
Exploring Memory Management Strategies in

Catamount

Kurt Ferreira Kevin T. Pedretti Michael Levenhagen

Ron Brightwell

Sandia National Laboratories ∗

{kbferre,ktpedre,mjleven,rbbrigh}@sandia.gov

Presented at the Cray User Group Conference

Helsinki, Finland
May 2008

Abstract

In this paper, we describe how the mapping of virtual to physical
memory that is set up by the operating system can have a significant
and unexpected impact on the performance of STREAM [6] and a sparse
solver “mini-application” that exhibits STREAM-like behavior. The Cray
Performance Analysis Toolkit (CrayPAT) [2] is utilized to identify the
cause of the performance degradation to be row buffer conflicts in the
memory system. This is shown to be due to the internal architecture of
modern commodity DRAM chips. To mitigate the performance impact
of row buffer conflicts, we explore alternative strategies for constructing
a process’s virtual to physical memory mapping. Ultimately, this work
points out another level of locality in the memory system, i.e., DRAM row
buffers, that few system software and application developers are aware of
and that can have a significant impact on performance.

1 Introduction

Many HPC applications are memory bound, meaning that their performance is
dependent on the performance of the memory system. The gap between memory
latency and processor performance is growing with each successive processor
generation. Additionally, multi-core processors are putting more strain on the
memory system, often resulting in reduced available memory bandwidth per
core. This requires application developers to invest a great deal of effort to
exploit the memory hierarchy to its full potential. Techniques such as tiling,

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-AC04-94AL85000.

1

blocking, data structure re-arrangement, and careful orchestration of data access
patterns are often employed to optimize memory system performance.

The mapping of virtual (logical) to physical memory is controlled by the
operating system and is outside the control of application developers, but it can
also have a significant impact on memory system performance. The CPU uses
the map (e.g., a page table) to determine the physical address of each memory
reference and then the memory controller maps the resulting physical address
to a channel, rank, row, column, and bank address in memory. Streams of
contiguous accesses to successive physical addresses should result in the highest
possible performance, assuming a well-designed memory controller. However,
accessing multiple streams simultaneously (e.g., accessing two arrays element-
wise in a loop) provides potential for bank conflicts, which reduce performance.

In this study, we show how the operating system’s policy for mapping virtual
to physical memory can work against a programmer’s efforts to achieve optimal
memory performance. The STREAM micro-benchmark is used to represent a
best-case application that has been optimized for maximum memory bandwidth.
Two memory mapping strategies are compared: the static, contiguous mapped
strategy of Catamount, and the demand-paged strategy of Linux. Large swings
in performance are observed depending on the mapping strategy and the rel-
ative alignment of the arrays accessed by STREAM. The results point to the
importance of a level of cache in the memory hierarchy unknown to most appli-
cation and system developers, the DRAM row buffer. We outline techniques to
manage this cache and optimize locality at the system level.

The rest of this paper is organized as follows. The next section provides
background on two virtual memory mapping strategies and a brief introduc-
tion to modern DRAM architecture. The details of our test platform and the
micro-benchmarks from which we gathered performance data are described in
Section 3. Performance results and analysis are provided in Section 4. Conclu-
sions are summarized in Section 5 and future work is discussed in Section 6.

2 Background

In modern operating systems, each process executes in its own private virtual
address space. This gives a process the illusion that it has a large and contiguous
address space when in fact it may be scattered all around physical memory or
not even loaded in memory at all (e.g., paged to disk). The operating system
is in control of how the mapping of virtual to physical memory is performed.
Most CPU architectures employ some form of table that must be initialized in
order to specify the mapping (e.g., a 4-level page table on 64-bit x86 CPUs).

Catamount is a lightweight kernel (LWK) operating system that runs on
the Red Storm system at Sandia National Laboratories. Catamount provides a
limited but sufficient set of system services required for scalable scientific com-
puting applications. On application load, Catamount creates a static virtual-
to-physical mapping for the application. This maps all of physical memory (or
the process’s portion of physical memory) in one contiguous chunk. The im-

2

Virtual Addresses Physical Addresses
0xC0000000 0xA00000000

(a) Catamount

Virtual Addresses Physical Addresses
0x00x0

(b) Compute Node Linux

Figure 1: Example Virtual to Physical Page-Table Mapping

plication is that two contiguous locations in virtual memory will be physically
continuous even if those addresses cross a page boundary. Figure 1(a) shows
a representation of this mapping strategy. The contiguous mapping strategy
greatly simplifies the network stack by allowing memory regions to be validated
using a simple base address and length calculation. Additionally, the contiguous
mapping strategy allows for more efficient pipelining of large sequential memory
accesses and therefore increases overall memory bandwidth.

