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ABSTRACT: Many problems in biology can be represented as problems on graphs, but 
the exact solutions for these problems have a computational burden that grows often 
exponentially with increasing graph size. Due to this exponential growth, high-
performance implementations of graph-theoretic algorithms are of great interest. We are 

developing a pGraph library for parallel graph algorithms of relevance to biological 
problems. This paper discusses the implementation decisions made during the 
development of a class of enumeration algorithms on graphs. The data-intensive nature 
and highly irregular structure of the search space make efficient scaling up of such 
algorithms quite challenging. A specific scalable and efficient implementation of a 
ubiquitous maximal clique enumeration problem in biology is discussed. Performance 
results on real biological problems from Cray XT are presented. 
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1. Background 

A graph is a set of vertices and the edges that connect 
them. Two vertices are said to be adjacent if an edge 
between them exists. The degree of a vertex is the number 
of edges which connect to it. A clique is a set of vertices 
in which each vertex is adjacent to every other vertex in 
the set. A clique is maximal if no other vertex can be 
added to the set and the set remain a clique. Maximal 
clique enumeration (MCE), which is the focus of this 
work, takes a graph description as input and produces the 
maximal cliques of the graph as output. 

 

2. Introduction 

Data-driven construction of predictive models for 
biological systems is often considered as a combinatorial 
optimization problem, where a search for a particular 
object or enumeration of all the objects with given 
properties is being sought. Exact algorithms for 
combinatorial problems on biological systems frequently 
use recursive strategies for exploring the search space to 
find the optimum solution. 

Backtracking [1] is one of the most widely used recursive 
strategies. Unlike brute force methods, which exhaustively 
search through the input, a backtracking method avoids 
exploring unpromising paths by applying the specific 
property of the sought solution. For example, in case of 
MCE, the property that constrains the search space is the 
completeness of the clique, i.e. all vertices in a search path 
should be pair-wise connected. An efficient backtracking 
algorithm may adopt additional constraints to further limit 
unnecessary traverses. All possible paths that a 
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Figure 1. A graph with 
five vertices and eight 
edges. The maximal 
cliques include (a,c,d,e) 
and (a,b,d). 
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backtracking algorithm can explore are represented as a 
search tree. A path (from the root) in a search tree 
corresponds to a sought solution (e.g. clique), and the tree 
is expanded as an algorithm traverses the graph. The 
algorithm stops expanding a path and returns to its 
previous level (backtracks), if no further expansion in the 
current direction leads to new feasible solutions (e.g. 
cliques). A search tree can be split into a number of 
disjoint sub-trees. Since each sub-tree can also be 
recursively further split and independently explored, with 
a balanced and efficient decomposition strategy, 
backtracking-based algorithms can be adapted to a high 
performance parallel computing environment. 

 

Graph algorithms have characteristics that distinguish 
them from many classic HPC applications. An obvious 
difference is that graph algorithms do not take advantage 
of floating point hardware. The code tends to be 
“branchy,” because the dominant operations are 
comparisons of the properties of vertices and edges. The 
memory access pattern tends to be random across the data 
structures, so spatial and temporal localities are low. 
Memory access latency is an important component in 
algorithm performance.  

3. Parallel MCE Implementation 

A parallel application to enumerate the maximal cliques of 

a graph, called pDFS, has been developed as part of a 

larger effort to develop a pGraph library of parallel graph 
algorithms. pDFS is a parallel implementation of the 
backtracking algorithm proposed by Bron and Kerbosch 
[2], with a modification to dynamically identify the most 
suitable ordering in expanding each path. 

The earliest known parallel MCE application was a 
shared-memory parallel algorithm [6] inspired by the 
breadth-first MCE algorithm of Kose et al [3].  Earlier 
work by our group developed a shared-memory parallel 
(SMP) Clique Enumerator based on pthreads [5]. This has 

been extended in pDFS with a distributed-memory parallel 
(DMP) implementation using MPI. 

