
CUG 2008
Crossing the Boundaries

Migrating A Scientific Application
from MPI to Coarrays

John Ashby and John Reid
HPCx Consortium

Rutherford Appleton Laboratory
STFC

UK

Presenter
Presentation Notes
customize name of presentationadd presenter name and organization if appropriateWelcome. My name is __________ and I am a ________from (name of organization). (For a small group)…Before we get started, perhaps we should go around the room and have everyone introduce themselves so that we have a better understanding of who is in attendance. (If appropriate ask for an overview of current practices, and state the objectives for meeting the meeting)

CUG 2008
Crossing the Boundaries

Why and Why Not?

+MPI programming is arcane
+New emerging paradigms for parallelism
+Coarrays part of the next Fortran Standard
+Gain experience, make informed

recommendations
- Established MPI expertise
- MPI widely available – coarrays only available

on (some) Crays.

Coarray Fortran in a nutshell

• SPMD paradigm, instances of the
program are called images, have their
own local data and run asynchronously.

• Data can be directly addressed across
images: A(j,k)[i]. i is image
index.

• Subroutine calls to synchronize
execution.

CUG 2008
Crossing the Boundaries

Coarray Fortran in a nutshell (2)

• Intrinsics for information: num_images(),
this_image() and image_index().

• Coarrays have the same cobounds on all
images, but can have allocatable
components:
type co_double_2

double precision, allocatable:: array(:,:)

end type co_double_2

integer nx,ny

type(co_double_2) vel[*]

allocate(vel%array(nx,ny))

CUG 2008
Crossing the Boundaries

The Application

• SBLI: a three-dimensional time-
dependent finite difference Navier-
Stokes solver

• Grid transformation for complex
geometries

• Parallelisation by domain decomposition
and halo exchange.

CUG 2008
Crossing the Boundaries

Parallel sections in SBLI

• Initial data read in by “master” process,
broadcast to all others.

• Grid read in by “master” process,
distributed to others.

• Exchange of halo data.
• Solution gathered onto master process

for output or written in parallel (MPI-IO).

CUG 2008
Crossing the Boundaries

Parameter Broadcast

• SBLI reads in data such as number of grid
points, Reynolds number, which
turbulence model to use. Only one process
reads the data.

• MPI: these are packed into real, integer
and logical arrays, sent to the other
processes using MPI_BCAST.

• The receiving processes unpack the
arrays:

CUG 2008
Crossing the Boundaries

Parameter Broadcast (2)

if (ioproc) then

r(1) = reynolds

...

r(18) = viscosity

call mpi_bcast(r, 18, real_mp_type, ioid, &
MPI_comm_world, ierr)

else

call mpi_bcast(r, 18, real_mp_type, ioid, &
MPI_comm_world, ierr)

reynolds = r(1)

...

viscosity = r(18)

endif

CUG 2008
Crossing the Boundaries

Parameter broadcast (3)

• Each CAF version fetches the data from
the I/O image.
call sync_all()

if (.not. ioproc) then

reynolds = reynolds[ioid]

...

viscosity = viscosity[ioid]

end if

CUG 2008
Crossing the Boundaries

Mesh Distribution

• Here the i/o processor has the global
data and needs to send different
portions of it to each image.

• Added complication that the local
bounds of the data may be different on
different images.

• In current version mesh is 2-d, projected

CUG 2008
Crossing the Boundaries

Mesh distribution (2)

• MPI version:
if (ioproc)

Find start and end indices of mesh for process j
Pack global mesh(start:end) into buffer
Send buffer to process j

else
Receive buffer
Unpack to local mesh

endif
CUG 2008

Crossing the Boundaries

Mesh Distribution (3)

• CAF version:
do j=1, num_images()

find start and end for image j
local(:)[j] = global(start:end)

end do

CUG 2008
Crossing the Boundaries

Mesh distribution(4)

• Better:
find start and end for this_image()
local(:) = global[ioid](start:end)
• Advantage

– Possible parallelism if multiple access to
global is supported

CUG 2008
Crossing the Boundaries

Halo Exchange

• The MPI version again packs the data
to exchange into a buffer, sends it to the
appropriate neighbour which unpacks it.

