

CUG 2008 Proceedings 1 of 8

Efficient Scaling Up of Parallel Graph Algorithms for Genome-

Scale Biological Problems on Cray XT

Kevin Thomas, Cray Inc.

Nagiza F. Samatova, North Carolina State University and Oak Ridge National Laboratory

Matthew Schmidt, North Carolina State University and Oak Ridge National Laboratory

Byung-Hoon Park, Oak Ridge National Laboratory

ABSTRACT: Many problems in biology can be represented as problems on graphs, but
the exact solutions for these problems have a computational burden that grows often
exponentially with increasing graph size. Due to this exponential growth, high-
performance implementations of graph-theoretic algorithms are of great interest. We are

developing a pGraph library for parallel graph algorithms of relevance to biological
problems. This paper discusses the implementation decisions made during the
development of a class of enumeration algorithms on graphs. The data-intensive nature
and highly irregular structure of the search space make efficient scaling up of such
algorithms quite challenging. A specific scalable and efficient implementation of a
ubiquitous maximal clique enumeration problem in biology is discussed. Performance
results on real biological problems from Cray XT are presented.

KEYWORDS: Parallel Graph Algorithms, Maximal Clique Enumeration, Biology, Cray
XT

1. Background

A graph is a set of vertices and the edges that connect
them. Two vertices are said to be adjacent if an edge
between them exists. The degree of a vertex is the number
of edges which connect to it. A clique is a set of vertices
in which each vertex is adjacent to every other vertex in
the set. A clique is maximal if no other vertex can be
added to the set and the set remain a clique. Maximal
clique enumeration (MCE), which is the focus of this
work, takes a graph description as input and produces the
maximal cliques of the graph as output.

2. Introduction

Data-driven construction of predictive models for
biological systems is often considered as a combinatorial
optimization problem, where a search for a particular
object or enumeration of all the objects with given
properties is being sought. Exact algorithms for
combinatorial problems on biological systems frequently
use recursive strategies for exploring the search space to
find the optimum solution.

Backtracking [1] is one of the most widely used recursive
strategies. Unlike brute force methods, which exhaustively
search through the input, a backtracking method avoids
exploring unpromising paths by applying the specific
property of the sought solution. For example, in case of
MCE, the property that constrains the search space is the
completeness of the clique, i.e. all vertices in a search path
should be pair-wise connected. An efficient backtracking
algorithm may adopt additional constraints to further limit
unnecessary traverses. All possible paths that a

a

c

e d

b
Figure 1. A graph with
five vertices and eight
edges. The maximal
cliques include (a,c,d,e)
and (a,b,d).

CUG 2008 Proceedings 2 of 8

backtracking algorithm can explore are represented as a
search tree. A path (from the root) in a search tree
corresponds to a sought solution (e.g. clique), and the tree
is expanded as an algorithm traverses the graph. The
algorithm stops expanding a path and returns to its
previous level (backtracks), if no further expansion in the
current direction leads to new feasible solutions (e.g.
cliques). A search tree can be split into a number of
disjoint sub-trees. Since each sub-tree can also be
recursively further split and independently explored, with
a balanced and efficient decomposition strategy,
backtracking-based algorithms can be adapted to a high
performance parallel computing environment.

Graph algorithms have characteristics that distinguish
them from many classic HPC applications. An obvious
difference is that graph algorithms do not take advantage
of floating point hardware. The code tends to be
“branchy,” because the dominant operations are
comparisons of the properties of vertices and edges. The
memory access pattern tends to be random across the data
structures, so spatial and temporal localities are low.
Memory access latency is an important component in
algorithm performance.

3. Parallel MCE Implementation

A parallel application to enumerate the maximal cliques of

a graph, called pDFS, has been developed as part of a

larger effort to develop a pGraph library of parallel graph
algorithms. pDFS is a parallel implementation of the
backtracking algorithm proposed by Bron and Kerbosch
[2], with a modification to dynamically identify the most
suitable ordering in expanding each path.

The earliest known parallel MCE application was a
shared-memory parallel algorithm [6] inspired by the
breadth-first MCE algorithm of Kose et al [3]. Earlier
work by our group developed a shared-memory parallel
(SMP) Clique Enumerator based on pthreads [5]. This has

been extended in pDFS with a distributed-memory parallel
(DMP) implementation using MPI.