For flexibility and efficiency, the two parallel 
programming techniques, SMP and DMP, are used in a 
complimentary fashion. Shared memory parallelism with 
pthreads is efficient, but its scalability is limited to a 
single compute node. MPI expands this by providing 
distributed memory parallelism, with some extra cost in 
data replication, communication, and programming 
complexity. By combining both techniques, the best 
performance can be achieved. Flexibility is preserved by 
allowing the application to use pthreads, MPI, both 
together, or neither, depending upon the target computer 
system. 

3.1. Design of the Work Pool Data Structure 

Parallelization, the process of converting a single 
sequential execution into multiple sequential threads, 
requires that the overall task be decomposed into multiple 
tasks. Ideally, each task is independent. Since MCE has 
obvious independent work, the traversal of the search sub-
trees, a parallel implementation seems straightforward. An 
immediate difficulty encountered is in developing the 
mechanics of this decomposition in a way that works 
efficiently within the constraints of the available 
programming models and computer systems. In particular, 
how can this work be divided evenly between compute 
nodes within a distributed memory environment, with 
minimum synchronization and data transfer.  This is 
especially important for a data-intensive application such 
as MCE which can require the output of an exponential 
number of cliques in the worst case [4]. One of the key 
features of the SMP implementation is an explicit 
representation of an unexplored search sub-tree. Such a 
data structure enables dynamic load balancing, which 
requires this data to be easily migrated from one thread to 
another. In a shared-memory environment, this data does 
not need to be copied between threads, but the 
representation is crucial to the DMP implementation, 
where the candidate path must be transferred between 
compute nodes. 

The devised data structure, called a candidate path, 
contains these components: 

 The clique represented by the path from the root to 
the current node in the search tree.  

 All eligible vertices for the path (i.e. common 
neighbors for all the nodes in the above clique). 

 Vertices covered earlier in expanding the parent 
path (to avoid redundant coverage).  

The heart of the implementation is a set of work pools, 
one for each thread, containing candidate paths. Each 
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Figure 2. A backtracking search tree for the graph of 
Figure 1. The redundant paths shown as dashed lines. 
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thread explores its portion of the search tree by removing 
items from its pool, and then fills the pool as new paths 
are discovered. When a pool becomes empty (all work has 
been completed), a load balancing step is used to keep the 
thread busy. Traversal of the search sub-trees is 
independent work, so no communication is required 
during this phase. 

The pool is accessed like a stack as the search progresses, 
with last-in-first-out (LIFO) ordering. The most recently 
explored node is expanded into additional candidate 
paths, which are pushed back onto the stack. This results 
in a depth-first traversal of the search tree. 

3.2. Reading the Input Graph 

Although it seems like a simple task, the reading of the 
graph description file can become a factor limiting 
scalability. All processes require a copy of the graph data.  

A simple implementation where all processes read the 
input file is limited by file system scalability. To get 
around this, the file is read by a single process that 
broadcasts the data to the other processes. One efficient 
broadcast operation can be used because the graph data is 
packed into a single data structure containing an 
adjacency list for each vertex. 

A header in the input graph file contains the vertex and 
edge totals for the graph. This allows for pre-allocation of 
sufficient contiguous space to hold the graph as the rest of 
the file is read in. The adjacency list for each vertex is 
managed as an array rather than a linked list. This makes 
the graph data more compact, results in better cache 
behavior when the adjacency list is accessed, and also 
eliminates address pointers. Address pointers are not 
portable between processes, and would need to be 
regenerated locally after the broadcast. 

The array construct leaves open the possibility of using 
binary search of the adjacency list when memory 
constraints prevent the use of other techniques. This issue 
is important for per-thread performance, and is detailed in 
Section 4 below. 

It is convenient to have the vertex and edge totals known 
before the graph data is read, but the same data structure 
can be used without these values. A simple approach 
would be to add an extra pass through the input data to 
obtain the graph size before allocating space and storing 
the data. A more efficient technique is to initially allocate 
based on a graph size estimate, then reallocate a larger 
block if the estimate proves to be too small. With a good 
estimate and careful expansion, the overhead of 
reallocation can remain small in comparison to the cost of 
reading the input data. 

