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Abstract 

Eigenvalue and eigenvector computations arise in a wide range of scientific and 
engineering applications and usually represent a huge computational challenge. It is 
therefore imperative that suitable, fast and scalable parallel eigensolver methods are 
used in order to facilitate the efficient solution of the most demanding scientific 
problems. This paper analyzes and compares the performance of some of the latest 
eigensolver algorithms, including a pre-release ScaLAPACK routine, on 
contemporary high-end systems such as the 11,328 core Cray XT4 system HECToR 
in the UK. The analysis involves symmetric matrix examples obtained from current 
problems of interest for two large-scale scientific applications. 

 

 

1 Introduction 

Efficient parallel eigensolver performance is essential for many parallel scientific and 
engineering application codes. For example, in quantum chemistry and quantum 
physics the computation of eigenvalues may be required in order to calculate 
electronic energy states. Computations often involve matrices of dimension of tens 
or even hundreds of thousands that need to be solved quickly with manageable 
memory requirements on the latest large-scale high-performance computing 
platforms. This paper analyses the performance of parallel eigensolver library 
routines across a range of applications, problem sizes and architectures. New 
developments of particular note include a pre-release ScaLAPACK implementation  
of the Multiple Relatively Robust Representations (MRRR) algorithm and the next 
generation series of high end parallel computers such as the Cray XT series and 
IBM's BlueGene. The results presented are based upon Hamiltonian matrices 
generated during electron-atom scattering calculations using the PRMAT code [1] 
and matrices from the CRYSTAL [2] package generated during the computation of 
electronic structure using Hartree-Fock theory. 
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2 Parallel Eigensolver methods 

2.1  The Symmetric Eigensolver Problem 

The standard eigenvalue problem is described as 

 

A x = λ x 

 

where A is a matrix and λ is the eigenvalue corresponding to eigenvector x. 

For symmetric matrices this equation can be rearranged to give the equation 

describing the diagonalization of matrix A: 

 

A = Q Λ Q
T 

 

where the columns of the matrix Q are represented by the orthogonal eigenvectors 

of A and the diagonal matrix  Λ  represents its associated eigenvalues. 

2.2  Underlying equations for matrix diagonalizations in PRMAT 

The PRMAT code is based on the Baluja-Burke-Morgan [3] approach for solving the 
non-relativistic Schrodinger equation describing the scattering of an electron by an 
N-electron atom or ion: 

 

HN+1 Ψ = E Ψ 

 

where E is the total energy in atomic units and HN+1 is the (N+1)-electron 

Hamiltonian matrix. In this approach the representative of the Green’s function H + L 

- EI)
-1 

is diagonalized within a basis. The symmetric matrix (H + L - EI) is
 
reduced to 

diagonal form by the orthogonal transformation: 

 

X
T
 (H + L - E) X = (Ek - E) 

 

where the columns of the orthogonal matrix X
T
 represent the eigenvectors and Ek 

the eigenvalues of (H + L). 



2.3  Underlying algorithms for matrix diagonalizations in CRYSTAL 

The CRYSTAL package [2] performs ab initio calculations of the ground state 
energy, electronic wave function and properties of periodic systems. Development of 
the software has taken place jointly by the Theoretical Chemistry Group at the 
University of Torino and the Computational Materials Science Group at STFC 
Daresbury Laboratory (UK) [14]. The computation of the electronic structure is 
performed using either Hartree-Fock or Density Functional theory. In each case the 
fundamental approximation made is the expansion of the single particle wave 
functions as a linear combination of atom centred atomic orbitals (LCAO) based on 
Gaussian functions. 

2.4  Review of Symmetric Eigensolver Methods 

The solution to the real or hermitian dense symmetric eigensolver problem usually 
takes place via three main steps  

1. Reduction of the matrix to tri-diagonal form, typically using Householder 
Reduction, 

2. Solution of the real symmetric tri-diagonal eigenproblem via one of the 
following methods: 

• Bisection for the eigenvalues and inverse iteration for the eigenvectors 
[4],[5], 

• QR algorithm [6],  

• Divide & Conquer method  (D&C) [7] , 

• Multiple Relatively Robust Representations (MRRR algorithm) [8],  

3. Back transformation to find the eigenvectors for the full problem from the 
eigenvectors of the tridiagonal problem. 

 

For an n × n matrix, the reduction and back transformation phases each require 
O(n

3
) arithmetic operations. Until recently, all algorithms for the symmetric 

tridiagonal eigenproblem also required O(n
3
) operations in the worst case and 

associated memory overheads of O(n
2
). However, for matrices with clustered 

eigenvalues, the Divide and Conquer method can take advantage of a process 
known as deflation [7], which often results in a reduced operation count. The 
potential advantages of the MRRR algorithm are twofold in that theoretically only 
O(kn) operations are required, where k is the number of desired eigenpairs, and the 
associated memory requirements are only O(n). 

