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ABSTRACT: MPI is a de facto standard for portable parallel programming using a 
message passing paradigm. Interest is growing in other paradigms, in particular 
Partitioned Global Address Space (PGAS) languages such as Coarray Fortran, UPC 
and Titanium. Most Computational Science and Engineering codes are written in 
Fortran, and the 2008 Fortran standard will include coarrays, a Cray initiated PGAS 
extension of the language. We report on the experience of taking a moderately large 
CFD program and migrating it to a Cray X1E using coarrays rather than MPI. The MPI 
and coarray versions are compared, both for ease of programming and legibility, and for 
performance. We find that coarrays are a useful and expressive addition to Fortran, and 
that their use does not impact on performance. We discuss various ways in which the use 
of coarrays can be optimized in a program. 
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1. Introduction 
The development of scientific computing has been 
accompanied over many decades by the development of 
programming languages. With the advent of parallel and 
vector computing, an early goal was the production of 
automatic parallelizing compilers. This proved difficult in 
the framework set by existing languages, though 
automatic vectorization was successful. Several attempts 
were made to add seamlessly to a language by means of 
directives that a compiler was free to act on or not. 
Typical of these were High Performance Fortran (HPF) 
[1] and OpenMP [2], which included directives that could 
be treated as comments by a compiler, or could give 
suggestions for ways to exploit parallelism within the 
code. However, directive based parallelization was found 
to be insufficiently rich to describe the algorithms that 
were emerging, and the message passing paradigm 
became established. Here a library of routines is supplied 
(MPI [3] and PVM [4] are examples) by means of which 
processes can communicate and cooperate. Another 
paradigm which may be appropriate depending upon the 
hardware platform is SHMEM [5]. In either case, the 
functionality of the library is defined outside any specific 
programming language, and a language binding is 
supplied as an API. 

Recently a return to incorporating parallelism within 
programming languages has occurred, with Coarray 
Fortran [6], UPC [7] and Titanium [8] seeking a small set 
of additions to existing languages (Fortran 95, C and Java 
respectively) based on the Partitioned Global Address 
Space model. In these languages, the communications are 
largely abstracted out, leaving the programmer writing 
code that could work equally well on shared or distributed 
memory architectures. A review of these is given in 
Ashby [9]. 

Ideas from these developments are being 
incorporated in the next generation of languages such as 
Chapel [10], X10 [11] and Fortress [12], discussed by 
Ashby [13]. 

1.1 Concepts of parallel programming 
A serial computer program consists of a set of instructions 
executed sequentially which transform input data to 
output data, generating temporary intermediate data in the 
process. A parallel computer program consists of a set of 
serial programs which execute simultaneously. In some 
cases these may be largely independent; in process 
farming, for example, some region of a parameter space is 
explored by multiple instances of a program running on 
slightly different initial data to find some optimum output. 
In other cases, each program needs knowledge of the 
calculations from the other programs and they need to 
exchange data regularly. Furthermore, these programs 
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may be the same (SPMD – Single Program Multiple 
Data) as when a finite difference solution to a partial 
differential equation is divided among several processors, 
each working on a part of the domain of the equation, or 
different (MPMD – Multiple Program Multiple Data), for 
example a multiphysics aeroelasticity calculation where 
the flow over a wing is calculated, the pressure field 
passed to an elastic solver which calculates the 
deformation of the wing and the new shape is passed back 
to determine the flow field. Synchronization will be 
needed to ensure that the data has been calculated. 

Each program in a parallel set may need data 
produced by another member. To access that data it must 
know a) on which other instance the data resides, b) how 
that program refers to it and c) that its value has been 
calculated. In addition, the other program may need to 
know that it will be asked for the data. 

The design of Coarray Fortran was driven by the 
question “What is the smallest change needed to convert 
Fortran 95 into a robust, efficient parallel language?” [6]. 
It achieves this by a simple syntactic extension to the 
language, an extension which maintains the style of 
Fortran. Since first being proposed in the late 1980s, 
Coarray Fortran has been developed into a part of the new 
Fortran standard currently under discussion for 2008 [14, 
15].  