Compute Node Linux (CNL) is Cray’s next-generation operating system for
Cray XT systems, replacing Catamount. CNL is a Linux kernel that has been
modified to be lighter-weight than standard Linux kernels. Since it is based
on Linux, it uses a demand-paged memory mapping strategy where a process’s
mapping to physical memory is determined on-the-fly as the process executes.
This results in an application’s memory being scattered throughout the physical
address space in a more-or-less random way. Figure 1(b) shows a representation
of this mapping strategy.

2.1 DRAM Architecture

Figure 2 shows the internal organization of an example commodity DIMM
(Dual-inline Memory Module) and DRAM bank. Groups of DRAM chips are
arranged in parallel sets, called a rank. DIMM modules package one or more
ranks together. The memory controller uses the chip select lines to specify which
rank should be accessed. Only one of a DIMM’s ranks may be accessed at a
time.

All of the DRAM chips within a rank are addressed by the same bank, row,
and column address wires. In Figure 2(a), one rank is shown consisting of 8
DRAM chips for data and 1 DRAM chip for ECC (Error Correcting Code).
This is a common arrangement for one gigabyte DDR2 DIMMs. Each (bank,
row, column) address specified by the memory controller identifies 64 data bits
(8 bits per DRAM chip) and 8 ECC bits. DDR2 DRAM devices mandate burst
accesses of length four or eight, so each access from the memory controller will

3

(a) DIMM (b) DRAM Bank

Figure 2: Internal organization of an example DIMM and DRAM bank

return a minimum of 64 ∗ 4 data bits, or 32 bytes.
Internally, each DRAM chip is divided into multiple banks. Memory con-

trollers typically seek to interleave contiguous physical address regions across
the available banks, therefore increasing the ability to pipeline requests. The
interleaving typically occurs on DRAM row boundaries since accessing data
within the same row (i.e., an open row) is faster than switching banks. In the
example shown, each DRAM bank has a row size of 1024 bytes. Each rank has
an aggregate row size of 1024 ∗ 8 data bytes.

Figure 2(b) illustrates a conceptual view of the internal structure of a bank.
When a (row, column) request arrives at the bank, one of two things happens.
If the request is to the same row as the previous request, the item will already
be present in the row buffer and the appropriate column can simply be read
out and returned. Things are much more complicated if the access is to a
different row (i.e. a closed row). The open row must first be written back to
memory (PRECHARGE) and then the desired row read into the row buffer
(ACTIVATE). In modern DRAM chips, the PRECHARGE and ACTIVATE
operations take anywhere from three to ten memory clock cycles (e.g., 9 to
30 ns for DDR2-667 memory) and can therefore dramatically reduce memory
bandwidth. The row buffer is another level of cache in the memory system and
it is advantageous to exploit as much row buffer locality as possible.

3 Test Environment

This section provides an overview of the test hardware platform, micro-benchmarks,
and performance monitoring tools used for this study.

4

3.1 Hardware Platform

All testing was performed using a single cage Cray XT4 development system
with 28 compute nodes. Each compute node contained a 2.4 GHz dual-core
AMD Opteron processor and 4 GB of memory, comprised of two 2 GB dual-
rank DDR2-667 DIMMs (each rank providing 1 GB). The system was booted
into either Catamount or a recent Compute Node Linux release (2.0.35) for
testing.

The dual-core Opteron’s memory controller supports a 128-bit wide memory
bus, interleaved across two DDR2 memory channels. Each DIMM was connected
to a separate memory channel. The aggregate DRAM row width of the two
channels is 16 KB with each channel providing 8 KB. Each rank consists of 8
banks, resulting in 16 banks total for the two rank memory configuration. The
physical address space is interleaved first among the banks within a rank. For
example, the first 16 KB of the address space is stored in the first row of bank 0
on rank 0, the next 16 KB on the first row of bank 1 on rank 0, and so on until
all eight ranks are visited. Then, rather than switch back to bank 0 on rank 0,
interleaving was performed across ranks so that the next 16 KB is stored in the
first row of bank 0 on rank 1. This strategy allows more rows to be kept open
than if the memory supplied by one rank is fully used before switching to the
next rank. Note that adding additional DIMMs to each channel would result in
more ranks and banks, potentially improving performance.