Auxiliary data structures, such as the adjacency hash table 
or adjacency bit matrix, are generated redundantly by each 

process.  It is cheaper to generate this data locally than to 
transfer it through the network. 

3.3. Initial Work Partitioning 

There is no practical way to determine a well-balanced 
distribution of work for MCE a priori. Since dynamic 
load balancing is required, the initial partitioning can be 
performed by simply dividing the graph vertices equally 
among the threads. Each vertex added to the work pool 
becomes a root node of a search sub-tree. In order to be 
added to the work pool as a root, the vertex must satisfy 
all the normal constraints to establish a candidate path. 

Given this partitioning scheme, this step is done 
independently by the threads and no communication is 
required. Each thread selects root vertices based on its 
global thread number, which is computed using the local 
thread number and the MPI process rank. 

In the example graph of figure 1, which corresponds to the 
search tree of figure 2, the imbalance in the initial 

partitioning is obvious.  The thread that selects vertex a 
will have all of the remaining work, while the threads 
selecting the other vertices will have no further work. 
Graphs derived from real biological data can result in 
similar search tree imbalances. An additional source of 
imbalance comes from the discovery of maximal cliques, 
which requires extra work be performed at a search tree 
node. 

3.4. Dynamic Load Balancing 

When a work pool becomes empty, load balancing is 
performed by stealing work from the pool of a random 
thread. Stealing means moving work from one pool to 
another without the direct involvement of the pool’s 
owner. Unlike normal access to the pool, stealing uses 
first-in-first-out (FIFO) order, removing items from the 
opposite end of the pool. This has the effect of 
transferring nodes from high up in the search tree, which 
have a greater chance to expand. 

Two levels of load balancing are used, corresponding to 
the levels of parallelization. Within a process, threads can 
steal from one another by simply removing an item from 
the pool. Locks are used to prevent the owner thread, or 
another stealing thread, from accessing the pool during 
this operation. This local load balancing is used until all 
threads of the process have no work. 

Between processes, a more complex scheme is needed. A 
load balance request message is sent to a random target 
process, which responds with any items that it wishes to 
share. The term stealing still applies, since the responding 
target process must steal the work from local threads in 
order to send it to the requesting process. 
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In order to make the remote stealing efficient, more than 
one item may be stolen per request. The request message 
specifies the number of idle threads in the requesting 
process, and up to that many items may be returned. 

In both cases, local and remote, if an attempt to steal work 
fails because the work pools are empty, the search 
continues on to the next target, until all targets (threads or 
processes) have been polled. 

In addition to the case where the target work pool is 
empty, and the attempt to steal work fails, if the pool 
contains only one item, the item is not moved, since it 
could just as well be processed by the current owner. This 
presents a special case, since it is possible, though 
unlikely, that only a single candidate path remains to be 
examined. For SMP load balancing, the threads other than 
the owner of the non-empty work pool enter the DMP 
load balancing state, waiting for the final thread to 
complete its work so the DMP load balancing step can 
begin. In this way, the transition from SMP to DMP load 
balancing within a process is a thread barrier. But what if 
this last candidate path expands into a large number of 
new items added to the work pool? 

A last-step explosion of local work could leave a single 
thread to continue processing while the other threads are 
idle at the barrier. This would create a significant load 
imbalance. This work stealing race condition is seen in 
rare instances, and overall performance can be 
significantly reduced. 

To avoid this problem, a work stealing attempt has three 
possible outcomes: success, empty pool, and nearly empty 
pool. Since the last case indicates that local work remains, 
threads receiving this work stealing result enter a new 
cycle to recheck all local work pools. For most cases, all 
work pools are empty after the second iteration, but, any 
sudden work explosion can be handled gracefully. 

3.5. Termination Condition 

Since the enumeration proceeds without global 
synchronization, a technique to complete processing in an 
orderly way is needed. The first issue is that an individual 
process must poll all other processes to determine that no 
process has work to share, i.e. no further load balancing 
can occur. Secondly, each process must handle load 
balancing requests until it can determine that all other 
processes have reached the same point. This implies that a 
process cannot terminate (i.e., call MPI_Finalize) even 
when no further work is available. 