For flexibility and efficiency, the two parallel
programming techniques, SMP and DMP, are used in a
complimentary fashion. Shared memory parallelism with
pthreads is efficient, but its scalability is limited to a
single compute node. MPI expands this by providing
distributed memory parallelism, with some extra cost in
data replication, communication, and programming
complexity. By combining both techniques, the best
performance can be achieved. Flexibility is preserved by
allowing the application to use pthreads, MPI, both
together, or neither, depending upon the target computer
system.

3.1. Design of the Work Pool Data Structure

Parallelization, the process of converting a single
sequential execution into multiple sequential threads,
requires that the overall task be decomposed into multiple
tasks. Ideally, each task is independent. Since MCE has
obvious independent work, the traversal of the search sub-
trees, a parallel implementation seems straightforward. An
immediate difficulty encountered is in developing the
mechanics of this decomposition in a way that works
efficiently within the constraints of the available
programming models and computer systems. In particular,
how can this work be divided evenly between compute
nodes within a distributed memory environment, with
minimum synchronization and data transfer. This is
especially important for a data-intensive application such
as MCE which can require the output of an exponential
number of cliques in the worst case [4]. One of the key
features of the SMP implementation is an explicit
representation of an unexplored search sub-tree. Such a
data structure enables dynamic load balancing, which
requires this data to be easily migrated from one thread to
another. In a shared-memory environment, this data does
not need to be copied between threads, but the
representation is crucial to the DMP implementation,
where the candidate path must be transferred between
compute nodes.

The devised data structure, called a candidate path,
contains these components:

 The clique represented by the path from the root to
the current node in the search tree.

 All eligible vertices for the path (i.e. common
neighbors for all the nodes in the above clique).

 Vertices covered earlier in expanding the parent
path (to avoid redundant coverage).

The heart of the implementation is a set of work pools,
one for each thread, containing candidate paths. Each

a c e d b

/

c b

d

e

d

e d

e

Figure 2. A backtracking search tree for the graph of
Figure 1. The redundant paths shown as dashed lines.

CUG 2008 Proceedings 3 of 8

thread explores its portion of the search tree by removing
items from its pool, and then fills the pool as new paths
are discovered. When a pool becomes empty (all work has
been completed), a load balancing step is used to keep the
thread busy. Traversal of the search sub-trees is
independent work, so no communication is required
during this phase.

The pool is accessed like a stack as the search progresses,
with last-in-first-out (LIFO) ordering. The most recently
explored node is expanded into additional candidate
paths, which are pushed back onto the stack. This results
in a depth-first traversal of the search tree.

3.2. Reading the Input Graph

Although it seems like a simple task, the reading of the
graph description file can become a factor limiting
scalability. All processes require a copy of the graph data.

A simple implementation where all processes read the
input file is limited by file system scalability. To get
around this, the file is read by a single process that
broadcasts the data to the other processes. One efficient
broadcast operation can be used because the graph data is
packed into a single data structure containing an
adjacency list for each vertex.

A header in the input graph file contains the vertex and
edge totals for the graph. This allows for pre-allocation of
sufficient contiguous space to hold the graph as the rest of
the file is read in. The adjacency list for each vertex is
managed as an array rather than a linked list. This makes
the graph data more compact, results in better cache
behavior when the adjacency list is accessed, and also
eliminates address pointers. Address pointers are not
portable between processes, and would need to be
regenerated locally after the broadcast.

The array construct leaves open the possibility of using
binary search of the adjacency list when memory
constraints prevent the use of other techniques. This issue
is important for per-thread performance, and is detailed in
Section 4 below.

It is convenient to have the vertex and edge totals known
before the graph data is read, but the same data structure
can be used without these values. A simple approach
would be to add an extra pass through the input data to
obtain the graph size before allocating space and storing
the data. A more efficient technique is to initially allocate
based on a graph size estimate, then reallocate a larger
block if the estimate proves to be too small. With a good
estimate and careful expansion, the overhead of
reallocation can remain small in comparison to the cost of
reading the input data.

Auxiliary data structures, such as the adjacency hash table
or adjacency bit matrix, are generated redundantly by each

process. It is cheaper to generate this data locally than to
transfer it through the network.