 



2.5  Parallel Library Routines for Solving Dense Symmetric 
Eigenproblems 

Several eigensolver routines for solving standard and generalized dense symmetric 
or dense Hermitian problems are available in the current release of ScaLAPACK [9].  

These include: 

• PDSYEV based on the QR Method 

• PDSYEVX based on Bisection and Inverse Iteration 

• PDSYEVD based on the Divide and Conquer method 

• Also tested here is a new routine PDSYEVR [10] based on the MRRR 
algorithm. At the time of this analysis this routine is a pre-release version and 
is still undergoing testing and development by ScaLAPACK developers. 

PDSYEV and PDSYEVD only calculate all the eigenpairs of a matrix. However both 
PDSYEVX and the new PDSYEVR have the functionality to calculate subsets of 
eigenpairs specified by the user. For conciseness the performance results reported 
in this paper focuses on the latest parallel solvers PDSYEVD and PDSYEVR.  

 

3 Testing Environment 

3.1  Test Matrices 

The matrices analysed here generated by the R-matrix package are derived from 
external sector Hamiltonian Ni3+ and Fe+ scattering calculations using the PRMAT 
code. They are all real symmetric dense matrices with dimensions ranging from 
10032 to 62304. The eigenvalue distribution is fairly well-spaced with comparatively 
few degeneracies, though some clustering does exist. For other cross-platform 
comparisons, diagonalizations using matrices obtained from the CRYSTAL package 
have been measured, where the matrix sizes range from a dimension of 7194 to 
20480. The eigenvalue distribution of these real symmetric matrices is typically 
much more clustered than those obtained from the PRMAT code.  

 

3.2  High Performance Computing Platforms 

Parallel timings presented are mainly from runs undertaken on two of the UK's 
National Supercomputing facilities run by the HPCX Ltd consortium: the new 
HECToR Cray XT4 machine [12] with 11,328 AMD 2.8 GHz Opteron cores sited at 
the University of Edinburgh and HPCx [13] at STFC Daresbury Laboratory [14] 
comprising of 160 IBM p5-575 nodes, totalling 2536 processors 

Some figures also demonstrate the evolution of the HPCx system over the past five 
years. The original Phase 1 configuration consisted of p690 processors with the 



colony (SP) switch. Figures also show timing comparisons of runs taken on HPCx 
with runs undertaken on other contemporary HPC platforms: a 2048 core IBM Blue 
Gene/L and 4096 core IBM Blue Gene/P machine [15], also sited at STFC 
Laboratory and a Cray XT3 machine sited at the Swiss Supercomputing Centre 
CSCS [16] with AMD 2.6 GHz Opteron processors.  

The results include comparisons for dual-core processors (Cray XT4, BG/L), quad-
core processors (BG/P) and 16-way and 32-way shared-memory processors (SMPs) 
(IBM p5-575 and IBM p690). For reasons of consistency, throughout the 
performance analysis charts 'Number of Processors' is equivalent to 'Number of 
Cores'. 

4 Performance Results 

 

Figure 1. Relative Scaling of PDSYEVD and PDSYEVR for Hamiltonian matrices 
from PRMAT 

 

Figure 1 shows the parallel scaling of performance for the diagonalization routines 
PDSYEVR and PDSYEVD for a range of problem sizes from PRMAT on the current 
configuration of the Cray XT4 and IBM p5-575. The relative performance reported is 
the time taken to solution for the algorithm and HPC platform with respect to the 
CPU time of PDSYEVD on 16 processors of HPCx. The performance results for two 
different versions of PDSYEVR are shown: an older version from 2007 and a more 
recent version from early 2008. It is shown that the parallel performance of 
PDSYEVR (2008) is very close to that of PDSYEVD for the two problem sizes, 
though the performance on the processor counts of around one thousand can 
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degrade, possibly due to uneven distributions of the eigenvalue representation tree 
amongst processors [17]. 

Figure 1 also shows how performance increases up to a maximum of 4096 
processors on the Cray XT4 for the larger problem size. Performance is around 34 
times faster on 4096 processors than on 16 processors. Ideal parallel scaling here 
would result in a performance improvement factor of 256 (4096/16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Parallel Performance of PDSYEVD for large matrix sizes on the Cray 
XT4 and IBM p5-575 

 

Figure 2 compares the performance of PDSYEVD on processor counts upwards of 
512 on the Cray XT4 and IBM p5-575. Relative performance for the three matrices is 
based on a 512 processor run on the Cray XT4. The eigensolution for three 
Hamiltonian matrices from PRMAT are considered up to a maximum matrix 
dimension of 62304. It can be seen that the parallel scaling on the Cray XT4 is 
significantly better than on the IBM p5-575 at these high processor counts. The 
parallel performance of PDSYEVD for the largest problem size here is good right out 
to the maximum job size (8192 processors) on Hector. 