Shutdown is therefore takes place in phases. First a 
process polls all other processes for work to share. If all 
requests fail, the process is ready to enter an idle state. In 
the idle state, it continues to respond to load balancing 
requests, but first it sends an idle status notification to 

every other process. When idle notifications are received 
from all other processes, then the entire application has 
reached a quiescent point and all processes can terminate. 

While this procedure does generate a flurry of 
communication, the effect on overall application 
performance has not been significant. If this simple 
broadcast scheme of communication becomes a 
performance issue, either at an extreme scale of compute 
nodes or on a particular computer system, then 
hierarchical communication may be necessary by 
partitioning the processes into smaller groups. 

3.6. Asynchronous Requests and 

Notifications 

In order to manage load balance requests and idle 
notifications, a flexible asynchronous message handling 
capability was developed. One thread of each process is 
responsible for this work, which is handled via MPI 
asynchronous point-to-point communication functions. 

Asynchronous communication was used for better 
portability. Many MPI implementations use spin-waiting 
within blocking calls, which conflicts with multi-threaded 
execution within the main computation. In effect, a 
processor core becomes dedicated to communications. 

To avoid this, one computational thread within a process 
also handles communication.  Polling for incoming 
messages takes place after each iteration of the main work 
loop, taking advantage of the fine-grained nature of the 
underlying algorithm. The overhead placed on this thread 
due to this extra responsibility is effectively spread 
amongst all of the threads via local load balancing. Since 
random work stealing is used, the overhead is well-
distributed over all the processes. 

4. Improving the Base Algorithm Efficiency 

In the clique enumeration base algorithm, a connected 
predicate is used repeatedly to determine if the current 
vertex shares an edge with a test vertex. Since this 
operation occurs many times, it should have an efficient 
implementation. 

4.1. Linear Search of the Adjacency List 

The simplest implementation is to search the list of 
vertices adjacent to the current vertex, since this list is part 
of the basic graph description. While this uses no 
additional memory, it is also the slowest method. It is 
especially bad for a common case, where the test vertex is 
not in the list. 
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A linked list is a flexible data structure, but searching a 
linked list is slow because of its pointer-chasing nature. A 
linear list is much faster to search, both because it 
removes the pointer chasing behavior, but also because it 
takes advantage of cache structure. As noted in section 
3.2, another advantage of the linear list is that it can be 
moved between processes, since it contains no address 
pointers. 

4.2. Adjacency Matrix Lookup 

The fastest method is to construct an adjacency matrix 
from the graph description with the value for a given pair 
of vertices determining whether the vertices are connected 
or not. A bit matrix is used, so the memory required is n

2
 

bits, where n is the number of vertices in the graph.  This 
is reduced by half when symmetry of the matrix is 
exploited. A limitation of this technique is that a matrix 
for a graph with a large number of vertices may not fit in 
memory. 

 a b c d e 

a - 1 1 1 1 

b 1 - 0 1 0 

c 1 0 - 1 1 

d 1 1 1 - 1 

e 1 0 1 1 - 

 

4.3. Adjacency Hash Table Lookup 

A fast technique which often requires only a limited 
amount of extra memory is a hash table.  In place of the 
list of adjacent vertices, a hash table of adjacent vertices is 
used. The size of the table is a small constant factor larger 
than the list representation, and the average lookup 
requires few memory accesses. 

A simple hash function (the test vertex number modulo 
the table size) is used to compute its index into the current 
vertex’s hash table. A table collision occurs when two 
vertices have the same hash index. In the worst case, the 
hash table lookup time becomes linear in the vertex 
degree if all vertices have the same hash index. To avoid 

this, a size expansion factor is used to allocate a table 
several times larger than vertex degree when the table is 
created. A sparsely populated hash table has much less 
chance of encountering the worse case. In the average 
case, the lookup time is constant with respect to the vertex 
degree. 

