TDS is symmetric, interleaving possible
 - 6=4+2 GB RAM on HECToR only allows partial interleaving

MPI bandwidth - PingPing

HPCx reaches saturation point earlier – HECToR may scale better

On both systems the latency (via IMB PingPong) ~5.5µs

AlltoAll - HPCx has the advantage for small (<100 bytes) messages, HECToR outperforms HPCx for larger messages

Applications

- Fluid Dynamics
 - PDNS3D
 - Ludwig
- Fusion
 - Centori
 - GS2
- Ocean Modelling
 - POLCOMS
- Molecular Dynamics
 - DL_POLY
 - LAMMPS
 - GROMACS (see paper)
 - NAMD
 - AMBER (see paper)

Fluid Dynamics: PDNS3D (PCHAN)

- Finite difference code for Turbulent Flow
 - shock/boundary layer interaction (SBLI)
- Simulates the flow of fluids to study turbulence
- T3 benchmark Involves a 360x360x360 grid
- Developed by Neil Sandham, University of Southampton

PDNS3D – compilation optimization

PDNS3D – system comparison

PDNS3D Memory Bandwidth sensitivity

- Underpopulating nodes gives huge improvement (in terms of performance/core) on HECToR, slight improvement on HPCx
- TDS outperforms HECToR
- c.f. streams

PDNS3D – Optimised version

• New optimised version less sensitive to memory bandwidth

CUG May 5-8th 2008

PDNS3D – Optimised version

• PathScale gives a further 10-15% improvement

CUG May 5-8th 2008

Fluid dynamics - Ludwig

- Ludwig
 - Lattice Boltzmann code for solving the incompressible Navier-Stokes equations
 - Used to study complex fluids
 - Code uses a regular domain decomposition with local boundary exchanges between the subdomains
 - Two problems considered, one with a binary fluid mixture, the other with shear flow

Ludwig 256x512x256 lattice

CUG May 5-8th 2008

Fusion

ITER tokamak reactor (www.iter.org)

• Centori

- simulates the fluid flow inside a tokamak reactor developed by UKAEA Fusion in collaboration with EPCC
- GS2
 - Gyrokinetic simulations of lowfrequency turbulence in tokamak developed by Bill Dorland et al.

CENTORI

GS2

Ocean Modelling: POLCOMS

- Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS)
 - Simulation of the marine environment
 - Applications include coastal engineering, offshore industries, fisheries management, marine pollution monitoring, weather forecasting and climate research
 - Uses 3-dimensional hydrodynamic model

Ocean Modelling: POLCOMS

CUG May 5-8th 2008

Molecular dynamics

Protein Dihydrofolate Reductase

• DL_POLY

- general purpose molecular dynamics package which can be used to simulate systems with very large numbers of atoms
- LAMMPS
 - Classical Molecular Dynamics can simulate wide range of materials
- NAMD
 - classical molecular dynamics code designed for high-performance simulation of large biomolecular systems
- AMBER
 - General purpose biomolecular simulation package
- GROMACS
 - General purpose MD package specialises in biochemical systems, e.g. protiens, lipids etc

DL_POLY - system comparison

DL_POLY – system comparison

LAMMPS

LAMMPS

LAMMPS

LAMMPS performance (Rhodopsin) against problem size for HECToR and HPCx

Conclusions

- On a core by core basis, not much difference between HECToR and HPCx in terms of application performance
 - But HECToR has many more cores and a more scalable interconnect
- Scaling better at high core counts on HECToR
 HECToR can also run much bigger problems, e.g. LAMMPS
- Memory bandwidth cannot sustain fully populated nodes for both systems
 - general problem for HPC systems these days
 - This is seen in performance of memory bandwidth sensitive applications
 - Problem is worse for HECToR, especially with current nonsymmetric memory setup.