Both bank and rank interleaving are configurable parameters of the Opteron’s
memory controller [1] and are setup at system boot time by the system BIOS,
or Cray’s Coldstart in the case of the XT systems (Coldstart is a BIOS replace-
ment). The bank and rank interleaving configurations that were used for this
study are typical for dual-core Opteron systems.

3.2 Micro-benchmarks

The STREAM micro-benchmark is used to examine memory bandwidth. STREAM
utilizes four kernels to characterize the memory bandwidth performance of a sys-
tem: COPY, ADD, TRIAD, and SCALE. Each of these kernels operates on two
to three arrays. The COPY kernel copies the contents of one array sequentially
into another. The ADD operation sequentially performs a vector addition of two
arrays into a third array. Similarly, TRIAD performs a vector addition of two
arrays where one of those arrays is multiplied by a scalar value with the result
stored into a third array. Lastly, the SCALE operation sequentially multiples
one array by a scalar value and stores that result into a second array.

In addition to STREAM, the HPCCG [3] mini-application is used to in-
vestigate whether bank conflicts affect more than just the STREAM micro-
benchmark. HPCCG is a simple sparse conjugate gradient solver designed to
capture an important component of Sandia’s production workload, and therefore
be useful for performance evaluation. The majority of its runtime is spent per-
forming sparse matrix-vector multiplies, where the sparse matrix is encoded in
compressed row storage format. It therefore has similar memory access patterns

5

to STREAM.

3.3 Performance Analysis

The CrayPAT toolkit [2] is used to monitor the Opteron CPU and memory
controller performance counters. CrayPAT internally uses the PAPI [5] API,
which is provided on both Catamount and Compute Node Linux, to gather
performance counter data. PAPI defines a standardized set of performance
counters that are portable across different platforms as well as a native interface
to access performance counters that are specific to a particular platform. Since
neither CrayPAT or PAPI provide standardized memory controller performance
counters, we use the more complicated PAPI native interface.

4 Results

4.1 STREAM on Catamount

Figure 3 shows the STREAM COPY performance as a function of array OFF-
SET on Catamount. OFFSET is used to control the relative spacing in memory
of the arrays accessed by the benchmark.1 The default value of OFFSET is 0,
resulting in the A, B, and C arrays being directly adjacent to one another in
memory. Non-zero values of OFFSET add padding between each array. For ex-
ample, a value of 1000 would add 1000 doubles (8000 bytes) of padding between
the A and B arrays and the between B and C arrays. The STREAM documen-
tation states that modifying the value of OFFSET is necessary on some systems
to obtain optimal performance, but the common practice today is to leave it set
to the default value of 0. Note that changing the array sizes used by STREAM
(the value of N) has the same effect as modifying OFFSET.

The large dips at offsets 120000 and 250000 bytes in Figure 3 represent
nearly a 60% decrease in memory bandwidth and are spaced approximately 128
KB apart. Figure 4 shows similar but less regular behavior for the TRIAD
kernel. In fact, all of the STREAM kernels show the behavior but we limit our
discussion to COPY to simplify the analysis. Since COPY involves only two
arrays it produces more regular patterns than the other kernels that access three
arrays, but our analysis is relevant to all of the kernels.

As can be seen in Figure 5, the dips do not occur on CNL but the maximum
memory bandwidth is lower for CNL. This was very puzzling to us since the orig-
inal hypothesis was that the sawtooth pattern was due to caching or TLB effects.
We spent considerable time investigating whether something about Catamount
was resulting in the Opteron’s memory controller begin setup incorrectly. This
proved not to be the case.

Eventually we stumbled upon the fact that the Opteron’s memory controller
provides a set of performance counters. After employing a “try-them-all” ap-
proach, it was determined that the cause of the performance dips was due to

1OFFSET is a pre-processor define specified at the beginning of the STREAM source code.

6

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50000 100000 150000 200000 250000 300000 350000

M
B

/s

Offset (bytes)

Catamount

Figure 3: STREAM COPY performance on Catamount as a function of array
OFFSET.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 50000 100000 150000 200000 250000 300000 350000

M
B

/s

Offset (bytes)

Catamount

Figure 4: STREAM TRIAD performance on Catamount as a function of array
OFFSET.

