

CUG 2008 Proceedings 1 of 8

Migrating a Scientific Application from MPI to Coarrays

John V Ashby and John K Reid, STFC Rutherford
Appleton Laboratory

ABSTRACT: MPI is a de facto standard for portable parallel programming using a
message passing paradigm. Interest is growing in other paradigms, in particular
Partitioned Global Address Space (PGAS) languages such as Coarray Fortran, UPC
and Titanium. Most Computational Science and Engineering codes are written in
Fortran, and the 2008 Fortran standard will include coarrays, a Cray initiated PGAS
extension of the language. We report on the experience of taking a moderately large
CFD program and migrating it to a Cray X1E using coarrays rather than MPI. The MPI
and coarray versions are compared, both for ease of programming and legibility, and for
performance. We find that coarrays are a useful and expressive addition to Fortran, and
that their use does not impact on performance. We discuss various ways in which the use
of coarrays can be optimized in a program.

KEYWORDS: Coarrays, Fortran, PGAS languages, MPI

1. Introduction
The development of scientific computing has been
accompanied over many decades by the development of
programming languages. With the advent of parallel and
vector computing, an early goal was the production of
automatic parallelizing compilers. This proved difficult in
the framework set by existing languages, though
automatic vectorization was successful. Several attempts
were made to add seamlessly to a language by means of
directives that a compiler was free to act on or not.
Typical of these were High Performance Fortran (HPF)
[1] and OpenMP [2], which included directives that could
be treated as comments by a compiler, or could give
suggestions for ways to exploit parallelism within the
code. However, directive based parallelization was found
to be insufficiently rich to describe the algorithms that
were emerging, and the message passing paradigm
became established. Here a library of routines is supplied
(MPI [3] and PVM [4] are examples) by means of which
processes can communicate and cooperate. Another
paradigm which may be appropriate depending upon the
hardware platform is SHMEM [5]. In either case, the
functionality of the library is defined outside any specific
programming language, and a language binding is
supplied as an API.

Recently a return to incorporating parallelism within
programming languages has occurred, with Coarray
Fortran [6], UPC [7] and Titanium [8] seeking a small set
of additions to existing languages (Fortran 95, C and Java
respectively) based on the Partitioned Global Address
Space model. In these languages, the communications are
largely abstracted out, leaving the programmer writing
code that could work equally well on shared or distributed
memory architectures. A review of these is given in
Ashby [9].

Ideas from these developments are being
incorporated in the next generation of languages such as
Chapel [10], X10 [11] and Fortress [12], discussed by
Ashby [13].

1.1 Concepts of parallel programming
A serial computer program consists of a set of instructions
executed sequentially which transform input data to
output data, generating temporary intermediate data in the
process. A parallel computer program consists of a set of
serial programs which execute simultaneously. In some
cases these may be largely independent; in process
farming, for example, some region of a parameter space is
explored by multiple instances of a program running on
slightly different initial data to find some optimum output.
In other cases, each program needs knowledge of the
calculations from the other programs and they need to
exchange data regularly. Furthermore, these programs

CUG 2008 Proceedings 2 of 8

may be the same (SPMD – Single Program Multiple
Data) as when a finite difference solution to a partial
differential equation is divided among several processors,
each working on a part of the domain of the equation, or
different (MPMD – Multiple Program Multiple Data), for
example a multiphysics aeroelasticity calculation where
the flow over a wing is calculated, the pressure field
passed to an elastic solver which calculates the
deformation of the wing and the new shape is passed back
to determine the flow field. Synchronization will be
needed to ensure that the data has been calculated.

Each program in a parallel set may need data
produced by another member. To access that data it must
know a) on which other instance the data resides, b) how
that program refers to it and c) that its value has been
calculated. In addition, the other program may need to
know that it will be asked for the data.

