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Summary

• (Briefly) Introduce parallel diagonalization methods
– Application Background
– Numerical Library Routines

• Parallel (MPI) Performance Analysis
– For

• Applications
• Eigensolver methods
• High-end Architectures

• Petascaling strategies
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Interest in Eigensolver Performance

• Demand for efficient eigensolver performance
– Traditionally a huge computational bottleneck

• Especially Electronic Structure codes, Atomic Molecular Codes,
large-scale problems.

– At STFC this includes PRMAT, CRYSTAL, GAMESS-UK, KPPW
• Large amounts of memory, cpu time and communication required

– Researchers are not always using most efficient methods
• Several methods to choose from

– New developments with  Divide and Conquer and Multiple Relatively
Robust Representations

• Performance is application dependent (differs from linear
systems)

– αO(n3), where α can vary
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Standard Eigenvalue problem

Standard Eigenvalue Problem:

A x = λ x

… where A is a dense real matrix and  λ is an eigenvalue corresponding to
eigenvector x.

Diagonalization:
A = S Λ S-1

… where the columns of matrix S are represented by the eigenvectors of A and
the diagonal matrix Λ represents the associated eigenvalues

If A is symmetric, then:
A = Q Λ QT
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Standard Eigenvalue problem

Standard Eigenvalue Problem:

A x = λ x

… where A is a dense real matrix and  λ is an eigenvalue corresponding to
eigenvector x.

Diagonalization:
A = S Λ S-1

… where the columns of matrix S are represented by the eigenvectors of A and
the diagonal matrix Λ represents the associated eigenvalues

If A is symmetric, then:
A = Q Λ QT

Λ captures key characteristics of A
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Underlying Equations

Solve the non-relativistic Schrodinger equation:

H Ψ = E Ψ
PRMAT - Atomic & Molecular Physics Application Code
•R-matrix based atomic scattering calculations
•Baluja-Burke-Morgan approach - Diagonalize Representative of the Green’s
function    (H + L - EI)-1 within a basis (Hamiltonian Matrix)

CRYSTAL - Electronic Structure of Periodic Systems Code
•Diagonalization of the effective one electron Hamiltonian gives the eigenstates
and associated energies that the electrons may occupy

•Periodic Hartree-Fock or density functional Kohn-Sham Hamiltonian matrix
•Eigensolver often part of iterative process
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Underlying Equations

Solve the non-relativistic Schrodinger equation:

H Ψ = E Ψ
PRMAT - Atomic & Molecular Physics Application Code
•R-matrix based atomic scattering calculations
•Baluja-Burke-Morgan approach - Diagonalize Representative of the Green’s
function    (H + L - EI)-1 within a basis (Hamiltonian Matrix)

CRYSTAL - Electronic Structure of Periodic Systems Code
•Diagonalization of the effective one electron Hamiltonian gives the eigenstates
and associated energies that the electrons may occupy

•Periodic Hartree-Fock or density functional Kohn-Sham Hamiltonian matrix
•Eigensolver often part of iterative process

Dense, Real,
Symmetric
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Solving the Symmetric Standard Eigenvalue Problem

The solution to the real symmetric Eigensolver problem usually takes place via three main steps
1. Reduction of the matrix to tri-diagonal form, typically using the Householder

Reduction. O(n3)
2. Solution of the real symmetric tri-diagonal Eigenproblem via one of the following

methods:
• Bisection for the Eigenvalues and inverse iteration for the Eigenvectors, up to

O(n3)
• QR algorithm,  up to O(n3)
• Divide & Conquer method  (D&C),  up to O(n3)
• Multiple Relatively Robust Representations (MRRR algorithm). O(nk)

3. Back transformation to find Eigenvectors for the full problem. O(n3)

Other Methods
– Jacobi Method O(n3 )
– Symmetric Subspace Decomposition Algorithm
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Parallel Real Symmetric Eigensolver Routines
Scalapack

– drivers for solving standard and generalized dense symmetric or dense Hermitian
Eigenproblems.

– PDSYEV (QR Method) (Scalapack 1.5) (all eigenpairs only)
– PDSYEVX (Bisection & Inverse Iteration) (Scalapack 1.5) (all/subset of eigenpairs)
– PDSYEVD (D&C Method) (Scalapack (1.7) (all eigenpairs)
– PDSYEVR (MRRR Method) Scalapack (1.9?) - current version under development

(all/subset of eigenpairs) (Voemel et al.)
– Memory overheads all ~O(n2) except PDSYEVR O(n) (in theory)

Peigs
– General symmetric and standard symmetric eigenproblems

• PDSPEV (Bisection & Inverse Iteration) (all/subset of eigenpairs)
Plapack

– QR method (all eigenpairs only)
– MRRR ‘Multiple Relatively Robust Representations’ (all/subset of eigenpairs)
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Test Matrices
PRMAT

– Sector Hamiltonian matrices from external region Fe+ calculations
Matrix Characteristics

– Real, Symmetric
– Relatively well distributed eigenvalues

Matrix Sizes
– Dimension 10032, 20064, 35904, 63504

CRYSTAL
– Electronic Structure and Related properties of periodic systems
– All electron, local Gaussian basis set, DFT and Hartree-Fock

Matrix Characteristics
– Real, symmetric
– Many degeneracies - closely coupled eigenvalues.
– Varying degrees of sparsity

Matrix Sizes
– Dimension - 7194, 12354, 20480 (Crystal, SCF-calc)
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Test Matrices
PRMAT