7

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 20000 40000 60000 80000 100000 120000 140000 160000

M
B

/s

Offset (bytes)

Catamount
Linux

Figure 5: STREAM COPY comparison of Catamount and CNL.

DRAM row buffer conflicts (also known as DRAM page conflicts), shown in
Figure 6. Recall from Figure 2(b) that the row buffer is effectively a large cache
for a DRAM bank. A DRAM row buffer conflict occurs when a sequence of
memory requests correspond to different rows of the same memory bank. These
conflicts affect performance because the currently open row must be written
back to memory (PRECHARGE) and the next row must be read into the row
buffer (ACTIVATE). These operations cannot be pipelined.

For STREAM COPY, the worst case is when the source and destination
arrays are situated in physical memory such that each iteration of the copy
loop causes a row buffer conflict. The 128 KB spacing of the worst-case dips
corresponds to our test system’s number of DRAM banks (16) multiplied by the
aggregate DRAM row buffer size (16 KB) divided by two. The divide by two
factor is because the STREAM copy kernel actually uses the A and C arrays,
so the impact of the OFFSET value is doubled. In the worst case, A[i] and C[i]
conflict for all values of i.

A great deal of work has gone into trying to mitigate row buffer conflicts at
the hardware level [4, 7, 8, 9, 10, 11]. Well-designed memory controllers attempt
to schedule memory accesses to maximize hits to open rows and take advantage
of as much row buffer locality as possible. Many memory controllers support
multiple configurable strategies for mapping the physical address space to the
DRAM chips (i.e., memory interleaving and bank swizzle mode on the AMD
Opteron). While these methods may reduce the chance of row buffer conflicts,
they are at a level invisible to the operating system and applications.

In contrast to hardware-based approaches, we attempted to mitigate row
buffer conflicts by utilizing a software-based approach that takes advantage of
the operating system’s control over the virtual to physical memory map. Cata-

8

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50000 100000 150000 200000 250000 300000 350000
 0

 200000

 400000

 600000

 800000

M
B

/s

C
ou

nt
s

Offset (bytes)

Catamount NB_MC_PAGE_CONFLICT

Figure 6: STREAM COPY performance on Catamount with corresponding
NB MC PAGE CONFLICT performance counter data.

mount was modified to monitor the row buffer conflicts of a running application
and then shuffle the memory mapping if the number of page conflicts exceeded
a threshold per unit time. This type of memory adaptation is fairly straight-
forward to do in Catamount due to its simple memory management scheme.

Figure 7 shows the results of running STREAM using this adaption tech-
nique. We see the number and impact of row buffer conflicts is reduced. It
is important to note that this technique worked well for STREAM because it
performs many trials and only reports the best result. This specific adaptation
approach may not work well for more complicated applications, but we believe
that the general approach of having the OS monitor performance counters and
adapt as necessary is promising. Compile-time analysis is another technique
that may be beneficial.

4.2 STREAM on CNL

Figure 5 shows that Catamount and CNL demonstrate significantly different
behavior. This is due to the virtual to physical memory mapping strategies
employed by the two operating systems. Catamount uses a one-to-one map-
ping between virtual and physical memory. For the STREAM COPY kernel,
this means that once a row buffer conflict is encountered it is likely that subse-
quent iterations will also conflict, even if a DRAM row boundary is crossed. In
contrast, Linux employs a demand-paged strategy where the virtual to physical
mapping is setup on-the-fly as a program executes. This results in a more-or-less
randomized mapping. On our test system, the mapping is at a 4 KB granularity
since that is the memory management page size used by the Linux kernel on

9

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 50000 100000 150000 200000 250000 300000 350000

M
B

/s

Offset (bytes)

Catamount STREAM Copy Performance

Catamount

Figure 7: STREAM COPY performance on Catamount with adaptive row buffer
conflict mitigation.

x86-64 systems. This means that runs of row buffer conflicts will usually be
limited to at most 4 KB, since it is highly unlikely that the location of adjacent
4 KB memory management pages will map to different rows of the same DRAM
bank.

The STREAM results in Figure 8 are from a freshly booted CNL node.
Since Linux uses a demand-paged strategy, performance can vary from run to
run depending on which physical pages are available for allocation and how
fragmented they are. To investigate possible worst-case page frame allocations,
a series of applications was run in order to fragment memory. Figure 9 shows
the increased variance that results after doing this compared to the results of
the freshly booted system. In both figures, the low-performance outliers are due
to both page conflicts and cache conflicts.

