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Motivation:

Higher resolution
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http://www.geo-prose.com/projects/pdfs/petascale_science.pdf

“More importantly, because the 
assumptions that are made in the 
development of parameterizations of 
convective clouds and the planetary 
boundary layer are seldom satisfied, 
the atmospheric component model 
must have sufficient resolution to 
dispense with these parameterizations. 
This would require a horizontal 
resolution of 1 km.”
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TIME BARRIER
Current climate models use explicit time integration

If re
solution goes up

the time step must go down!
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300 km

current climate models

20 minutes
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1 km

4 seconds! 
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Extreme-scale systems will provide 
unprecedented parallelism!
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But
performance of individual processes has stagnated

4-second
time step...

multi-century simulation?



Fast Forward
Overcoming the time barrier
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• Fully implicit time integration
- Stable for big time steps

• Parallel in time
- Time is the biggest dimension

• New discretizations
- Better time accuracy

one metaphor just isn’t enough



How to build a new climate model
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 1. Start with shallow-water equations on the sphere

They mimic full equations for 
atmosphere and ocean



2. Prove yourself on standard tests
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Defined by Williamson, Drake, Hack, Jakob, and Swarztrauber 
in 1992 (148 citations)

How to build a new climate model



How to build a new climate model
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3. Proceed to 3D tests and inclusion in a full model

That’s all there is to it!



Fast Forward
Overcoming the time barrier
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• Fully implicit time integration
- Stable for big time steps

• Parallel in time
- Time is the biggest dimension

• New discretizations
- Better time accuracy

one metaphor just isn’t enough



Explicit versus implicit
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y
State of simulation

at current time
Values are known

y′
State of simulation
at next time step

Values are unknown

y′ = f(y)
Explicit

Compute unknown directly from known



Explicit good and bad

• Good
- Highly parallel
- Nearest-neighbor communication

• Bad
- Numerically unstable (blows up) for ∆t > O(∆x)
- Increase resolution → decrease ∆x → decrease ∆t
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Explicit versus implicit

18

y
State of simulation

at current time
Values are known

y′
State of simulation
at next time step

Values are unknown

y′= ay+f(y′)
Implicit

Solve a (nonlinear) system of equations



Implicit bad and good

• Bad
- Must solve a (nonlinear) system of equations

• Good
- Numerically stable for arbitrary time steps

• Ugly
- Still need to worry about accuracy (for big time steps)
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Implicit  + shallow water
(Kate Evans)

• Start with HOMME shallow-water code
• Convert explicit formulation to implicit
• Solve with Trilinos
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HOMME

• High-Order-Method Modeling Environment
• Principal developers

- NCAR: John Dennis, Jim Edwards, Rory Kelly, Ram 
Nair, Amik St-Cyr

- Sandia: Mark Taylor 
• Cubed-sphere grid
• Spectral-element formulation (and others)
• Shallow-water equations (and others)
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image courtesy of Mark Taylor



Jacobian-Free Newton Krylov 
(JFNK)
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Jacobian-Free Newton Krylov
• What we want: F(y)=0
• What we have: F(y)≠0
• Find the change in F 
as y changes
- Jacobian, J, derivative of a vector

• Approximate correction: F(y+∆y)=0
0=F(y+∆y)≈F(y)+J∆y
F(y)=-J∆y

• Solve the linear system for ∆y and add to y
• Repeat until F(y)≈0
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Jacobian-Free Newton Krylov
• F(y)=-J∆y
• Solve for ∆y using an 
iterative linear solver

• Krylov subspace methods
- Take a guess at ∆y
- Calculate how bad it is (residual)
- Use residual to improve guess
- Iterate, using past residuals and 

Russian Navy know-how to improve guess
- Stop when residual is small (guess is good)
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Jacobian-Free Newton Krylov

• Don’t compute the Jacobian
• Approximate it using finite 
differences
J∆y≈(F(y+ε∆y)-F(y))/ε
ε is a small number

• Can be much cheaper to 
calculate, only need F
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Test case 1: cosine bell
initial condition
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Test case 1: cosine bell
explicit solver with “hyperviscosity”
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Test case 1: cosine bell
implicit solver, no preservatives
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Test case 1: cosine bell
implicit versus explicit

• Implicit takes many iterations per time step
• But 2-hour time step instead of 2-minute
• Similar error at the end
• 40% shorter runtime (no preconditioner)
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Performance result #1!