With the forthcoming standardization of Coarray 
Fortran, we consider what advantages it offers the 
programmer and the feasibility of migrating an existing 
code from MPI, the de facto standard for distributed 
memory architectures. We are particularly concerned with 
the impact on programmer efficiency in terms of the ease 
of development and maintenance of coarray code, but we 
do not overlook run-time performance. 

2. The Basics of Coarray Fortran 
2.1 SPMD 
Like MPI, Coarray Fortran is based on a Single Program, 
Multiple Data model. The program is replicated a fixed 
number of times (usually chosen on the command line) 
and each replication (image in coarray language) has its 
own set of variables and mostly executes asynchronously.  

The number of images is available as the intrinsic 
function num_images(). Each image has an image index 
in the range 1:num_images(), which is available as an 
intrinsic function image_index(). 
 
2.2 Data 
Coarray Fortran departs from MPI in that objects can be 
declared as coarrays, which means that as well as being 
accessible locally in the normal way, they can be accessed 
from other images, for example: 

real a(10),b(10)[*] 
a(5) = b(5)[2] 
b(1)[4] = a(3) 

where arrays a and b exist on every image and can be 
accessed normally there, but only b can be accessed 
directly from another image.  

The cosubscripts in square brackets here refer to 
image indices, but another range may be chosen by 
including a lower bound in the declaration, e.g. 

real b(10)[0:*] 

and the image indices may be mapped to several 
Cartesian coordinates by declaring several cosubscripts: 

real b(10)[nx,ny,*] 

There is an intrinsic image_index(b,cosubs) for 
finding the index of the image that is referenced by the set 
of cosubscripts in the array cosubs when used for the 
coarray b. 

Coarrays are restricted to having the same shape and 
bounds on each image. This permits implementations to 
store them at the same location on each image and allows 
an image to calculate addresses on other images. Where 
this is too restrictive, the coarray may be of a derived type 
that has an allocatable array component: 

type co_double_2 
double precision,allocatable :: array(:,:) 
end type co_double_2 
integer nx,ny 
type (co_double_2) vel[*] 
 : 
allocate(vel%array(nx,ny)) 

where nx and ny are local variables whose value varies 
from image to image. 

 

2.3 Synchronization 
Almost all synchronizations are explicit. Here, we will 
use only the simplest 

 sync_all 

whose meaning is obvious. Between synchronizations, 
the system is free to assume that no data accessed by an 
image is altered by another image and can use all its usual 
optimizations. If data is altered by one image and 
accessed by another, it is necessary for there to be 
synchronization after the alteration and before the access.  

 

2.4 Coexistence with MPI 
Since MPI uses the same SPMD model, it is easy to have 
MPI and coarrays exist together in a program. We have 
made use of this to convert gradually from MPI to 
coarrays. We had to take account of the fact that MPI 
indexes its processors from zero (we gave many of our 
coarrays a lower cobound of 0 to ease conversion) and 
that Cartesian coordinates in MPI are taken as indexed 
from zero and mapped to processors counting most 
rapidly in the last dimension rather than the first. 

3. The Application: SBLI 
To investigate the use of coarrays in a real application 
code, rather than a simple kernel, we have taken the SBLI 
code (also known as PDNS3D, [16]) - a finite difference 
formulation of Direct Numerical Simulation (DNS) of 
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Turbulence from the University of Southampton, UK, and 
migrated it to use coarrays.  

Fluid flows encountered in real applications are often 
turbulent. There is, therefore, an ever-increasing need to 
understand turbulence and, more importantly, to be able 
to model turbulent flows with improved predictive 
capabilities. As computing technology continues to 
improve, it is becoming more feasible to solve the 
governing equations of motion — the Navier-Stokes 
equations — from first principles. The direct solution of 
the equations of motion for a fluid, however, remains a 
formidable task and simulations are only possible for 
flows with small to modest Reynolds numbers. Within the 
UK, the Turbulence Consortium (UKTC) has been at the 
forefront of simulating turbulent flows by direct 
numerical simulation. UKTC has developed a parallel 
version of a code to solve problems associated with 
shock/boundary layer interaction. 