4.3 HPCCG on Catamount

In this section we look at the effect memory mapping has on the HPCCG mini-
application. The majority of this application’s runtime is spent performing
sparse matrix vector multiplications. A pair of arrays are used to represent the
sparse matrix, one storing the non-zero values and another storing the column
index of each non-zero. The HPCCG code was instrumented to allow for variable
offsets between these two arrays in order to investigate the effect that memory
placement has on performance.

Figure 10 shows the performance of HPCCG on 28 nodes for a variety of
offsets. The offset value on the x-axis represents the number of bytes between
the two arrays. As with STREAM, certain offsets lead to significantly degraded

10

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5000 10000 15000 20000

M
B

/s

Offset (bytes)

Linux

Figure 8: STREAM COPY performance on a freshly booted CNL node.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50 100 150 200 250 300 350 400

M
B

/s

Run

Linux

Figure 9: STREAM COPY performance of CNL long after boot. Memory be-
comes more fragmented over time, leading to increased performance variability.

11

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 130000 130500 131000 131500 132000

R
un

tim
e

(s
ec

.)

Offset (bytes)

Catamount HPCCG Performance

LWK

Figure 10: HPCCG runtime performance on Catamount for various array offsets.

performance due to DRAM row buffer conflicts (lower is better in this graph).

5 Conclusion

We have described how the mapping of virtual to physical memory that is setup
by the operating system can have a significant and unexpected impact on the
performance of memory bandwidth bound applications. This has been shown to
be due to row buffer conflicts caused by the internal architecture of commodity
DRAM chips. The memory mapping strategies of two operating systems—
Catamount and CNL—have been analyzed. The simple one-to-one mapping
strategy used by Catamount results in slightly better best-case performance,
but rarely results in very poor performance for certain data alignments. The
demand-paged layout used by CNL reduces the chance of hitting the rare worst
case at the cost of sacrificing 10% to 20% of peak memory bandwidth. To
mitigate the worst-case behavior observed with Catamount, we developed a
simple operating system controlled adaptive mapping strategy.

6 Future Work

We plan to further investigate the effect of DRAM row buffer conflicts on the
performance of real applications. This may be the cause of non-IO related
performance differences between Catamount and CNL. We also plan to explore
more closely the impact of multi-core processors on row buffer conflicts.

12

References

[1] AMD. BIOS and Kernel Developer’s Guide for AMD NPT Family 0Fh
Processors, 2007.

[2] Cray Inc. Using Cray Performance Analysis Tools, December 2007. http:
//docs.cray.com/books/S-2376-41/S-2376-41.pdf.

[3] Mike Heroux. HPCCG MicroApp. http://www.cs.sandia.gov/
∼maherou/HPCCG-0.3.tar.gz, July 2007.

[4] Bruce Jacob. A Case for Studying DRAM Issues at the System Level. IEEE
Micro, 23(4):44–56, 2003.

[5] Innovative Computing Laboratory. PAPI homepage. http://icl.cs.utk.
edu/papi/index.html.

[6] John D. McCalpin. STREAM: Sustainable memory bandwidth in high
performance computers. http://www.cs.virginia.edu/stream/.

[7] B. Ramakrishna Rau. Pseudo-Randomly Interleaved Memory. SIGARCH
Comput. Archit. News, 19(3):74–83, 1991.

[8] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter R. Mattson, and
John D. Owens. Memory Access Scheduling. In ISCA, pages 128–138,
2000.

[9] Jun Shao and Brian T. Davis. The Bit-reversal SDRAM Address Mapping.
In Proceedings of the 9th International Workshop on Software and Com-
pilers for Embedded Systems (SCOPES05), pages 62–71, Sept. 29 - Oct. 1
2005.

[10] Jun Shao and Brian T. Davis. A Burst Scheduling Access Reordering
Mechanism. In HPCA ’07: Proceedings of the 2007 IEEE 13th International
Symposium on High Performance Computer Architecture, pages 285–294,
Washington, DC, USA, 2007. IEEE Computer Society.

[11] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. A permutation-based
page interleaving scheme to reduce row-buffer conflicts and exploit data
locality. In International Symposium on Microarchitecture, pages 32–41,
2000.

13

