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Why and Why Not?

+MPI programming is arcane
+New emerging paradigms for parallelism
+Coarrays part of the next Fortran Standard
+Gain experience, make informed 

recommendations
- Established MPI expertise
- MPI widely available – coarrays only available 

on (some) Crays.



Coarray Fortran in a nutshell

• SPMD paradigm, instances of the 
program are called images, have their 
own local data and run asynchronously.

• Data can be directly addressed across 
images: A(j,k)[i]. i is image 
index.

• Subroutine calls to synchronize 
execution.

CUG 2008
Crossing the Boundaries



Coarray Fortran in a nutshell (2)

• Intrinsics for information: num_images(), 
this_image() and image_index().

• Coarrays have the same cobounds on all 
images, but can have allocatable 
components:
type co_double_2

double precision, allocatable:: array(:,:)

end type co_double_2

integer nx,ny

type(co_double_2) vel[*]

allocate(vel%array(nx,ny))
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The Application

• SBLI: a three-dimensional time-
dependent finite difference Navier-
Stokes solver

• Grid transformation for complex 
geometries

• Parallelisation by domain decomposition 
and halo exchange.
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Parallel sections in SBLI

• Initial data read in by “master” process, 
broadcast to all others.

• Grid read in by “master” process, 
distributed to others.

• Exchange of halo data.
• Solution gathered onto master process 

for output or written in parallel (MPI-IO).
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Parameter Broadcast

• SBLI reads in data such as number of grid 
points, Reynolds number, which 
turbulence model to use. Only one process 
reads the data.

• MPI: these are packed into real, integer 
and logical arrays, sent to the other 
processes using MPI_BCAST.

• The receiving processes unpack the 
arrays:
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Parameter Broadcast (2)

if (ioproc) then

r(1) = reynolds

...

r(18) = viscosity

call mpi_bcast(r, 18, real_mp_type, ioid, & 
MPI_comm_world, ierr)

else

call mpi_bcast(r, 18, real_mp_type, ioid, & 
MPI_comm_world, ierr)

reynolds = r(1)

...

viscosity = r(18)

endif
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Parameter broadcast (3)

• Each CAF version fetches the data from 
the I/O image.
call sync_all()

if (.not. ioproc) then

reynolds = reynolds[ioid]

...

viscosity = viscosity[ioid]

end if
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Mesh Distribution

• Here the i/o processor has the global 
data and needs to send different 
portions of it to each image.

• Added complication that the local 
bounds of the data may be different on 
different images.

• In current version mesh is 2-d, projected
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Mesh distribution (2)

• MPI version:
if (ioproc)

Find start and end indices of mesh for process j
Pack global mesh(start:end) into buffer
Send buffer to process j

else
Receive buffer
Unpack to local mesh

endif
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Mesh Distribution (3)

• CAF version:
do j=1, num_images()

find start and end for image j
local(:)[j] = global(start:end)

end do
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Mesh distribution(4)

• Better:
find start and end for this_image()
local(:) = global[ioid](start:end)
• Advantage

– Possible parallelism if multiple access to 
global  is supported
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Halo Exchange

• The MPI version again packs the data 
to exchange into a buffer, sends it to the 
appropriate neighbour which unpacks it.

• The coarray version uses simple co-
addressing:

• Example: sending data to the image 
one x-step lower (procmx):
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Halo Exchange (2)

type(co_double_3) a[nxim, nyim,*]

integer nx[nxim, nyim,*], d(3), nxp

d = this_image(a)

if (d(1) .gt. 1) then

nxp = array(nx[d(1)-1,d(2),d(3)]

a[d(1)-1,d(2),d(3)]%array(nxp+1:nxp+xhalo,:,:)&

= a%array(1:xhalo,:,:)

end if

• Separate routines cover x, y and z exchanges, each 
does both directions.
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Caveat

• Synchronization is important
• MPI often implies synchronization
• Coarrays need it to be made explicit 

(though for some algorithms it can be 
left out or reduced)

CUG 2008
Crossing the Boundaries



Code Comparison Summary 

+ Simple assignment statements replace 
MPI calls

+ No need to pack and unpack data 
(scope for programming errors)

+ Simpler, shorter, more maintainable 
code

- Added indirection through allocatable 
components
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BUT…

• How does the code perform?
• Have we gained clarity and lost speed?
• SBLI is a mature code and a lot of work 

has gone into making its MPI work as 
efficiently as possible.
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Experiments

• Small mesh (120 cubed)
• Small Cray X1E
• Run for 100 timesteps so overall time is 

dominated by the exchange time 
(realistic for how this code would work 
in production).
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Speedup
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Performance

• Comparable with MPI (a few percent 
lower at most, but within the range of 
variability of individual runs)

• Scaling behaviour unaffected, but note 
this is a problem that scales strangely 
from 4 to 8 images, probably for 
memory reasons.
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Optimization

• MPI is powerful and contains many 
ways of communicating which can be 
used by the programmer to optimize a 
code.

• Coarrays are simple and give plenty of 
scope for compiler optimization.

• But…
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Optimization(2)

• There are a few things one can do:
– Order of memory accesses, just as in serial 

Fortran, can have an impact
– “push” vs “pull”

• Which side of the assignment statement should 
one have the co-array reference?

• Push: a[k] = a
• Pull: a = a[k]
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“push” vs “pull”

• Experiments: distribute 240 cubed mesh

• Pulling data is more efficient, especially at 
high processor counts
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Number of 
Processors

push pull

8 2.289 1.492
16 2.154 1.406
32 1.427 0.593
64 1.018 0.644



“push” vs “pull” (2)

• These experiments are indicative only
• Low impact on current code
• If your code does a lot of scatter/gather 

this is an area to optimize
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Conclusions

• Coarray Fortran provides a language 
which:
– Expresses parallelism in a “natural”, Fortran-like 

manner
– Produces transparent, maintainable code
– Is easy to learn by extending existing language 

skills
– Provides comparable performance with mature 

MPI code in this case
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