The code SBLI was originally developed for the Cray 
T3E and is a sophisticated DNS code that incorporates a 
number of advanced features: namely high-order central 
differencing; a shock-preserving advection scheme from 
the total variation diminishing (TVD) family; entropy 
splitting of the Euler terms and the stable boundary 
scheme. The code has been written using standard Fortran 
90 code together with MPI in order to be efficient, 
scalable and portable across a wide range of high-
performance platforms. The PDNS3D benchmark is a 
simple turbulent channel flow benchmark using the SBLI 
code. This benchmark comes in three sizes with meshes 
of 120 cubed, 240 cubed and 360 cubed. The code is very 
heavy in its use of memory, and so for the small numbers 
of processors available to us we were only able to 
exercise the first two of these. 

The most important communications structure within 
SBLI is a halo exchange between adjacent computational 
sub-domains. Providing the problem size is large enough 
to give a small surface area to volume ratio for each sub-
domain, the communications costs are small relative to 
computation and should not constitute a bottleneck. This 
is the case for our benchmarks. 

 

4. Parallel operations in SBLI 
4.1 The Process 
When migrating software to use the new features offered 
by developments in the language, the process by which 
elements of the code are identified for migration and the 
decisions made as to how to deal with them can be very 
important. In this case, we first performed a paper walk-
through of the code, identifying the broad functionality of 
each procedure and noting particularly any which made 
use of MPI routines. The parallel portions of SBLI fell 
into five parts. 
1. First, the various pieces of global data are read in by 

one master process and broadcast to all others. These 

include physical data such as the Reynolds Number, 
ambient pressure and specific heat ratio, γ, 
algorithmic data such as time step size, choice of 
TVD scheme and turbulence model, and control data 
such as the frequency with which to save restart files. 

2. Next, the global mesh is read by the master process 
and portions of it sent to other processes to form local 
meshes. The mesh partitioning, which is a recursive 
geometric bisection, may produce different sized 
local meshes on different images. 

3. Some quantities are set across all processes by a 
collective operation; the wall temperature, for 
example, is set using mpi_allreduce to find the 
minimum across the processes.  

4. The bulk of the parallel work in SBLI involves the 
halo exchanges and the enforcement of periodic 
boundary conditions. The code is well structured and 
performs these exchanges in a handful of routines. 

5. There is the gathering of data to write a solution and 
routines to re-read and distribute this data to enable a 
restart. This I/O element of the software has two 
optional solutions: gathering the data onto the master 
process and writing a file from there or using MPI-IO 
to write (and read) the data in parallel.  
 

Throughout the migration, the code was run and tested at 
suitable breakpoints. The final results were the same to 
the seven decimal digits printed. 

4.2 Broadcasting global data 
In the MPI code, the various pieces of data such as the 
number of grid points, Reynolds number, choice of 
turbulence model, etc. are read in by the master process, 
then packed into real, integer and logical buffer arrays 
(here and elsewhere we use real to denote floating point 
numbers; in the application itself they are double 
precision). These buffers are sent using mpi_bcast to all 
other processes, where they are unpacked. The resulting 
code is: 

if (master) then 
 r(1) = reynolds 
 ... 
 r(18) = viscosity 
 call mpi_bcast(r, 18, real_mp_type, & 
  masterid, MPI_comm_world, ierr) 
else 
 call mpi_bcast(r, 18, real_mp_type, & 
  masterid, MPI_comm_world, ierr) 
 reynolds = r(1) 
 ... 
 viscosity = r(18) 
endif 

There is a more elegant way to code this, but this is the 
way the original code used. 

The simplest coarray version uses the master image 
to store the data into all other images local copies: 

sync all 
reynolds = reynolds[masterid] 
... 
viscosity = viscosity[masterid] 
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Note that the references on the left hand side of the 
assignments have no coindex. They refer to the data in the 
local image. The synchronization ensures that an image 
does not try to acquire data from the master before it is 
available. The MPI version has an implicit 
synchronization within mpi_bcast. 