The memory required for the hash table grows with the 
number of edges in the graph. The hash table approach is 
applicable when the average vertex degree is much 
smaller than the number of vertices; otherwise, the 
adjacency matrix is more compact. 

 

4.4. Algorithm Selection 

The library implements all three adjacency test methods. 
pDFS uses the adjacency matrix if enough memory is 
available, defaulting to the hash table for large graphs. If 
insufficient memory for the hash table is available, the 
adjacent vertex list search is used. 

An alternative to the linear search of the adjacency list is 
to sort the list and use binary search when the list size (or 
sub-list size) is large. For the graph sizes and compute 
node sizes considered, the lookup techniques are the best 
choice. If the graph sizes of interest grow substantially, or 
the compute nodes used are significantly smaller, binary 
search may be the preferred algorithm. 

At the shared-memory level of parallelization, multiple 
threads can share these graph description data structures, 
reducing the memory requirement. 
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Figure 3. The adjacency 
lists for the vertices of 
the graph in Figure 1. 
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Figure 5. An example adjacency hash table with 
expansion factor of 2. “-“ indicates an empty table 
entry. 

d a 

a - - 

- - a e 

a - c 

Figure 4. The adjacency 
matrix for the vertices 
of the graph in Figure 1. 
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Figure 6. Performance of MCE with different vertex 
adjacency test methods, in cliques generated per second. 

The hash table is 17 times faster than the linear list search, 
and the bit matrix is 1.8 times faster than the hash table. 
The absolute performance varies depending upon the 
input graph, but the relationship between them is constant. 

5. Performance 

5.1. Parallel Programming Model 

Comparison 

A benchmark was run using a single node server with two 
quad-core Opteron processors to compare the SMP and 
DMP implementations. Each run used all 8 processor 
cores, but varied how the cores were used. There are four 
possible combinations of threads and processes for this 
benchmark. One case used multiple threads within a single 
process, and at the other extreme each process used a 
single thread. Two runs mixed multiple threads and 
processes in a hybrid parallel mode (MPI and pthreads 
used together). 

The MPI library used shared memory to transfer messages 
between processes. This allows the comparison to focus 
on the application differences for the two levels of 
parallelization. 

 

Figure 7. Performance comparison of processes versus 
threads. The lower bound of the chart is set to magnify the 
differences. 

This result shows that, at small scale, the DMP 
implementation of MCE is nearly as efficient as SMP one. 
This is important because one goal of this work was to 
retain the efficiency of the SMP implementation, but to 
extend the scalability of the application via DMP. 

5.2. Parallel Scaling 

To assess the overall scalability of the application, 
benchmark runs were performed on a quad-core Cray XT4 
system using graphs derived from biological data. Figure 
8 was derived from runs on a yeast stress response graph 
that has 3472 vertices and 246342 edges.  Each edge 
represents a correlation between two genes. Similar 
behavior was observed for runs on other biological 
networks. 

Figure 8. Parallel speedup (log-log scale). 

At the highest scale, the parallel speedup begins to drop 
off from the ideal. This result is due to the parallel 
overhead growing in proportion to the MCE calculation 
time. For the 1 process run, the MCE calculation time is 
4109 seconds, but this shrinks to 2.1 seconds at 2048 
processes. 

Another boundary to the scalability of this benchmark is 
that with 2048 processes and 3472 vertices, the initial 
work partitioning results in each process starting with at 
most 2 vertices. This can place an extra burden on the 
dynamic load balancing. 

Writing of the maximal clique output files was disabled in 
these benchmark runs. The scalability of the underlying 
file system would have otherwise impacted the algorithm 
scalability. Section 7.2 comments further on this issue. 

5.3. Overhead due to message passing 

The DMP load balancing time can be broken down into 
two components: the time it takes to steal work from 
another process (fetch time) and the time it takes to 
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process incoming requests to steal work (request time). At 
the end of the run, some time is required to come to a 
globally idle state (idle time). These three parts of the run 
time account for most of the overhead due to message 
passing during parallel execution. 

The same benchmark runs from the parallel scaling study 
were analyzed to separate out these components. 

 

Figure 9. Message passing overhead times. 

