

Exploring Memory Management Strategies in Catamount

Kurt Ferreira, Kevin Pedretti, and Ron Brightwell Scalable System Software Group Sandia National Laboratories

Cray Users Group Helsinki, Finland May 8, 2008

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

What to Expect

- Description of phenomenon we've observed using the STREAM micro-benchmark
 - Large memory bandwidth swings based on memory layout
 - Comparisons to Cray Linux Environment (CLE / CNL)
- Due to level of locality you probably aren't aware of
 - Hopefully interesting
 - Possibly useful
- Mitigation techniques we're working on that alleviate issue while maintaining LWK advantages
 - Predictable memory layout
 - Simple network stack (no pinning/unpinning)

STREAM Benchmark

- Old benchmark, now component of HPCC
- Four memory intensive kernels over arrays of doubles:
 - Copy: a[i] = b[i]
 - Scale: a[i] = scalar * b[i]
 - Add: a[i] = b[i] + c[i]
 - Triad: a[i] = b[i] + scalar * c[i]
- OFFSET define controls spacing/alignment of arrays in memory:

a[N] OFFSET	b[N]	OFFSET	c[N]
-------------	------	--------	------

Mysterious STREAM Copy Sawtooth on Catamount

STREAM Scale, Add, and Triad Similar

STREAM Triad: a[i] = b[i] + scalar*c[i]

What's Going On?

- Mystery for 2+ years
 - First observed by Courtenay Vaughan while gathering Red Storm HPCC results
 - Careful tuning performed to avoid valleys
- Suspects:
 - Cache aliasing?
 - Prefetch issues?
 - Non-temporal prefetch/store issues?
 - Coldstart configuration of memory controller?
 - Something inherit in Catamount?

- Commodity component, most numerous in system
- 2-D array of memory
 - Addressed by (row, column, bank)
 - Accesses to different rows of same bank conflict
 - Conflicts are slow, prevents request pipelining
- Typical row (aka page) sizes:
 - DRAM: 1 KB wide (1K columns, each 8-bits deep)
 - DIMM: 8 KB wide (8 DRAM chips in parallel)
- See "Memory Systems: Cache, DRAM, Disk" book

72-bit Wide DIMM (64-bit Data, 8-bit ECC)

Red Storm DDR2 DIMM Architecture

Each DRAM Row is 1K columns * 8 bits = 1K bytes

Each DIMM Row is 1K bytes * 8 chips = 8K bytes

Each Memory "Page" is 8K bytes * 2 DIMMs = 16K bytes

Addresses that are 16K bytes * 8 banks = 128K bytes apart will result in a Bank Conflict (Consecutive accesses to different rows in same bank, aka Page Conflict)

By the Numbers ...

CNL × Rate (MB/s) OFFSET (bytes)

STREAM Copy LWK vs. CNL

Linux Translation Strategy

- Will scatter virtual pages throughout the physical space
- Mapping is nondeterministic and varies from run-torun

- Maps the virtual address range to a contiguous physical address range
- Done to reduce state required for SeaStar NIC

- Each point from a freshly booted CNL node
- Dips from cache aliasing and also seen on Catamount

As Memory Fragments, Performance Affected

- Translations vary for each application run
- Worst case 80% slowdown due to buffer conflicts and cache aliasing
- Average case similar to best case

Research Questions

- Do page conflicts matter for any real applications?
 - Potential cause of the observed CNL vs. Catamount performance differences on Red Storm?
- Mitigation techniques:
 - Opteron memory controller "swizzle" mode
 - Randomize virtual->physical mapping
 - Deterministic virtual->physical mapping
 - No page pinning/unpinning
 - Send address/length to SeaStar vs. command array
 - Compiler optimization?
 - Stream-style programming…
 - 1 array with unit stride cannot cause bank conflict

Adaptive Approaches

- Monitor page conflict counts while an application runs
- If system sees application page conflict counts increasing, shuffle memory mapping
- Intension: cap the number of page conflicts at a certain level

Adaptive Page Mapping Performance

Catamount STREAM Copy Performance

- HPCCG: somewhere between a micro-benchmark and a real application
- Written by Mike Heroux of Sandia National Labs
- Simple preconditioned conjugate gradient solver
- Generates a 27-point finite difference matrix with a user-prescribed sub-block size on each processor
- Processor domains are stacked in the z-dimension

Summary

- Virtual to physical translations can affect the performance of HPC applications
- DRAM page buffer is another level of locality in the memory hierarchy that the programmer has little control over and may be important to application performance
- No translation strategy clear winner

Experimental Platform

- Hardware
 - 32 node Cray XT3/4 dev system at SNL
 - 2.4 GHz, dual-core AMD Opteron w/ 4 GB RAM
 - Cray SeaStar NIC
- Software
 - Catamount lightweight OS
 - Cray Compute Node Linux