The coarray code has the advantage that what is 
being transferred is transparent and there is no need to 
check that the packing and unpacking are in 
correspondence. This makes adding a new variable less 
prone to programmer error. 

Another possible approach would be to use the 
master image alone to put the data onto the remote 
images, thus: 

sync all 
if (master) then 
 do i=1, num_images()-1 
  reynolds[i] = reynolds 
  ... 
  viscosity[i] = viscosity 
 end do 
end if 
sync all 

 The disadvantages of this approach are that it is 
inherently serial and that it requires two synchronizations. 
Two synchronizations are needed; the first stops the 
master trying to write to data on a remote image before it 
has been instantiated and initialised, the second stops the 
remote images from continuing execution before the data 
has been set by the master. 

We ran some timing tests on the Cray X1E to which 
we have access and found that there was no improvement 
in speed if we packed all the data into an array, copied 
that and then unpacked it. This approach might allow 
more efficient communication since there would be only 
one transfer. It is possible that the compiler is doing this 
automatically. This simple case illustrates the scope for 
optimization of communication that Coarray Fortran 
provides. 

4.3 Distributing Partitioned Data 
The global mesh data, coordinates and the derivatives to 
map from computational space to physical space are read 
onto the master process and partitioned according to the 
number of processes available. This can result in some 
local arrays being of differing lengths on different 
processes. We chose to handle this in Coarray Fortran by 
making the arrays be components of a coarray of derived 
type. We have introduced a set of user-defined types, 
co_double_1 to co_double_4, where the final digit labels 
the rank of the component array. In the main code an 
array, q, would be defined as: 

type(co_double_4)::q[*] 

and accessed by 
q%array(i,j,k,l) 

on the local image or by: 
q[procn]%array(i,j,k,l) 

on image procn. 
An alternative would be to have the coarrays declared 

allocatable and allocate them to the maximum size in each 
dimension. There is some advantage to this in code 

recognition and in minimizing the number of different 
lines in the code between the two versions, which might 
be important if MPI and coarray versions are to be 
maintained side-by-side. However, it does represent an 
overhead in memory use, particularly in codes which may 
be load imbalanced. The extra work of indirection 
through the component references is found to be small. 

In the main program it is, of course, impossible to 
declare the co-dimension as [nx,ny,*] as would be 
desirable, since nx and ny depend on the partitioning of 
the total number of images which is not known at compile 
time. This limitation can be overcome by dynamically re-
coshaping the coarrays when they are passed to 
subroutines as arguments. 

type(co_double_4),dimension[*]::q 
call distrib(q) 
... 
subroutine distrib(q) 
use parallel_mod, only : nx, ny 
type(co_double_4)::q[nx,ny,*] 

This replaced the functionality provided in the MPI 
version by using Cartesian communicators. Our original 
migration retained the use of these to manage the image 
topology, in the spirit of incremental change, but in the 
final version we moved to re-coshaping to use the full 
power of the coarray syntax. As we see in section 4.5, this 
has advantages for clarity of expression. 

The data are distributed using routines which 
encapsulate the process, so that the specific means of 
achieving the parallel communication is held in a very 
few places in the code rather than being widespread. The 
MPI algorithm is similar to that for broadcasting global 
data, except that the required region of the global data 
must be identified: 

if (master) 
 for each process j 
  find start and end indices of array for j 
  pack global array(start:end) to buffer 
  send buffer to process j 
 next 
else 
 receive buffer 
 unpack to local array 
end if 
For the coarray version, we still need to find the 

region of the global array, but the sending is simpler: 
if (master) 
 for each image j 
  find start and end indices of array for j 
  local(:)[j]=global(start:end) 
 next 
end if 
In this case, the images are sitting idle while the 

master image farms out the data. We call this the “push” 
version where data are pushed from the master out to the 
worker images. Alternatively each worker image could 
“pull” the data thus: 