0 and Figure 4 show how the PDSYEVD routine scales with processor count on the 
high-end computing platforms detailed in section 3.2  for CRYSTAL matrices. 
Parallel performance is best on the Cray XT machines for both matrices tested here, 
relatively closely matched by the current configuration of HPCx (IBM p5-575 with the 
High Performance Switch).  
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At the time these tests were undertaken the Cray XT3 testing platform consisted of 
single core processors only. Here the higher clock speed of the dual core XT4 
processors relative to the XT3 results in a negligible improvement to parallel 
performance. The performance of the IBM BlueGene/L and BlueGene/P is around 
three times slower than the Cray XTs, roughly matching the performance of the 
orginal HPCx system (p690 SP).  
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Figure 3. Performance of PDSYEVD on current HPC architectures (CRYSTAL 
matrix, n=7194). 

 

The advantage of the BlueGene/P machine is demonstrated most clearly in Figure 
5, where the estimated power consumption for parallel matrix eigensolves relative to 
that undertaken on 16 processors of BlueGene/P is shown. These figures are based 
on the Mflops/Watt values given on the Green Top 500 listing [18] . In this alternative 
listing the BlueGene/P at STFC Daresbury Laboratory in the United Kingdom is 
ranked as number 1 i.e. it is currently the most efficent supercomputer (with respect 
to flops per Watt) in the world.  
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Figure 4. Performance of PDSYEVD on current HPC architectures (CRYSTAL 
matrix, n=20480). 

 

 

One characteristic of new parallel eigensolvers that has become evident during the 
course of the tests is that the tridiagonal eigensolver is no longer the primary 
computational bottleneck during the full symmetric eigensolve. Figure 6 shows how 
the balance between reduction, tri-diagonal eigensolve and back transformation 
changes significantly with different eigensolver methods. It can be seen that the time 
taken in the tri-diagonal eigensolve using Divide-and-Conquer is now relatively small 
compared to the time taken in reducing the full matrix to tri-diagonal form. Although 
the back transformation calculation scales very well to large numbers of processors, 
the relative computational costs of the reduction phase remain high.  This contrasts 
markedly with the traditional QR-based approach where the tri-diagonal eigensolve 
dominates the overall time taken to solution. 
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Figure 5. Relative Power Consumption for eigensolve on different HPC platforms 
(CRYSTAL matrix, n=20480). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Breakdown of time spent in the constituent stages of dense 
eigensolvers (CRYSTAL matrix n= 12534, p5-575) 
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5 Conclusions 

 

The latest ScaLAPACK eigensolvers are generally reliable and perform well for the 
application matrices tested in this paper. Typically, the parallel scaling improves for 
the larger problem sizes on all the platforms, as the computation to communication 
ratio increases. In other reports it has been established that both solvers generally 
perform preferably to the original ScaLAPACK solvers PDSYEV and PDSYEVX for 
the matrices under test here [11].  The parallel performance of the pre-release 
version of the MRRR-based solver PDSYEVR obtained from the developers for 
testing performs comparably to the divide-and conquer based PDSYEVD over a 
range of problem sizes.  

On large processor counts where the division of the problem is relatively thin, the 
performance of PDSYEVR appears to degrade somewhat. This problem is 
addressed in a recent paper [17]. It remains to be seen if the 'holy grail' properties of 
O(kn) operations and memory overheads of O(n) are will be achieved for the final 
release of PDSYEVR, hopefully as part of a future release of ScaLAPACK.  

Timings from the Cray XT series machines show good parallel scaling can be 
achieved for larger matrices upto several thousands of processors. The performance  
results from the new BlueGene architectures sre generally two to three times slower 
than equivalent parallel runs on the the Cray XT4 for large-scale parallel 
diagonalizations. This ratio roughly matches that of the respective processor clock 
speeds (2.8 GHz vs 850 MHz) on the two machines. However, it is now of increasing 
importance that parallel architectures are power efficient (flops/Watt) in addition to 
being performance efficient (flops/sec). Figure 5 shows that the power consumption 
of the Blue Gene/P is around six times lower than the Cray XT4 for a corresponding 
matrix diagonalization. 

If timings for the full symmetric eigenproblem are broken down into the three 
constituent phases - reduction, tri-diagonal eigensolve and back transformation 
(Figure 6) - it becomes clear that the tri-diagonal eigensolve may no longer dominate 
timings. Moreover, the Householder reduction is both relatively slow and scales 
poorly on large processor counts. This has been recognised by parallel numerical 
routine developers and new methods are now under investigation to improve the 
parallel performance of this phase of the calculation [19].  

In order to meet the challenges of petascale architectures, where runs may involve 
tens of thousands of processing cores, it is evident that new parallelization strategies 
may be required. For example, the PRMAT Hamiltonian matrices represent the 
wavefunction for a sector of external configuration space defined when calculating 
the electron-atom scattering problem. A typical problem contains multiple sectors 
and after some restructuring of the program, the sector Hamiltonian matrix 
diagonalizations can be calculated concurrently by sub-groups of processors divided 
up from the global processor population. By taking advantage of this inherent 



parallelism in the method it is expected that good parallel scaling of the overall 
scientific problem could be achieved on many tens of thousands of processors. 
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