– Sector Hamiltonian matrices from external region Fe+ calculations
Matrix Characteristics

– Real, Symmetric
– Relatively well distributed eigenvalues

Matrix Sizes
– Dimension 10032, 20064, 35904, 63504

CRYSTAL
– Electronic Structure and Related properties of periodic systems
– All electron, local Gaussian basis set, DFT and Hartree-Fock

Matrix Characteristics
– Real, symmetric
– Many degeneracies - closely coupled eigenvalues.
– Varying degrees of sparsity

Matrix Sizes
– Dimension - 7194, 12354, 20480 (Crystal, SCF-calc)

SCALING
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Machines

Cray XT4 HECToR
– DC 2.8 GHz Opterons 11328 cores

Cray XT3 palu CSCS
– DC 2.6 GHz Opterons 3328 cores

IBM p5-575 HPCx
– DC 1.7 GHz POWER5, HPS, 2560 cores

IBM BlueGene/P Legion, STFC Daresbury
– QC PowerPC 850 MHz, 4096 cores
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Machines

Cray XT4 HECToR
– DC 2.8 GHz Opterons 11328 cores

Cray XT3 palu CSCS
– DC 2.6 GHz Opterons 3328 cores

IBM p5-575 HPCx
– DC 1.7 GHz POWER5, HPS, 2560 cores

IBM BlueGene/P Legion, STFC Daresbury
– QC PowerPC 850 MHz, 4096 cores

Libsci, acml libraries

Scalapack, pessl, essl

Libraries
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Parallel Performance of methods (CRYSTAL
n=3888)

Parallel Diagonalizer Timings IBM p5-575 

Matrix CRYSTAL n=3888 
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Relative Scaling with Matrix Size
(PRMAT)
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Breakdown of Timings within the eigensolver (CRYSTAL
n=12354)

0

20

40

60

80

100

120

140

160

180

64 128 256 512 1024

Number of Processors

T
im

e
 
(
s
e
c
s
)

Reduction to Tridiagonal Form )Tridiagonal Eigensolve (QR

)Tridiagonal Eigensolve (D&C Back Transformation

644 426



May 7th 2008 CUG 2008 HelsinkiCUG 2008 Helsinki 17

Relative Scaling with Matrix Size
(PRMAT, large cases)

n=~62K
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Relative PDSYEVD Performance on HPC platforms

Model         Ncpus           CPU              Interconnect             Site
Cray XT4 11328 Opteron 2.8 GHz SeaStar     UoE, UK

IBM   2560 POWER5 1.5 GHz HPS    STFC, UK

IBM BG/P   4096 POWERPC 850 MHz     3D Torus    STFC, UK

CRYSTAL
matrix n=7194
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Relative PDSYEVD Performance on HPC
platforms

Model       Ncpus           CPU            Interconnect             Site
Cray XT4 11328 Opteron 2.8 GHz SeaStar     UoE, UK

IBM   2560 POWER5 1.5 GHz HPS     STFC, UK

IBM BG/P   4096 POWERPC 850 MHz      3D Torus    STFC, UK

CRYSTAL
matrix n=20480
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Green Top 500 Supercomputer List

46021.01Cray XT4 (HECToR)

40330.96IBM p5-575 (HPCx)

14556.58Cray XT3 (CSCS)

6215IBM BG/L (STFC)

1357.23IBM BG/P (STFC)

Green Top 500
Ranking

Mflops/wattMachine

http://www.green500.org/lists/2007/11/green500_200711.xls
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*Arbitrary, relative to to BG/P 16 procs

Lower
is
better

(Estimate)
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Petascaling PRMAT: Partition of Configuration
Space

Internal
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Parallel Diagonalization of large Hamiltonian matrix required for each
sector

•Sector diagonalizations can be undertaken simultaneously on
sub-groups of processors.
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Petascaling Diagonalization Calculations in PRMAT

Sector Hamiltonian matrices, n=20064

Lower
is better
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Petascaling CRYSTAL
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Petascaling CRYSTAL

Possible Approaches:

•New parallel block D&C methods under development

– Block tridiagonalization (Bai & Ward)

– Block D&C method (Bai & Ward)

• Possibility of trading accuracy for performance

– Could also be in future releases of Scalapack

•Diagonalization-free methods
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Conclusions (methods)

• PDSYEVD consistently the fastest parallel eigensolver (for all eigenpairs)
for application matrices tested

– particularly for degenerate eigenvalues
– high memory overheads

• PDSYEVR performance close to matching PDSYEVD
– final release may be even faster
– should have lower memory overheads than PDSYEVD
– ability to select subsets of eigenpairs

• Reduction to tridiagonal form dominates parallel performance
– More efficient methods may be available in Scalapack 1.9 ?
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Conclusions (machines)

• Cray XT4 / IBM Power 5 comparisons
– Similar performance upto ~ 256 processors
– Eigensolvers scale better on Cray XT4 on larger processor counts

• Especially if the matrices are large

• May need new strategies for petascale architectures
– How to scale performance upto 10000+ processors?

• Future Priorities
– Mflops/s or Mflops/watt ?
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Technical Reports on Parallel Eigensolver
Performance Analysis:

 http://www.hpcx.ac.uk/research/hpc

Lapack Working Notes (LAWNS):
•Updates on parallel diagonalizer implementations
in Scalapack

  http://www.netlib.org/lapack/lawns