The design of Coarray Fortran was driven by the
question “What is the smallest change needed to convert
Fortran 95 into a robust, efficient parallel language?” [6].
It achieves this by a simple syntactic extension to the
language, an extension which maintains the style of
Fortran. Since first being proposed in the late 1980s,
Coarray Fortran has been developed into a part of the new
Fortran standard currently under discussion for 2008 [14,
15].

With the forthcoming standardization of Coarray
Fortran, we consider what advantages it offers the
programmer and the feasibility of migrating an existing
code from MPI, the de facto standard for distributed
memory architectures. We are particularly concerned with
the impact on programmer efficiency in terms of the ease
of development and maintenance of coarray code, but we
do not overlook run-time performance.

2. The Basics of Coarray Fortran
2.1 SPMD
Like MPI, Coarray Fortran is based on a Single Program,
Multiple Data model. The program is replicated a fixed
number of times (usually chosen on the command line)
and each replication (image in coarray language) has its
own set of variables and mostly executes asynchronously.

The number of images is available as the intrinsic
function num_images(). Each image has an image index
in the range 1:num_images(), which is available as an
intrinsic function image_index().

2.2 Data
Coarray Fortran departs from MPI in that objects can be
declared as coarrays, which means that as well as being
accessible locally in the normal way, they can be accessed
from other images, for example:

real a(10),b(10)[*]
a(5) = b(5)[2]
b(1)[4] = a(3)

where arrays a and b exist on every image and can be
accessed normally there, but only b can be accessed
directly from another image.

The cosubscripts in square brackets here refer to
image indices, but another range may be chosen by
including a lower bound in the declaration, e.g.

real b(10)[0:*]

and the image indices may be mapped to several
Cartesian coordinates by declaring several cosubscripts:

real b(10)[nx,ny,*]

There is an intrinsic image_index(b,cosubs) for
finding the index of the image that is referenced by the set
of cosubscripts in the array cosubs when used for the
coarray b.

Coarrays are restricted to having the same shape and
bounds on each image. This permits implementations to
store them at the same location on each image and allows
an image to calculate addresses on other images. Where
this is too restrictive, the coarray may be of a derived type
that has an allocatable array component:

type co_double_2
double precision,allocatable :: array(:,:)
end type co_double_2
integer nx,ny
type (co_double_2) vel[*]
 :
allocate(vel%array(nx,ny))

where nx and ny are local variables whose value varies
from image to image.

2.3 Synchronization
Almost all synchronizations are explicit. Here, we will
use only the simplest

 sync_all

whose meaning is obvious. Between synchronizations,
the system is free to assume that no data accessed by an
image is altered by another image and can use all its usual
optimizations. If data is altered by one image and
accessed by another, it is necessary for there to be
synchronization after the alteration and before the access.

2.4 Coexistence with MPI
Since MPI uses the same SPMD model, it is easy to have
MPI and coarrays exist together in a program. We have
made use of this to convert gradually from MPI to
coarrays. We had to take account of the fact that MPI
indexes its processors from zero (we gave many of our
coarrays a lower cobound of 0 to ease conversion) and
that Cartesian coordinates in MPI are taken as indexed
from zero and mapped to processors counting most
rapidly in the last dimension rather than the first.

3. The Application: SBLI
To investigate the use of coarrays in a real application
code, rather than a simple kernel, we have taken the SBLI
code (also known as PDNS3D, [16]) - a finite difference
formulation of Direct Numerical Simulation (DNS) of

CUG 2008 Proceedings 3 of 8

Turbulence from the University of Southampton, UK, and
migrated it to use coarrays.

Fluid flows encountered in real applications are often
turbulent. There is, therefore, an ever-increasing need to
understand turbulence and, more importantly, to be able
to model turbulent flows with improved predictive
capabilities. As computing technology continues to
improve, it is becoming more feasible to solve the
governing equations of motion — the Navier-Stokes
equations — from first principles. The direct solution of
the equations of motion for a fluid, however, remains a
formidable task and simulations are only possible for
flows with small to modest Reynolds numbers. Within the
UK, the Turbulence Consortium (UKTC) has been at the
forefront of simulating turbulent flows by direct
numerical simulation. UKTC has developed a parallel
version of a code to solve problems associated with
shock/boundary layer interaction.