find start and end indices on this image 
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local(:)= global(start:end) [masterid] 
There is scope here for parallelism if the memory 

access mechanism will support it. 
As in section 4.2, synchronization is important in this 

routine and must be explicitly added. 
The routines for distribution in the original code 

distributed both rank 3 and rank 4 arrays, being called 
with the size of the fourth dimension set to 1 in the case 
of rank 3 arrays. This would not work when the arrays 
were translated into co_double_3 and co_double_4 
objects, so a generic interface was built in order to 
preserve both the structure and the exact statements of the 
original code as far as possible. Experience with code 
transformation has shown that it is important to disturb 
the appearance of the code as little as possible so that the 
authors can still recognise it. Failure to do so can lead to a 
loss of maintainability. Improvement of this is one of our 
goals. 

 

4.4 Collective operations 
Collectives for coarrays have been proposed but are 
currently not available in Cray Fortran and are not 
intended to be part of the Fortran 2008 standard, though 
they are expected to be included in a Technical Report. 
We wrote our own simple co_min  function  (which 
returns the minimum over the images of a co-scalar). This 
is not a true collective, but runs on each image. The 
synchronizations ensure the same result is returned on all 
images. 

double precision function co_min(a) 
double precision a[*] 
integer i 
sync_all 
co_min = a 
do i=1, num_images() 
 if (a[i] .lt. co_min) then 
  co_min = a[i] 
 end if 
end do 
sync_all 
end function co_min 

This is clearly not an efficient implementation but 
was suffifcient for our purposes where it is only called 
once during the program’s run. 

In the same way, the current Cray Fortran 
implementation does not include the image_index() 
function, which is a recently proposed addition to the 
coarray language, so we wrote a simple emulator for this. 
 

4.5 Halo Exchange 
At the heart of the time stepping algorithm is a set of 
routines for halo exchange in each of the three cartesian 
directions. Again, these are used for rank 3 and 4 arrays 
and generic interfaces were required. The MPI approach 
is the familiar one of packing data into a buffer, sending 
to the appropriate neighbour and the neighbour unpacking 
it into the correct place in the local array. 

The data sent are the values on the interior portion of 
the mesh which form the halo region on a neighbouring 

process. In the coarray version, simple coaddressing is 
used. If nx holds the extent of the local mesh in the x-
direction, then to send the data from an image to the 
image one x-step lower (procmx): 

nxp=nx[procmx] 
do k=1, nz 
do j=1, ny 

a[procmx]%array(nxp+1:nxp+xhalo,j,k)& 
 = a%array(1:xhalo,j,k) 
end do 
end do 

Using the re-coshaping facility gives code which is 
more transparent. In the following routine which performs 
a halo exchange in the negative x-direction, using the 
array d to contain the location of the current image in the 
three dimensional grid of images allows the image one 
step below in x to be directly addressed:  

subroutine exch_x_minus(a,nx) 
use parallel_mod, only : nxim, nyim 
type(co_double_3)::a[nxim,nyim,*] 
integer nx[nxim, nyim,*] 
integer d(3), nxp 
d = this_image(a) 
if (d(1) .gt. 1) then 
 nxp = nx[d(1)-1,d(2),d(3)] 

a[d(1)-1,d(2),d(3)]%array(nxp+1:& 
nxp+xhalo,:,:) = a%array(1:xhalo,:,:) 

end if 
end subroutine exch_x_minus 

In the MPI code nx was not passed through the 
argument list but was instead accessed from the 
parallel_mod module (which also contains the definition 
of the co_double_3 type). To keep the interface to the 
exchange routines consistent between the two versions, 
we were forced to do likewise and so nx could not be re-
coshaped. We were able to use the image_index() 
function to overcome this: 

subroutine exch_x_minus(a) 
use parallel_mod, only : nxim, nyim,nx 
type(co_double_3)::a[nxim,nyim,*] 
integer d(3), nxp, imgxm 
d = this_image(a) 
if (d(1) .gt. 1) then 
 imgxm=image_index(a,(/d(1)-1,d(2),d(3)/)) 
 nxp = nx[imgxm] 

a[d(1)-1,d(2),d(3)]%array(nxp+1:& 
nxp+xhalo,:,:) = a%array(1:xhalo,:,:) 

end if 
end subroutine exch_x_minus 

 

4.6 Input and output 
 
Since the routines which use MPI-IO are complex we 

opted to continue with MPI for these routines at present, 
in keeping with our incremental approach. This choice 
does not affect our results on performance since the full 
solution is not written to disk in our experiments. 