Although these times are only a small percentage of the 
overall run time for the benchmark runs, the trend shows 
that the overhead will become significant at extreme scale 
(10s of thousands of processes). This could be managed 
by grouping processes and using a hierarchical load 
balancing scheme. Load balancing would take place first 
within a group of processes, and then between groups. A 
two-level scheme may be sufficient for the foreseeable 
future (up to a million processes). 

6. Conclusion 

The distributed-memory parallel maximal clique 
enumerator pDFS runs with good parallel efficiency at 
high scale with input graphs from real-world biological 
data. The pGraph library can be used as a basis for the 
development of additional parallel graph algorithms. 

One lesson learned from the work to add an MPI level of 
parallelization to an application written to use pthreads is 
that the selection of algorithm and supporting data 
structures is critical to success. It was a lucky 
circumstance that the approach used in the SMP 
implementation was compatible with adding MPI at a later 
point. 

It is apparent that the use of high-level parallelism with 
pthreads created this compatibility. Had the application 
been parallelized at the much lower level of computational 
loops, no infrastructure to be expanded for multi-process 
use would have been available. As it was formulated, the 
pthreads implementation led smoothly to a combined 
MPI-pthreads application which greatly leveraged the 
earlier work. 

This leads to an observation about the interaction of SMP 
and DMP programming techniques. It is possible to apply 
these independently to a program, choosing low-level 
parallelism for pthreads or OpenMP and a high-level 
explicitly-decomposed strategy for MPI. But if the 
required effort is applied to create a high-level 
decomposition for MPI, why not leverage this work for 
both SMP and DMP? In an era when the number of 
processor cores per shared-memory compute node is 
growing, hybrid parallel programming becomes more and 
more attractive. 

The benefits seen for this application include: 

 Less data replication, since many data structures 
can be shared by the threads within a process. 
This reduces the memory requirement, and can 
result in better cache use, reducing the demand 
on main memory bandwidth. 

 More efficient shared-memory parallel execution, 
because it is realized at a high level. 

 Fewer MPI processes are required for a given job 
size, reducing the scalability requirement at this 
level. 

7. Future Work 

7.1. Application to Other Computer 

Architectures 

A key target application area for Cray XMT systems is 
graph algorithms. The XMT architecture employs 128 
hardware threads per processor, with all processors of the 
system sharing a global memory. Although it supports 
neither pthreads nor MPI, there is a straightforward path 
to port pDFS to XMT systems. Global memory is required 
for extremely large graphs (millions of vertices), but 
applications can also exploit the local memory capability 
available on XMT systems. Local memory use has the 
potential to deliver higher performance, since average 
memory access latency is reduced and network congestion 
is avoided. 

Remarkably, initial analysis shows that few source code 
changes are required to port the code to the XMT 
architecture. Within the existing framework of pDFS, each 
hardware thread can manage a private work pool, with 
work stealing used to load balance within a processor, 
much like the pthreads level of parallelism works on Cray 
XT. This operates more efficiently than pthreads due to 
the fine-grained synchronization primitives supported by 
the Cray XMT hardware. This can be extended seamlessly 
to multiple processors through the use of global memory, 
leveraging the simple Cray XMT parallel programming 
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mode, allowing it to replace both the pthread and MPI 
levels within pDFS. 

7.2. Output 

A substantial issue with enumeration is the volume of 
output. For many types of graphs, the number of maximal 
cliques found is large enough that the time to write the 
cliques to files is a significant portion of the overall run 
time. The technique currently implemented is to have each 
thread or each process open a unique output file. For a 
large job, this can overwhelm the file system. A scheme to 
best manage the output from a large parallel job remains 
to be devised. A likely direction is to group processes 
together for output, allowing an extra level of flexibility. 
For small runs, a single writer may suffice, but at larger 
scale, multiple writers will be needed. The optimal 
number of processes in a group is difficult to determine 
because different graphs will result in different volumes of 
output in an unpredictable manner. Ultimately, a dynamic 
scheme may be necessary, where additional output servers 
are added as needed. 
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