The code SBLI was originally developed for the Cray
T3E and is a sophisticated DNS code that incorporates a
number of advanced features: namely high-order central
differencing; a shock-preserving advection scheme from
the total variation diminishing (TVD) family; entropy
splitting of the Euler terms and the stable boundary
scheme. The code has been written using standard Fortran
90 code together with MPI in order to be efficient,
scalable and portable across a wide range of high-
performance platforms. The PDNS3D benchmark is a
simple turbulent channel flow benchmark using the SBLI
code. This benchmark comes in three sizes with meshes
of 120 cubed, 240 cubed and 360 cubed. The code is very
heavy in its use of memory, and so for the small numbers
of processors available to us we were only able to
exercise the first two of these.

The most important communications structure within
SBLI is a halo exchange between adjacent computational
sub-domains. Providing the problem size is large enough
to give a small surface area to volume ratio for each sub-
domain, the communications costs are small relative to
computation and should not constitute a bottleneck. This
is the case for our benchmarks.

4. Parallel operations in SBLI
4.1 The Process
When migrating software to use the new features offered
by developments in the language, the process by which
elements of the code are identified for migration and the
decisions made as to how to deal with them can be very
important. In this case, we first performed a paper walk-
through of the code, identifying the broad functionality of
each procedure and noting particularly any which made
use of MPI routines. The parallel portions of SBLI fell
into five parts.
1. First, the various pieces of global data are read in by

one master process and broadcast to all others. These

include physical data such as the Reynolds Number,
ambient pressure and specific heat ratio, γ,
algorithmic data such as time step size, choice of
TVD scheme and turbulence model, and control data
such as the frequency with which to save restart files.

2. Next, the global mesh is read by the master process
and portions of it sent to other processes to form local
meshes. The mesh partitioning, which is a recursive
geometric bisection, may produce different sized
local meshes on different images.

3. Some quantities are set across all processes by a
collective operation; the wall temperature, for
example, is set using mpi_allreduce to find the
minimum across the processes.

4. The bulk of the parallel work in SBLI involves the
halo exchanges and the enforcement of periodic
boundary conditions. The code is well structured and
performs these exchanges in a handful of routines.

5. There is the gathering of data to write a solution and
routines to re-read and distribute this data to enable a
restart. This I/O element of the software has two
optional solutions: gathering the data onto the master
process and writing a file from there or using MPI-IO
to write (and read) the data in parallel.

Throughout the migration, the code was run and tested at
suitable breakpoints. The final results were the same to
the seven decimal digits printed.

4.2 Broadcasting global data
In the MPI code, the various pieces of data such as the
number of grid points, Reynolds number, choice of
turbulence model, etc. are read in by the master process,
then packed into real, integer and logical buffer arrays
(here and elsewhere we use real to denote floating point
numbers; in the application itself they are double
precision). These buffers are sent using mpi_bcast to all
other processes, where they are unpacked. The resulting
code is:

if (master) then
 r(1) = reynolds
 ...
 r(18) = viscosity
 call mpi_bcast(r, 18, real_mp_type, &
 masterid, MPI_comm_world, ierr)
else
 call mpi_bcast(r, 18, real_mp_type, &
 masterid, MPI_comm_world, ierr)
 reynolds = r(1)
 ...
 viscosity = r(18)
endif

There is a more elegant way to code this, but this is the
way the original code used.

The simplest coarray version uses the master image
to store the data into all other images local copies:

sync all
reynolds = reynolds[masterid]
...
viscosity = viscosity[masterid]

CUG 2008 Proceedings 4 of 8

Note that the references on the left hand side of the
assignments have no coindex. They refer to the data in the
local image. The synchronization ensures that an image
does not try to acquire data from the master before it is
available. The MPI version has an implicit
synchronization within mpi_bcast.

