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What to Expect

• Description of phenomenon we’ve observed using the
STREAM micro-benchmark
– Large memory bandwidth swings based on memory layout
– Comparisons to Cray Linux Environment (CLE / CNL)

• Due to level of locality you probably aren’t aware of
– Hopefully interesting
– Possibly useful

• Mitigation techniques we’re working on that alleviate issue
while maintaining LWK advantages
– Predictable memory layout
– Simple network stack (no pinning/unpinning)



STREAM Benchmark

• Old benchmark, now component of HPCC
• Four memory intensive kernels over arrays of doubles:

– Copy: a[i] = b[i]
– Scale: a[i] = scalar * b[i]
– Add: a[i] = b[i] + c[i]
– Triad: a[i] = b[i] + scalar * c[i]

• OFFSET define controls spacing/alignment of arrays in
memory:

a[N] OFFSET b[N] OFFSET c[N]



Mysterious
STREAM Copy Sawtooth on Catamount

N=2000000, ~16MB arrays



STREAM Scale, Add, and Triad Similar



What’s Going On?

• Mystery for 2+ years
– First observed by Courtenay Vaughan while

gathering Red Storm HPCC results
– Careful tuning performed to avoid valleys

• Suspects:
– Cache aliasing?
– Prefetch issues?
– Non-temporal prefetch/store issues?
– Coldstart configuration of memory controller?
– Something inherit in Catamount?



Dips Due to DRAM Page Conflicts
(Bank Conflicts)



A (Very) Brief DRAM Overview

• Commodity component, most numerous in system
• 2-D array of memory

– Addressed by (row, column, bank)
– Accesses to different rows of same bank conflict
– Conflicts are slow, prevents request pipelining

• Typical row (aka page) sizes:
– DRAM: 1 KB wide (1K columns, each 8-bits deep)
– DIMM: 8 KB wide (8 DRAM chips in parallel)

• See “Memory Systems: Cache, DRAM, Disk” book



DDR2 DIMM Architecture Example



Red Storm DDR2 DIMM Architecture

Each DRAM Row is
1K columns * 8 bits = 1K bytes

Each DIMM Row is
1K bytes * 8 chips = 8K bytes

Each Memory “Page” is
8K bytes * 2 DIMMs = 16K bytes

Addresses that are
16K bytes * 8 banks = 128K bytes
apart will result in a Bank Conflict

(Consecutive accesses to
different rows in same

bank, aka Page Conflict) 



By the Numbers ...

128KB Spacing

128 KB +/- 16 KB
spacing results in

Page Conflicts



What About Compute Node Linux?



Linux Translation Strategy

• Will scatter virtual
pages throughout
the physical space

• Mapping is non-
deterministic and
varies from run-to-
run



Catamount Translation Strategy

• Maps the virtual
address range to
a contiguous
physical address
range

• Done to reduce
state required for
SeaStar NIC



Compute Node Linux Numbers

• Each point from a
freshly booted CNL
node

• Dips from cache
aliasing and also
seen on Catamount



As Memory Fragments, Performance Affected

• Translations vary for
each application run

• Worst case 80%
slowdown due to
buffer conflicts and
cache aliasing

• Average case similar
to best case



Research Questions

• Do page conflicts matter for any real applications?
– Potential cause of the observed CNL vs. Catamount

performance differences on Red Storm?
• Mitigation techniques:

– Opteron memory controller “swizzle” mode
– Randomize virtual->physical mapping
– Deterministic virtual->physical mapping

• No page pinning/unpinning
• Send address/length to SeaStar vs. command array

– Compiler optimization?
– Stream-style programming…

1 array with unit stride cannot cause bank conflict



Adaptive Approaches

• Monitor page conflict counts while an application
runs

• If system sees application page conflict counts
increasing, shuffle memory mapping

• Intension: cap the number of page conflicts at a
certain level



Adaptive Page Mapping Performance



What About Real Applications?

• HPCCG: somewhere between a micro-benchmark
and a real application

• Written by Mike Heroux of Sandia National Labs
• Simple preconditioned conjugate gradient solver
• Generates a 27-point finite difference matrix with a

user-prescribed sub-block size on each processor
• Processor domains are stacked in the z-dimension



HPCCG – Page Conflict Slowdown

• 32 nodes
• Offset identical

on each node
• ~50% slowdown



Summary

• Virtual to physical translations can affect the
performance of HPC applications

• DRAM page buffer is another level of locality in the
memory hierarchy that the programmer has little
control over and may be important to application
performance

• No translation strategy clear winner



Experimental Platform

• Hardware
– 32 node Cray XT3/4 dev system at SNL
– 2.4 GHz, dual-core AMD Opteron w/ 4 GB RAM
– Cray SeaStar NIC

• Software
– Catamount lightweight OS
– Cray Compute Node Linux