3.3. Initial Work Partitioning

There is no practical way to determine a well-balanced
distribution of work for MCE a priori. Since dynamic
load balancing is required, the initial partitioning can be
performed by simply dividing the graph vertices equally
among the threads. Each vertex added to the work pool
becomes a root node of a search sub-tree. In order to be
added to the work pool as a root, the vertex must satisfy
all the normal constraints to establish a candidate path.

Given this partitioning scheme, this step is done
independently by the threads and no communication is
required. Each thread selects root vertices based on its
global thread number, which is computed using the local
thread number and the MPI process rank.

In the example graph of figure 1, which corresponds to the
search tree of figure 2, the imbalance in the initial

partitioning is obvious. The thread that selects vertex a
will have all of the remaining work, while the threads
selecting the other vertices will have no further work.
Graphs derived from real biological data can result in
similar search tree imbalances. An additional source of
imbalance comes from the discovery of maximal cliques,
which requires extra work be performed at a search tree
node.

3.4. Dynamic Load Balancing

When a work pool becomes empty, load balancing is
performed by stealing work from the pool of a random
thread. Stealing means moving work from one pool to
another without the direct involvement of the pool’s
owner. Unlike normal access to the pool, stealing uses
first-in-first-out (FIFO) order, removing items from the
opposite end of the pool. This has the effect of
transferring nodes from high up in the search tree, which
have a greater chance to expand.

Two levels of load balancing are used, corresponding to
the levels of parallelization. Within a process, threads can
steal from one another by simply removing an item from
the pool. Locks are used to prevent the owner thread, or
another stealing thread, from accessing the pool during
this operation. This local load balancing is used until all
threads of the process have no work.

Between processes, a more complex scheme is needed. A
load balance request message is sent to a random target
process, which responds with any items that it wishes to
share. The term stealing still applies, since the responding
target process must steal the work from local threads in
order to send it to the requesting process.

CUG 2008 Proceedings 4 of 8

In order to make the remote stealing efficient, more than
one item may be stolen per request. The request message
specifies the number of idle threads in the requesting
process, and up to that many items may be returned.

In both cases, local and remote, if an attempt to steal work
fails because the work pools are empty, the search
continues on to the next target, until all targets (threads or
processes) have been polled.

In addition to the case where the target work pool is
empty, and the attempt to steal work fails, if the pool
contains only one item, the item is not moved, since it
could just as well be processed by the current owner. This
presents a special case, since it is possible, though
unlikely, that only a single candidate path remains to be
examined. For SMP load balancing, the threads other than
the owner of the non-empty work pool enter the DMP
load balancing state, waiting for the final thread to
complete its work so the DMP load balancing step can
begin. In this way, the transition from SMP to DMP load
balancing within a process is a thread barrier. But what if
this last candidate path expands into a large number of
new items added to the work pool?

A last-step explosion of local work could leave a single
thread to continue processing while the other threads are
idle at the barrier. This would create a significant load
imbalance. This work stealing race condition is seen in
rare instances, and overall performance can be
significantly reduced.

To avoid this problem, a work stealing attempt has three
possible outcomes: success, empty pool, and nearly empty
pool. Since the last case indicates that local work remains,
threads receiving this work stealing result enter a new
cycle to recheck all local work pools. For most cases, all
work pools are empty after the second iteration, but, any
sudden work explosion can be handled gracefully.

3.5. Termination Condition

Since the enumeration proceeds without global
synchronization, a technique to complete processing in an
orderly way is needed. The first issue is that an individual
process must poll all other processes to determine that no
process has work to share, i.e. no further load balancing
can occur. Secondly, each process must handle load
balancing requests until it can determine that all other
processes have reached the same point. This implies that a
process cannot terminate (i.e., call MPI_Finalize) even
when no further work is available.

Shutdown is therefore takes place in phases. First a
process polls all other processes for work to share. If all
requests fail, the process is ready to enter an idle state. In
the idle state, it continues to respond to load balancing
requests, but first it sends an idle status notification to

every other process. When idle notifications are received
from all other processes, then the entire application has
reached a quiescent point and all processes can terminate.

While this procedure does generate a flurry of
communication, the effect on overall application
performance has not been significant. If this simple
broadcast scheme of communication becomes a
performance issue, either at an extreme scale of compute
nodes or on a particular computer system, then
hierarchical communication may be necessary by
partitioning the processes into smaller groups.