The coarray code has the advantage that what is
being transferred is transparent and there is no need to
check that the packing and unpacking are in
correspondence. This makes adding a new variable less
prone to programmer error.

Another possible approach would be to use the
master image alone to put the data onto the remote
images, thus:

sync all
if (master) then
 do i=1, num_images()-1
 reynolds[i] = reynolds
 ...
 viscosity[i] = viscosity
 end do
end if
sync all

 The disadvantages of this approach are that it is
inherently serial and that it requires two synchronizations.
Two synchronizations are needed; the first stops the
master trying to write to data on a remote image before it
has been instantiated and initialised, the second stops the
remote images from continuing execution before the data
has been set by the master.

We ran some timing tests on the Cray X1E to which
we have access and found that there was no improvement
in speed if we packed all the data into an array, copied
that and then unpacked it. This approach might allow
more efficient communication since there would be only
one transfer. It is possible that the compiler is doing this
automatically. This simple case illustrates the scope for
optimization of communication that Coarray Fortran
provides.

4.3 Distributing Partitioned Data
The global mesh data, coordinates and the derivatives to
map from computational space to physical space are read
onto the master process and partitioned according to the
number of processes available. This can result in some
local arrays being of differing lengths on different
processes. We chose to handle this in Coarray Fortran by
making the arrays be components of a coarray of derived
type. We have introduced a set of user-defined types,
co_double_1 to co_double_4, where the final digit labels
the rank of the component array. In the main code an
array, q, would be defined as:

type(co_double_4)::q[*]

and accessed by
q%array(i,j,k,l)

on the local image or by:
q[procn]%array(i,j,k,l)

on image procn.
An alternative would be to have the coarrays declared

allocatable and allocate them to the maximum size in each
dimension. There is some advantage to this in code

recognition and in minimizing the number of different
lines in the code between the two versions, which might
be important if MPI and coarray versions are to be
maintained side-by-side. However, it does represent an
overhead in memory use, particularly in codes which may
be load imbalanced. The extra work of indirection
through the component references is found to be small.

In the main program it is, of course, impossible to
declare the co-dimension as [nx,ny,*] as would be
desirable, since nx and ny depend on the partitioning of
the total number of images which is not known at compile
time. This limitation can be overcome by dynamically re-
coshaping the coarrays when they are passed to
subroutines as arguments.

type(co_double_4),dimension[*]::q
call distrib(q)
...
subroutine distrib(q)
use parallel_mod, only : nx, ny
type(co_double_4)::q[nx,ny,*]

This replaced the functionality provided in the MPI
version by using Cartesian communicators. Our original
migration retained the use of these to manage the image
topology, in the spirit of incremental change, but in the
final version we moved to re-coshaping to use the full
power of the coarray syntax. As we see in section 4.5, this
has advantages for clarity of expression.

The data are distributed using routines which
encapsulate the process, so that the specific means of
achieving the parallel communication is held in a very
few places in the code rather than being widespread. The
MPI algorithm is similar to that for broadcasting global
data, except that the required region of the global data
must be identified:

if (master)
 for each process j
 find start and end indices of array for j
 pack global array(start:end) to buffer
 send buffer to process j
 next
else
 receive buffer
 unpack to local array
end if
For the coarray version, we still need to find the

region of the global array, but the sending is simpler:
if (master)
 for each image j
 find start and end indices of array for j
 local(:)[j]=global(start:end)
 next
end if
In this case, the images are sitting idle while the

master image farms out the data. We call this the “push”
version where data are pushed from the master out to the
worker images. Alternatively each worker image could
“pull” the data thus:

find start and end indices on this image

CUG 2008 Proceedings 5 of 8

local(:)= global(start:end) [masterid]
There is scope here for parallelism if the memory

access mechanism will support it.
As in section 4.2, synchronization is important in this

routine and must be explicitly added.
The routines for distribution in the original code

distributed both rank 3 and rank 4 arrays, being called
with the size of the fourth dimension set to 1 in the case
of rank 3 arrays. This would not work when the arrays
were translated into co_double_3 and co_double_4
objects, so a generic interface was built in order to
preserve both the structure and the exact statements of the
original code as far as possible. Experience with code
transformation has shown that it is important to disturb
the appearance of the code as little as possible so that the
authors can still recognise it. Failure to do so can lead to a
loss of maintainability. Improvement of this is one of our
goals.