 

5. Results 
5.1 Clarity 
The measures of interest when assessing the success of 
the transformation described in section 4 are first of all 
the clarity and readability of the transformed code and 



secondly the performance in terms of speed and 
scalability. 

Clarity and readability are subjective, but by 
retaining as much of the original code as possible through 
the use of generic functions, we maintain a high level of 
recognisability which plays a large part in making the sort 
of code transformation we have done acceptable to the 
principal developers. Since the original code used pre-
processor directives to provide various optional 
compilation alternatives we have included the coarray 
version as such an option. This has the added advantage 
that we can be as sure as possible that the comparison of 
MPI vs coarrays is being carried out on the same code. 

It is clear from the examples given above that 
coarrays are capable of expressing a parallel algorithm in 
a significantly simpler style than MPI. The advantages are 
that the same code can more often be used for all images 
and there is no need to write separate code for sending 
and receiving messages. The requirement that we retain 
the structure of the code has occasionally entailed a loss 
of clarity, as, for example, when we were constrained 
from changing the argument list for certain subroutines 
and so needed to use the image_index() function. In a 
code being written from scratch or where backwards 
compatibility was less of an issue, still more clarity could 
be obtained. 

One objective measure of clarity is the number of 
lines of code required to encapsulate a given 
functionality. In this respect coarrays were successful. 
The MPI version of the routine which performs halo 
exchange in the x-direction is 176 non-comment lines 
long. The same functionality is achieved in coarrays in 
105 lines, in spite of being split over two subroutines to 
accommodate rank 3 and rank 4 objects. Similar statistics 
apply to the other core routines. For example the MPI 
routine which broadcasts global parameters is 230 lines, 
whereas the coarray version is only 117. 

The response from SBLI's current developer was 
very positive. His major qualm was about the introduction 
of the co_double types, but otherwise he found the code 
readable and comprehensible. A concern over such types, 
beyond the question of readability and recognition, 
centres on their potential to affect performance. To access 
an array on another image the code must first access the 
coarray to find the (allocated) address of the array 
component, then use that for the remote access, resulting 
in a doubling of accesses. However, there is scope for 
compiler optimization here since the compiler is allowed 
to assume that it may access cached memory between 
synchronizations, and only at synchronization points will 
the complete update of data be performed. 

5.2 Numerical Experiments 
For the experiments on performance we used a small 

problem of a turbulent channel flow on a mesh of 120 
cubed points. Although our experiments show that the 
time spent in communication is small compared with the 

calculation time, the relative time is still smaller for larger 
problem sizes. We ran the code for 100 time steps so that 
the overall time is dominated by the time spent in 
computation and in halo exchange, approximately 99%. 
In production, this code would be run for even longer and 
the computation and halo exchange would be an even 
more dominant part of the code performance. 

The experiments were run on a small Cray X1E with 
the code compiled in SSP-mode. We were able to use a 
maximum of 64 processors/images but these clearly 
indicated the trends. 

In Figure 1 we show the speedup relative to the speed 
attained by the MPI code on one processor. The coarray 
code running on a single image runs 0.3% faster, a figure 
which is well within the variability of different runs, but 
which suggests that the overhead of indirection through 
the use of allocatable components is negligible. The same 
data is presented numerically in Table 1. 