3.6. Asynchronous Requests and

Notifications

In order to manage load balance requests and idle
notifications, a flexible asynchronous message handling
capability was developed. One thread of each process is
responsible for this work, which is handled via MPI
asynchronous point-to-point communication functions.

Asynchronous communication was used for better
portability. Many MPI implementations use spin-waiting
within blocking calls, which conflicts with multi-threaded
execution within the main computation. In effect, a
processor core becomes dedicated to communications.

To avoid this, one computational thread within a process
also handles communication. Polling for incoming
messages takes place after each iteration of the main work
loop, taking advantage of the fine-grained nature of the
underlying algorithm. The overhead placed on this thread
due to this extra responsibility is effectively spread
amongst all of the threads via local load balancing. Since
random work stealing is used, the overhead is well-
distributed over all the processes.

4. Improving the Base Algorithm Efficiency

In the clique enumeration base algorithm, a connected
predicate is used repeatedly to determine if the current
vertex shares an edge with a test vertex. Since this
operation occurs many times, it should have an efficient
implementation.

4.1. Linear Search of the Adjacency List

The simplest implementation is to search the list of
vertices adjacent to the current vertex, since this list is part
of the basic graph description. While this uses no
additional memory, it is also the slowest method. It is
especially bad for a common case, where the test vertex is
not in the list.

CUG 2008 Proceedings 5 of 8

A linked list is a flexible data structure, but searching a
linked list is slow because of its pointer-chasing nature. A
linear list is much faster to search, both because it
removes the pointer chasing behavior, but also because it
takes advantage of cache structure. As noted in section
3.2, another advantage of the linear list is that it can be
moved between processes, since it contains no address
pointers.

4.2. Adjacency Matrix Lookup

The fastest method is to construct an adjacency matrix
from the graph description with the value for a given pair
of vertices determining whether the vertices are connected
or not. A bit matrix is used, so the memory required is n

2

bits, where n is the number of vertices in the graph. This
is reduced by half when symmetry of the matrix is
exploited. A limitation of this technique is that a matrix
for a graph with a large number of vertices may not fit in
memory.

 a b c d e

a - 1 1 1 1

b 1 - 0 1 0

c 1 0 - 1 1

d 1 1 1 - 1

e 1 0 1 1 -

4.3. Adjacency Hash Table Lookup

A fast technique which often requires only a limited
amount of extra memory is a hash table. In place of the
list of adjacent vertices, a hash table of adjacent vertices is
used. The size of the table is a small constant factor larger
than the list representation, and the average lookup
requires few memory accesses.

A simple hash function (the test vertex number modulo
the table size) is used to compute its index into the current
vertex’s hash table. A table collision occurs when two
vertices have the same hash index. In the worst case, the
hash table lookup time becomes linear in the vertex
degree if all vertices have the same hash index. To avoid

this, a size expansion factor is used to allocate a table
several times larger than vertex degree when the table is
created. A sparsely populated hash table has much less
chance of encountering the worse case. In the average
case, the lookup time is constant with respect to the vertex
degree.

The memory required for the hash table grows with the
number of edges in the graph. The hash table approach is
applicable when the average vertex degree is much
smaller than the number of vertices; otherwise, the
adjacency matrix is more compact.

4.4. Algorithm Selection

The library implements all three adjacency test methods.
pDFS uses the adjacency matrix if enough memory is
available, defaulting to the hash table for large graphs. If
insufficient memory for the hash table is available, the
adjacent vertex list search is used.

An alternative to the linear search of the adjacency list is
to sort the list and use binary search when the list size (or
sub-list size) is large. For the graph sizes and compute
node sizes considered, the lookup techniques are the best
choice. If the graph sizes of interest grow substantially, or
the compute nodes used are significantly smaller, binary
search may be the preferred algorithm.

At the shared-memory level of parallelization, multiple
threads can share these graph description data structures,
reducing the memory requirement.

a

b

c

d

e

b c d e

a d

a d e

a b c e

a c d

Figure 3. The adjacency
lists for the vertices of
the graph in Figure 1.

a

b

c

d

e

- c - b

- -

e d -

- c - b

- d -

- d - e

Figure 5. An example adjacency hash table with
expansion factor of 2. “-“ indicates an empty table
entry.

d a

a - -

- - a e

a - c

Figure 4. The adjacency
matrix for the vertices
of the graph in Figure 1.