4.4 Collective operations
Collectives for coarrays have been proposed but are
currently not available in Cray Fortran and are not
intended to be part of the Fortran 2008 standard, though
they are expected to be included in a Technical Report.
We wrote our own simple co_min function (which
returns the minimum over the images of a co-scalar). This
is not a true collective, but runs on each image. The
synchronizations ensure the same result is returned on all
images.

double precision function co_min(a)
double precision a[*]
integer i
sync_all
co_min = a
do i=1, num_images()
 if (a[i] .lt. co_min) then
 co_min = a[i]
 end if
end do
sync_all
end function co_min

This is clearly not an efficient implementation but
was suffifcient for our purposes where it is only called
once during the program’s run.

In the same way, the current Cray Fortran
implementation does not include the image_index()
function, which is a recently proposed addition to the
coarray language, so we wrote a simple emulator for this.

4.5 Halo Exchange
At the heart of the time stepping algorithm is a set of
routines for halo exchange in each of the three cartesian
directions. Again, these are used for rank 3 and 4 arrays
and generic interfaces were required. The MPI approach
is the familiar one of packing data into a buffer, sending
to the appropriate neighbour and the neighbour unpacking
it into the correct place in the local array.

The data sent are the values on the interior portion of
the mesh which form the halo region on a neighbouring

process. In the coarray version, simple coaddressing is
used. If nx holds the extent of the local mesh in the x-
direction, then to send the data from an image to the
image one x-step lower (procmx):

nxp=nx[procmx]
do k=1, nz
do j=1, ny

a[procmx]%array(nxp+1:nxp+xhalo,j,k)&
 = a%array(1:xhalo,j,k)
end do
end do

Using the re-coshaping facility gives code which is
more transparent. In the following routine which performs
a halo exchange in the negative x-direction, using the
array d to contain the location of the current image in the
three dimensional grid of images allows the image one
step below in x to be directly addressed:

subroutine exch_x_minus(a,nx)
use parallel_mod, only : nxim, nyim
type(co_double_3)::a[nxim,nyim,*]
integer nx[nxim, nyim,*]
integer d(3), nxp
d = this_image(a)
if (d(1) .gt. 1) then
 nxp = nx[d(1)-1,d(2),d(3)]

a[d(1)-1,d(2),d(3)]%array(nxp+1:&
nxp+xhalo,:,:) = a%array(1:xhalo,:,:)

end if
end subroutine exch_x_minus

In the MPI code nx was not passed through the
argument list but was instead accessed from the
parallel_mod module (which also contains the definition
of the co_double_3 type). To keep the interface to the
exchange routines consistent between the two versions,
we were forced to do likewise and so nx could not be re-
coshaped. We were able to use the image_index()
function to overcome this:

subroutine exch_x_minus(a)
use parallel_mod, only : nxim, nyim,nx
type(co_double_3)::a[nxim,nyim,*]
integer d(3), nxp, imgxm
d = this_image(a)
if (d(1) .gt. 1) then
 imgxm=image_index(a,(/d(1)-1,d(2),d(3)/))
 nxp = nx[imgxm]

a[d(1)-1,d(2),d(3)]%array(nxp+1:&
nxp+xhalo,:,:) = a%array(1:xhalo,:,:)

end if
end subroutine exch_x_minus

4.6 Input and output

Since the routines which use MPI-IO are complex we

opted to continue with MPI for these routines at present,
in keeping with our incremental approach. This choice
does not affect our results on performance since the full
solution is not written to disk in our experiments.