We see that both versions scale almost linearly up to 
four processors where communication is via the shared 
memory of an MSP module, but scaling is reduced as 
communication goes off-module. However, it is reduced 
by the same amount in both cases, the speeds are almost 
identical. Coarray Fortran is marginally slower, though 
again the difference is within the bounds of variability. 
We see a major change in scaling in the move from 4 to 
eight processors. Finer grained timing experiments 
suggest that this is neither a communication effect nor 
caused by load imbalance. The vast majority of the time is 
spent in local computation, and it is this which does not 
scale. We attribute this to the memory contention which 
can occur in memory intensive applications on the X1E 
when both processors in a socket are active . 

 
 

 

Figure 1: Speedup(log-log scale) for the 120 
cubed problem relative to the MPI version on 
one processor 
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No 
images 

Time 
MPI 

Time 
CAF 

Speed 
MPI 

Speed 
CAF 

Speedup 
MPI 

Speedup 
CAF 

1 2289 2282 1.00 1.00 - - 
2 1239 1252 1.85 1.83 1.85 1.83 
4 656 657 3.49 3.48 1.89 1.91 
8 384 400 3.96 5.72 1.71 1.64 
16 201 207 11.39 11.06 1.91 1.93 
32 104 106 22.01 21.29 1.93 1.95 

Table 1: Times and speeds for the 120 cubed 
problem. In this table speedup is the speed 
relative to the speed on half the number of 
images. 

This is the major conclusion to be drawn from these 
experiments: that Coarray Fortran offers very similar 
performance to well-wrought MPI code with less 
programmer effort, both in developing code and 
maintaining it. 

We now consider what scope there is within coarrays 
for optimization. The MPI standard is large, powerful and 
contains many ways of effecting communication which a 
programmer can use to optimize a code. In contrast 
coarrays are deliberately simple and minimal, and for the 
most part the programmer is reliant upon the efficiency of 
the implementation. However, there are a few things a 
programmer can do to help the compiler. Just as in serial 
Fortran, the order of memory accesses can have a large 
impact on the performance of a code. This usually 
translates to nesting do loops in the correct order to 
reduce large strides through memory, but can also be 
affected by the order of allocating memory. 

With the distribution of partitioned data we saw that 
there were two options: “push” and “pull”. These differ in 
which side of an assignment has the remote coarray 
reference. In “push” mode, local data is stored into remote 
memory: 

a[k] = a 

while in “pull” mode the remote data is read and stored 
locally: 

a = a[k] 

We have separately timed the routine which 
distributes the partitioned mesh in SBLI for a mesh of 240 
cubed points. Timings are given for both coarray modes, 
and for the original MPI routine. The memory 
requirements of the rest of the code meant that the MPI 
version did not run on 8 processors or fewer. 
Number of 
images 

Push (s) 
 

Pull (s) MPI 

8 2.289 1.492 - 
16 2.154 1.406 2.646 

32 1.427 0.593 1.994 
64 1.018 0.644 2.079 

Table 2: Times to distribute the 240 cubed mesh 
Coarrays are more efficient in both modes than MPI. 

Within coarrays, we find that pulling data is more 
efficient. For SBLI the difference is small in absolute 
terms, though significant relatively. For a code which 
relies heavily on gathering and scattering data, for 
example some electronic structure codes, there could be a 
large benefit from optimizing in this way, and in using 
coarrays generally. 

6. Conclusion 
We have successfully migrated a significant CFD 
program from MPI to use coarrays. The main advantage 
of using coarrays is that the code is more readable and 
understandable, and thus more maintainable. We have 
demonstrated this by various examples drawn from the 
program in question. Coarrays build on an existing 
language base in a consistent fashion and thus the 
learning time to become proficient can be small even for a 
programmer with little prior experience of parallel 
program development. 

The performance of a code in production runs is of 
high importance, and our tests show that the performance 
of our code does not suffer from the change to coarrays. 
We have noted that there is scope for programmers to 
optimize code by skilful use of addressing, both within 
and across images. However, the simplicity of the coarray 
syntax allows many optimizations to be done 
automatically by the compiler. 

With the forthcoming Fortran 2008 standard, 
coarrays represent the first International Standard parallel 
programming language, and our experience suggests that 
their use will enhance productivity and further the 
exploitation of parallelism. 
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