CUG 2008 Proceedings 6 of 8

Figure 6. Performance of MCE with different vertex
adjacency test methods, in cliques generated per second.

The hash table is 17 times faster than the linear list search,
and the bit matrix is 1.8 times faster than the hash table.
The absolute performance varies depending upon the
input graph, but the relationship between them is constant.

5. Performance

5.1. Parallel Programming Model

Comparison

A benchmark was run using a single node server with two
quad-core Opteron processors to compare the SMP and
DMP implementations. Each run used all 8 processor
cores, but varied how the cores were used. There are four
possible combinations of threads and processes for this
benchmark. One case used multiple threads within a single
process, and at the other extreme each process used a
single thread. Two runs mixed multiple threads and
processes in a hybrid parallel mode (MPI and pthreads
used together).

The MPI library used shared memory to transfer messages
between processes. This allows the comparison to focus
on the application differences for the two levels of
parallelization.

Figure 7. Performance comparison of processes versus
threads. The lower bound of the chart is set to magnify the
differences.

This result shows that, at small scale, the DMP
implementation of MCE is nearly as efficient as SMP one.
This is important because one goal of this work was to
retain the efficiency of the SMP implementation, but to
extend the scalability of the application via DMP.

5.2. Parallel Scaling

To assess the overall scalability of the application,
benchmark runs were performed on a quad-core Cray XT4
system using graphs derived from biological data. Figure
8 was derived from runs on a yeast stress response graph
that has 3472 vertices and 246342 edges. Each edge
represents a correlation between two genes. Similar
behavior was observed for runs on other biological
networks.

Figure 8. Parallel speedup (log-log scale).

At the highest scale, the parallel speedup begins to drop
off from the ideal. This result is due to the parallel
overhead growing in proportion to the MCE calculation
time. For the 1 process run, the MCE calculation time is
4109 seconds, but this shrinks to 2.1 seconds at 2048
processes.

Another boundary to the scalability of this benchmark is
that with 2048 processes and 3472 vertices, the initial
work partitioning results in each process starting with at
most 2 vertices. This can place an extra burden on the
dynamic load balancing.

Writing of the maximal clique output files was disabled in
these benchmark runs. The scalability of the underlying
file system would have otherwise impacted the algorithm
scalability. Section 7.2 comments further on this issue.

5.3. Overhead due to message passing

The DMP load balancing time can be broken down into
two components: the time it takes to steal work from
another process (fetch time) and the time it takes to

CUG 2008 Proceedings 7 of 8

process incoming requests to steal work (request time). At
the end of the run, some time is required to come to a
globally idle state (idle time). These three parts of the run
time account for most of the overhead due to message
passing during parallel execution.

The same benchmark runs from the parallel scaling study
were analyzed to separate out these components.

Figure 9. Message passing overhead times.

Although these times are only a small percentage of the
overall run time for the benchmark runs, the trend shows
that the overhead will become significant at extreme scale
(10s of thousands of processes). This could be managed
by grouping processes and using a hierarchical load
balancing scheme. Load balancing would take place first
within a group of processes, and then between groups. A
two-level scheme may be sufficient for the foreseeable
future (up to a million processes).

6. Conclusion

The distributed-memory parallel maximal clique
enumerator pDFS runs with good parallel efficiency at
high scale with input graphs from real-world biological
data. The pGraph library can be used as a basis for the
development of additional parallel graph algorithms.

One lesson learned from the work to add an MPI level of
parallelization to an application written to use pthreads is
that the selection of algorithm and supporting data
structures is critical to success. It was a lucky
circumstance that the approach used in the SMP
implementation was compatible with adding MPI at a later
point.

It is apparent that the use of high-level parallelism with
pthreads created this compatibility. Had the application
been parallelized at the much lower level of computational
loops, no infrastructure to be expanded for multi-process
use would have been available. As it was formulated, the
pthreads implementation led smoothly to a combined
MPI-pthreads application which greatly leveraged the
earlier work.