5. Results
5.1 Clarity
The measures of interest when assessing the success of
the transformation described in section 4 are first of all
the clarity and readability of the transformed code and

secondly the performance in terms of speed and
scalability.

Clarity and readability are subjective, but by
retaining as much of the original code as possible through
the use of generic functions, we maintain a high level of
recognisability which plays a large part in making the sort
of code transformation we have done acceptable to the
principal developers. Since the original code used pre-
processor directives to provide various optional
compilation alternatives we have included the coarray
version as such an option. This has the added advantage
that we can be as sure as possible that the comparison of
MPI vs coarrays is being carried out on the same code.

It is clear from the examples given above that
coarrays are capable of expressing a parallel algorithm in
a significantly simpler style than MPI. The advantages are
that the same code can more often be used for all images
and there is no need to write separate code for sending
and receiving messages. The requirement that we retain
the structure of the code has occasionally entailed a loss
of clarity, as, for example, when we were constrained
from changing the argument list for certain subroutines
and so needed to use the image_index() function. In a
code being written from scratch or where backwards
compatibility was less of an issue, still more clarity could
be obtained.

One objective measure of clarity is the number of
lines of code required to encapsulate a given
functionality. In this respect coarrays were successful.
The MPI version of the routine which performs halo
exchange in the x-direction is 176 non-comment lines
long. The same functionality is achieved in coarrays in
105 lines, in spite of being split over two subroutines to
accommodate rank 3 and rank 4 objects. Similar statistics
apply to the other core routines. For example the MPI
routine which broadcasts global parameters is 230 lines,
whereas the coarray version is only 117.

The response from SBLI's current developer was
very positive. His major qualm was about the introduction
of the co_double types, but otherwise he found the code
readable and comprehensible. A concern over such types,
beyond the question of readability and recognition,
centres on their potential to affect performance. To access
an array on another image the code must first access the
coarray to find the (allocated) address of the array
component, then use that for the remote access, resulting
in a doubling of accesses. However, there is scope for
compiler optimization here since the compiler is allowed
to assume that it may access cached memory between
synchronizations, and only at synchronization points will
the complete update of data be performed.

5.2 Numerical Experiments
For the experiments on performance we used a small

problem of a turbulent channel flow on a mesh of 120
cubed points. Although our experiments show that the
time spent in communication is small compared with the

calculation time, the relative time is still smaller for larger
problem sizes. We ran the code for 100 time steps so that
the overall time is dominated by the time spent in
computation and in halo exchange, approximately 99%.
In production, this code would be run for even longer and
the computation and halo exchange would be an even
more dominant part of the code performance.

The experiments were run on a small Cray X1E with
the code compiled in SSP-mode. We were able to use a
maximum of 64 processors/images but these clearly
indicated the trends.

In Figure 1 we show the speedup relative to the speed
attained by the MPI code on one processor. The coarray
code running on a single image runs 0.3% faster, a figure
which is well within the variability of different runs, but
which suggests that the overhead of indirection through
the use of allocatable components is negligible. The same
data is presented numerically in Table 1.

We see that both versions scale almost linearly up to
four processors where communication is via the shared
memory of an MSP module, but scaling is reduced as
communication goes off-module. However, it is reduced
by the same amount in both cases, the speeds are almost
identical. Coarray Fortran is marginally slower, though
again the difference is within the bounds of variability.
We see a major change in scaling in the move from 4 to
eight processors. Finer grained timing experiments
suggest that this is neither a communication effect nor
caused by load imbalance. The vast majority of the time is
spent in local computation, and it is this which does not
scale. We attribute this to the memory contention which
can occur in memory intensive applications on the X1E
when both processors in a socket are active .

