
Exploring Memory Management
Strategies in Catamount

Kurt Ferreira, Kevin Pedretti, and Ron BrightwellKurt Ferreira, Kevin Pedretti, and Ron Brightwell
Scalable System Software Group

Sandia National Laboratories

Cray Users Group
Helsinki, Finland

May 8, 2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.



What to Expect

• Description of phenomenon we’ve observed using the
STREAM micro-benchmark
– Large memory bandwidth swings based on memory layout
– Comparisons to Cray Linux Environment (CLE / CNL)

• Due to level of locality you probably aren’t aware of
– Hopefully interesting
– Possibly useful

• Mitigation techniques we’re working on that alleviate issue
while maintaining LWK advantages
– Predictable memory layout
– Simple network stack (no pinning/unpinning)



STREAM Benchmark

• Old benchmark, now component of HPCC
• Four memory intensive kernels over arrays of doubles:

– Copy: a[i] = b[i]
– Scale: a[i] = scalar * b[i]
– Add: a[i] = b[i] + c[i]
– Triad: a[i] = b[i] + scalar * c[i]

• OFFSET define controls spacing/alignment of arrays in
memory:

a[N] OFFSET b[N] OFFSET c[N]



Mysterious
STREAM Copy Sawtooth on Catamount

N=2000000, ~16MB arrays



STREAM Scale, Add, and Triad Similar



What’s Going On?

• Mystery for 2+ years
– First observed by Courtenay Vaughan while

gathering Red Storm HPCC results
– Careful tuning performed to avoid valleys

• Suspects:
– Cache aliasing?
– Prefetch issues?
– Non-temporal prefetch/store issues?
– Coldstart configuration of memory controller?
– Something inherit in Catamount?



Dips Due to DRAM Page Conflicts
(Bank Conflicts)



A (Very) Brief DRAM Overview

• Commodity component, most numerous in system
• 2-D array of memory

– Addressed by (row, column, bank)
– Accesses to different rows of same bank conflict
– Conflicts are slow, prevents request pipelining

• Typical row (aka page) sizes:
– DRAM: 1 KB wide (1K columns, each 8-bits deep)
– DIMM: 8 KB wide (8 DRAM chips in parallel)

• See “Memory Systems: Cache, DRAM, Disk” book



DDR2 DIMM Architecture Example



Red Storm DDR2 DIMM Architecture

Each DRAM Row is
1K columns * 8 bits = 1K bytes

Each DIMM Row is
1K bytes * 8 chips = 8K bytes

Each Memory “Page” is
8K bytes * 2 DIMMs = 16K bytes

Addresses that are
16K bytes * 8 banks = 128K bytes
apart will result in a Bank Conflict

(Consecutive accesses to
different rows in same

bank, aka Page Conflict) 



By the Numbers ...

128KB Spacing

128 KB +/- 16 KB
spacing results in

Page Conflicts



What About Compute Node Linux?



Linux Translation Strategy

• Will scatter virtual
pages throughout
the physical space

• Mapping is non-
deterministic and
varies from run-to-
run



Catamount Translation Strategy

• Maps the virtual
address range to
a contiguous
physical address
range

• Done to reduce
state required for
SeaStar NIC



Compute Node Linux Numbers

• Each point from a
freshly booted CNL
node

• Dips from cache
aliasing and also
seen on Catamount



As Memory Fragments, Performance Affected

• Translations vary for
each application run

• Worst case 80%
slowdown due to
buffer conflicts and
cache aliasing

• Average case similar
to best case



Research Questions

• Do page conflicts matter for any real applications?
– Potential cause of the observed CNL vs. Catamount

performance differences on Red Storm?
• Mitigation techniques:

– Opteron memory controller “swizzle” mode
– Randomize virtual->physical mapping
– Deterministic virtual->physical mapping

• No page pinning/unpinning
• Send address/length to SeaStar vs. command array

– Compiler optimization?
– Stream-style programming…

1 array with unit stride cannot cause bank conflict



Adaptive Approaches

• Monitor page conflict counts while an application
runs

• If system sees application page conflict counts
increasing, shuffle memory mapping

• Intension: cap the number of page conflicts at a
certain level



Adaptive Page Mapping Performance



What About Real Applications?

• HPCCG: somewhere between a micro-benchmark
and a real application

• Written by Mike Heroux of Sandia National Labs
• Simple preconditioned conjugate gradient solver
• Generates a 27-point finite difference matrix with a

user-prescribed sub-block size on each processor
• Processor domains are stacked in the z-dimension



HPCCG – Page Conflict Slowdown

• 32 nodes
• Offset identical

on each node
• ~50% slowdown



Summary

• Virtual to physical translations can affect the
performance of HPC applications

• DRAM page buffer is another level of locality in the
memory hierarchy that the programmer has little
control over and may be important to application
performance

• No translation strategy clear winner



Experimental Platform

• Hardware
– 32 node Cray XT3/4 dev system at SNL
– 2.4 GHz, dual-core AMD Opteron w/ 4 GB RAM
– Cray SeaStar NIC

• Software
– Catamount lightweight OS
– Cray Compute Node Linux