Test case 2: steady state

• 12 simulated days
• Explicit

- 4-minute time step
- 28s runtime

• Implicit
- 12-day time step
- 3.6s runtime
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Performance result #2!



Fast Forward
Overcoming the time barrier
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• Fully implicit time integration
- Stable for big time steps

• Parallel in time
- Time is the biggest dimension

• New discretizations
- Better time accuracy

one metaphor just isn’t enough



Parareal
(my interest)

• Algorithm published in 2001 by 
Jacques-Louis Lions, 
Yvon Maday, 
and Gabriel Turinici

• Variants successful for range 
of applications
- Navier-Stokes
- Structural dynamics
- Reservoir simulation
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Parareal
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to t1 t2 t3

Y(x)

tN . . .

 . . .

Solve serially at coarse time steps



Parareal
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to t1 t2 t3

Y(x)

tN . . .

 . . .

Compute fine time integrations between 
coarse steps in parallel



Parareal
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to t1 t2 t3

Y(x)

∆1

∆
2

∆
3

tN . . .

 . . .
∆N

Propagate and accumulate fine-time 
corrections at coarse scale



Parareal
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• Iterate until corrections are negligible
• Published results by others: 2-3 iterations



My parareal experience
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• Numerically unstable for pure advection
• Confirms theoretical result by Maday and 
colleagues

• Should work for Burgers’ equation

∂u

∂t
+ v

∂u

∂x
= 0

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0X ?



Fast Forward
Overcoming the time barrier

38

• Fully implicit time integration
- Stable for big time steps

• Parallel in time
- Time is the biggest dimension

• New discretizations
- Better time accuracy

one metaphor just isn’t enough



Curvelets
(Rick Archibald)

• Compact in space
(like finite elements)

• Preserve shape
(like Fourier waves)

• Might allow Δt ~ Δx1/2
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Curvelets
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But they require a periodic domain



Multi-wavelets
(Rick Archibald)

• Adaptive
• Designed for refinement
• Strong error bounds

- Control refinement and coarsening
• Requires integral formulation

- Translation: more theoretical work to do
• Work just getting started
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Finite differences
(my interest)
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High-order single-step time 
integration
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Consider advection:

∂u

∂t
+ v

∂u

∂x
= 0

Time integration using a Taylor 
series in small ∆t

u = u
′
− ∆t

∂u′

∂t
+

∆t2

2

∂2u′

∂t2
−

∆t3

6

∂3u′

∂t3
+ O(∆t

4)

Implicit



High-order single-step time 
integration

• Replace time derivatives with space 
derivatives

• Why? 
Many grid points in space, few in time (2)
So you can form high-order space derivatives

• How? 
Use the governing equation
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∂u′

∂t
+ v

∂u′

∂x
= 0

∂u′

∂t
= −v

∂u′

∂x
→



High-order single-step time 
integration

• Got high-order space derivatives?
• Get high accuracy in time for free*!
• Just 2 points in time: this one and next one

- Save memory
- Save I/O storage space and bandwidth
- Easy startup from initial condition
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* Since flops are free.

u = u
′ + v∆t

∂u′

∂x
+

v2∆t2

2

∂2u′

∂x2
+

v3∆t3

6

∂3u′

∂x3
+ O(∆t

4)



High-order single-step time 
integration

• Explicit and implicit work for advection
• Explicit works for Burgers’ equation 
• Implicit and semi-implicit for Burgers’ under 
development

• Goal is shallow-water equations
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Would you believe I cut some topics 
from the talk?

• High-order methods for compact stencils
• Single-cycle multi-level linear solvers
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