Figure 1: Speedup(log-log scale) for the 120
cubed problem relative to the MPI version on
one processor

CUG 2008 Proceedings 6 of 8

CUG 2008 Proceedings 7 of 8

No
images

Time
MPI

Time
CAF

Speed
MPI

Speed
CAF

Speedup
MPI

Speedup
CAF

1 2289 2282 1.00 1.00 - -
2 1239 1252 1.85 1.83 1.85 1.83
4 656 657 3.49 3.48 1.89 1.91
8 384 400 3.96 5.72 1.71 1.64
16 201 207 11.39 11.06 1.91 1.93
32 104 106 22.01 21.29 1.93 1.95

Table 1: Times and speeds for the 120 cubed
problem. In this table speedup is the speed
relative to the speed on half the number of
images.

This is the major conclusion to be drawn from these
experiments: that Coarray Fortran offers very similar
performance to well-wrought MPI code with less
programmer effort, both in developing code and
maintaining it.

We now consider what scope there is within coarrays
for optimization. The MPI standard is large, powerful and
contains many ways of effecting communication which a
programmer can use to optimize a code. In contrast
coarrays are deliberately simple and minimal, and for the
most part the programmer is reliant upon the efficiency of
the implementation. However, there are a few things a
programmer can do to help the compiler. Just as in serial
Fortran, the order of memory accesses can have a large
impact on the performance of a code. This usually
translates to nesting do loops in the correct order to
reduce large strides through memory, but can also be
affected by the order of allocating memory.

With the distribution of partitioned data we saw that
there were two options: “push” and “pull”. These differ in
which side of an assignment has the remote coarray
reference. In “push” mode, local data is stored into remote
memory:

a[k] = a

while in “pull” mode the remote data is read and stored
locally:

a = a[k]

We have separately timed the routine which
distributes the partitioned mesh in SBLI for a mesh of 240
cubed points. Timings are given for both coarray modes,
and for the original MPI routine. The memory
requirements of the rest of the code meant that the MPI
version did not run on 8 processors or fewer.
Number of
images

Push (s)

Pull (s) MPI

8 2.289 1.492 -
16 2.154 1.406 2.646

32 1.427 0.593 1.994
64 1.018 0.644 2.079

Table 2: Times to distribute the 240 cubed mesh
Coarrays are more efficient in both modes than MPI.

Within coarrays, we find that pulling data is more
efficient. For SBLI the difference is small in absolute
terms, though significant relatively. For a code which
relies heavily on gathering and scattering data, for
example some electronic structure codes, there could be a
large benefit from optimizing in this way, and in using
coarrays generally.

6. Conclusion
We have successfully migrated a significant CFD
program from MPI to use coarrays. The main advantage
of using coarrays is that the code is more readable and
understandable, and thus more maintainable. We have
demonstrated this by various examples drawn from the
program in question. Coarrays build on an existing
language base in a consistent fashion and thus the
learning time to become proficient can be small even for a
programmer with little prior experience of parallel
program development.

The performance of a code in production runs is of
high importance, and our tests show that the performance
of our code does not suffer from the change to coarrays.
We have noted that there is scope for programmers to
optimize code by skilful use of addressing, both within
and across images. However, the simplicity of the coarray
syntax allows many optimizations to be done
automatically by the compiler.

With the forthcoming Fortran 2008 standard,
coarrays represent the first International Standard parallel
programming language, and our experience suggests that
their use will enhance productivity and further the
exploitation of parallelism.

Acknowledgments
We would like to thank Bill Long of Cray Research for
useful discussions and for arranging access to their X1
and X1E systems, and Mike Ashworth and Roderick
Johnstone of STFC Daresbury Laboratory for access to
the SBLI code.