• The coarray version uses simple co-
addressing:

• Example: sending data to the image
one x-step lower (procmx):

CUG 2008
Crossing the Boundaries

Halo Exchange (2)

type(co_double_3) a[nxim, nyim,*]

integer nx[nxim, nyim,*], d(3), nxp

d = this_image(a)

if (d(1) .gt. 1) then

nxp = array(nx[d(1)-1,d(2),d(3)]

a[d(1)-1,d(2),d(3)]%array(nxp+1:nxp+xhalo,:,:)&

= a%array(1:xhalo,:,:)

end if

• Separate routines cover x, y and z exchanges, each
does both directions.

CUG 2008
Crossing the Boundaries

Caveat

• Synchronization is important
• MPI often implies synchronization
• Coarrays need it to be made explicit

(though for some algorithms it can be
left out or reduced)

CUG 2008
Crossing the Boundaries

Code Comparison Summary

+ Simple assignment statements replace
MPI calls

+ No need to pack and unpack data
(scope for programming errors)

+ Simpler, shorter, more maintainable
code

- Added indirection through allocatable
components

CUG 2008
Crossing the Boundaries

BUT…

• How does the code perform?
• Have we gained clarity and lost speed?
• SBLI is a mature code and a lot of work

has gone into making its MPI work as
efficiently as possible.

CUG 2008
Crossing the Boundaries

Experiments

• Small mesh (120 cubed)
• Small Cray X1E
• Run for 100 timesteps so overall time is

dominated by the exchange time
(realistic for how this code would work
in production).

CUG 2008
Crossing the Boundaries

Speedup

CUG 2008
Crossing the Boundaries

1

10

100

1 10 100

Number of Processors

Speedup relative to one processor

linear

MPI

Co-Array

Performance

• Comparable with MPI (a few percent
lower at most, but within the range of
variability of individual runs)

• Scaling behaviour unaffected, but note
this is a problem that scales strangely
from 4 to 8 images, probably for
memory reasons.

CUG 2008
Crossing the Boundaries

Optimization

• MPI is powerful and contains many
ways of communicating which can be
used by the programmer to optimize a
code.

• Coarrays are simple and give plenty of
scope for compiler optimization.

• But…

CUG 2008
Crossing the Boundaries

Optimization(2)

• There are a few things one can do:
– Order of memory accesses, just as in serial

Fortran, can have an impact
– “push” vs “pull”

• Which side of the assignment statement should
one have the co-array reference?

• Push: a[k] = a
• Pull: a = a[k]

CUG 2008
Crossing the Boundaries

“push” vs “pull”

• Experiments: distribute 240 cubed mesh

• Pulling data is more efficient, especially at
high processor counts

CUG 2008
Crossing the Boundaries

Number of
Processors

push pull

8 2.289 1.492
16 2.154 1.406
32 1.427 0.593
64 1.018 0.644

“push” vs “pull” (2)

• These experiments are indicative only
• Low impact on current code
• If your code does a lot of scatter/gather

this is an area to optimize

CUG 2008
Crossing the Boundaries

Conclusions

• Coarray Fortran provides a language
which:
– Expresses parallelism in a “natural”, Fortran-like

manner
– Produces transparent, maintainable code
– Is easy to learn by extending existing language

skills
– Provides comparable performance with mature

MPI code in this case

CUG 2008
Crossing the Boundaries

Acknowledgements

• Thanks to:
– Bill Long of Cray for access to their X1 and

X1E machines
– Mike Ashworth and Roderick Johnstone of

STFC Daresbury Laboratory for access to
the SBLI code.

CUG 2008
Crossing the Boundaries

	Slide Number 1
	Why and Why Not?
	Coarray Fortran in a nutshell
	Coarray Fortran in a nutshell (2)
	The Application
	Parallel sections in SBLI
	Parameter Broadcast
	Parameter Broadcast (2)
	Parameter broadcast (3)
	Mesh Distribution
	Mesh distribution (2)
	Mesh Distribution (3)
	Mesh distribution(4)
	Halo Exchange	
	Halo Exchange (2)
	Caveat
	Code Comparison Summary
	BUT…
	Experiments
	Speedup
	Performance
	Optimization
	Optimization(2)
	“push” vs “pull”
	“push” vs “pull” (2)
	Conclusions
	Acknowledgements