This leads to an observation about the interaction of SMP
and DMP programming techniques. It is possible to apply
these independently to a program, choosing low-level
parallelism for pthreads or OpenMP and a high-level
explicitly-decomposed strategy for MPI. But if the
required effort is applied to create a high-level
decomposition for MPI, why not leverage this work for
both SMP and DMP? In an era when the number of
processor cores per shared-memory compute node is
growing, hybrid parallel programming becomes more and
more attractive.

The benefits seen for this application include:

 Less data replication, since many data structures
can be shared by the threads within a process.
This reduces the memory requirement, and can
result in better cache use, reducing the demand
on main memory bandwidth.

 More efficient shared-memory parallel execution,
because it is realized at a high level.

 Fewer MPI processes are required for a given job
size, reducing the scalability requirement at this
level.

7. Future Work

7.1. Application to Other Computer

Architectures

A key target application area for Cray XMT systems is
graph algorithms. The XMT architecture employs 128
hardware threads per processor, with all processors of the
system sharing a global memory. Although it supports
neither pthreads nor MPI, there is a straightforward path
to port pDFS to XMT systems. Global memory is required
for extremely large graphs (millions of vertices), but
applications can also exploit the local memory capability
available on XMT systems. Local memory use has the
potential to deliver higher performance, since average
memory access latency is reduced and network congestion
is avoided.

Remarkably, initial analysis shows that few source code
changes are required to port the code to the XMT
architecture. Within the existing framework of pDFS, each
hardware thread can manage a private work pool, with
work stealing used to load balance within a processor,
much like the pthreads level of parallelism works on Cray
XT. This operates more efficiently than pthreads due to
the fine-grained synchronization primitives supported by
the Cray XMT hardware. This can be extended seamlessly
to multiple processors through the use of global memory,
leveraging the simple Cray XMT parallel programming

CUG 2008 Proceedings 8 of 8

mode, allowing it to replace both the pthread and MPI
levels within pDFS.

7.2. Output

A substantial issue with enumeration is the volume of
output. For many types of graphs, the number of maximal
cliques found is large enough that the time to write the
cliques to files is a significant portion of the overall run
time. The technique currently implemented is to have each
thread or each process open a unique output file. For a
large job, this can overwhelm the file system. A scheme to
best manage the output from a large parallel job remains
to be devised. A likely direction is to group processes
together for output, allowing an extra level of flexibility.
For small runs, a single writer may suffice, but at larger
scale, multiple writers will be needed. The optimal
number of processes in a group is difficult to determine
because different graphs will result in different volumes of
output in an unpredictable manner. Ultimately, a dynamic
scheme may be necessary, where additional output servers
are added as needed.

8. Acknowledgements

This research has been supported by the "Exploratory
Data Intensive Computing for Complex Biological
Systems" project from U.S. Department of Energy (Office
of Advanced Scientific Computing Research, Office of
Science). The work of NFS was also sponsored by the
Laboratory Directed Research and Development Program
of Oak Ridge National Laboratory. Oak Ridge National
Laboratory is managed by UT-Battelle for the LLC U.S.
D.O.E. under contract no. DEAC05-00OR22725.

The authors are thankful to Cray Inc. for access to large-
scale Cray XT systems during the development and testing
of this software.

9. References

[1] G. Brassard and P. Brately, Fundamentals of
Algorithmics, Prentice Hall, 1996.

[2] C. Bron and J Kerbosch, Algorithm 157: finding all
cliques of an undirected graph, Comm. ACM, vol 16, pp.
575-577, 1973.

[3] F. Kose, W. Weckwerth, T. Linke, and O. Fiehn,
Visualizing plant metabolomic correlation networks using
cliquemetabolite matrices. Bioinformatics, vol 17, no. 12,
pp. 1198-1208, 2001.

[4] J. W. Moon and L. Moser, On cliques in graphs. Israel
J. Math, vol 3, pp. 23-28, 1965.

[5] B.H. Park, M. Schmidt, K. Thomas, T. Karpinets, and
N.F. Samatova, Parallel, scalable, memory-efficient

backtracking for combinatorial modeling of large-scale
biological systems. Upcoming in Proceedings of IPDPS
2008

[6] Y. Zhang, F. N. Abu-Khzam, N. E. Baldwin, E. J.
Chesler, M. A. Langston, and N. F. Samatova, Genome-
scale computational approaches to memory-intensive
applications in systems biology, The 2005 ACM/IEEE
conference on Supercomputing: IEEE Computer Society,
2005.