References
[1] HPF Home Page
http://dacnet.rice.edu/Depts/CRPC/HPFF/index.cfm.
[2] OpenMP http://www.openmp.org/.
[3] MPI http://www-unix.mcs.anl.gov/mpi/.
[4] PVM http://www.csm.ornl.gov/pvm/pvm_home.html.
[5] SHMEM http://www.npaci.edu/T3E/shmem.html.
[6] Numrich, R.W. and Reid,J.K. (1998), Co-Array
Fortran for Parallel Programming, ACM Fortran Forum,

http://dacnet.rice.edu/Depts/CRPC/HPFF/index.cfm
http://www.openmp.org/
http://www-unix.mcs.anl.gov/mpi/
http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.npaci.edu/T3E/shmem.html

CUG 2008 Proceedings 8 of 8

17, pp 1-3. Available online as
ftp://ftp.numerical.rl.ac.uk/pub/reports/nrRAL98060.pdf.
[7] Chauvin S. et al, UPC Manual (The George
Washington University, available at
http://www.gwu.edu/~upc/documentation.html. See also
Berkeley UPC – Unified Parallel C http://upc.lbl.gov/.
[8] Hilfinger P. et al, Titanium Language Reference
Manual, University of California, Berkeley Report No
UCB//CSD-04-1163x (2004). Available online at
http://titanium.cs.berkeley.edu/papers.html.
 [9] Ashby J.V(2005). Novel Parallel Languages for
Scientific Computing – a comparison of Co-Array
Fortran, Unified Parallel C and Titanium, Rutherford
Appleton Laboratory Technical report RAL-TR 2005-015
http://epubs.cclrc.ac.uk/work-details?w=35072
[10] http://chapel.cs.washington.edu/ Chapel – the
Cascade High Productivity Language. This page contains
links to many reports on Chapel.
[11]
http://domino.research.ibm.com/comm/research_projects.
nsf/pages/x10.index.html The X10 Programming
Language. This page contains a link to a presentation on
X10 by V. Sarkar.
[12] http://fortress.sunsource.net/ Fortress Project home.
This page contains links to many reports on Fortress.
[13] Ashby J.V(2007). New Languages for High
Performance, High Productivity Computing, Rutherford
Appleton Laboratory Technical report RAL-TR-2007-012
http://epubs.cclrc.ac.uk/work-details?w=40805
[14] Reid, John (2008). Coarrays in the next Fortran
Standard. ISO/IEC JTC1/SC22/WG5 N1724. See
ftp://ftp.nag.co.uk/sc22wg5/N1701-N1750/N1724.pdf
[15] ISO/IEC (2008). CD revision of the Fortran
Standard. ISO/IEC JTC1/SC22/WG5 N1723. See
ftp://ftp.nag.co.uk/sc22wg5/N1701-N1750/N1723.pdf
[16] M. Ashworth, PDNS3D - Benchmarking a Direct
Numerical Simulation Code
http://www.cse.scitech.ac.uk/arc/pdns3d.shtml

ftp://ftp.numerical.rl.ac.uk/pub/reports/nrRAL98060.pdf
http://www.gwu.edu/%7Eupc/documentation.html
http://upc.lbl.gov/
http://titanium.cs.berkeley.edu/papers.html
http://epubs.cclrc.ac.uk/work-details?w=35072
http://chapel.cs.washington.edu/
http://domino.research.ibm.com/comm/research_projects.nsf/pages/x10.index.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/x10.index.html
http://fortress.sunsource.net/
http://epubs.cclrc.ac.uk/work-details?w=40805
ftp://ftp.nag.co.uk/sc22wg5/N1701-N1750/N1724.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1701-N1750/N1723.pdf
http://www.cse.scitech.ac.uk/arc/pdns3d.shtml

	1. Introduction
	1.1 Concepts of parallel programming

	2. The Basics of Coarray Fortran
	2.1 SPMD
	2.3 Synchronization
	2.4 Coexistence with MPI

	3. The Application: SBLI
	4. Parallel operations in SBLI
	4.1 The Process
	4.2 Broadcasting global data
	4.3 Distributing Partitioned Data
	4.4 Collective operations
	4.5 Halo Exchange
	4.6 Input and output

	5. Results
	5.1 Clarity
	5.2 Numerical Experiments

	6. Conclusion
	Acknowledgments
	References

