

CUG 2008 Proceedings 1 of 4

Highly Scalable Networking Configuration
Management For Highly Scalable Systems

Nicholas P. Cardo
Lawrence Berkeley National Laboratory
National Energy Research Scientific Computing Center
cardo@nersc.gov

ABSTRACT: Today's systems have large numbers of specialized nodes each requiring
unique network configurations. On the XT4 at the National Energy Research Scientific
Computing Center, there are 56 such nodes each requiring unique network addresses
and network routes. Normal network management would be to specialize files to be
unique to each node. A simpler mechanism with increased flexibility was needed. With
very little initial set-up, all network addresses and routes can be maintained through two
common files, one for routes and one for addresses. Changes to the configuration now
only require simple edits to these two files. The details of configuring this environment
and simplicity of its management will be discussed in this paper.

KEYWORDS: XT4, Networking

1 Introduction

The system management of a single Unix system is
relatively straightforward. However, when the system is
made up of many individual Unix systems that when
combined form a more complicated and powerful system,
the overall management increases in difficulty.

Networking strategies are among the complicated
components of today’s high performance computer
systems. Large-scale computers no longer have single
network interfaces but rather a complicated array of
interfaces spread out across numerous nodes within the
computer. To further complicate matters these interfaces
could be of a variety of types including Gigabit Ethernet,
10 Gigabit Ethernet and SeaStar.

As computer systems grow in scale, so does the
overhead in configuring and managing the system.
System Administrators of today are constantly finding
new ways to simplify the pieces of overall computer
system management.

2 The Problem

The problem is a combination of standard Linux
networking, system scale and the unique environment of
the Cray XT4.

2.1 Linux Networking

The directory /etc/sysconfig/network is the
root level directory for SuSE network interface
configuration files. Suppose the device eth0 needs to be
configured. Changes would be made to the file ifcfg-
eth0 to supply the necessary configuration information.
This includes such configuration details as interface
address and netmask.

One configuration file exists for each interface on the
host. It is necessary to edit one file per interface to be
configured. Suppose the host has four interfaces, then
four files require configuration edits.

2.2 The Scaling Issue

Configuring network interfaces is a relatively trivial
task. Simply edit the configuration file for the interface
and it is done. Just repeat the process for each interface
on that node in the cluster. Then, move on to the next
node and repeat the process, continuing until all nodes

CUG 2008 Proceedings 2 of 4

with interfaces have been configured. Suppose the cluster
contains 50 nodes to be configured with network
interfaces. Suppose it takes five minutes per node to
make and verify the changes. Scaling this to 50 nodes
would take 250 minutes or 4 hours and 10 minutes.

Each time a change is required in the future, the same
manual effort is required.

2.3 The XT4 Complication

To further complicate matters, the Cray XT4 has a
unique shared root environment where changes must be
made. Suppose the XT4 system had nodes 5 through 10
each with an eth0 device to configure. From the boot
node, it would be necessary to run xtopview –n
<nid>, then edit the files, then commit the changes.
This process is required for each node to be configured.
If the file is not specialized to that node, then an
additional step is required to complete the specialization.

The NERSC XT4 has 56 service nodes requiring
configuration. It is hoped that once the initial
configuration is in place, it will not change. However, the
general rule in system management is that if it can be
changed, it will be changed.

2.4 To Sum it Up

While each piece is relatively trivial, the combination
makes this process unacceptably complicated and tedious.
As systems grow in scale, and the demand on networking
increases, so the impact of configuring and maintaining
network interfaces. As the number of changes increase,
so does the change of error.

3 The Solution

A configuration methodology is needed that can work
as simple as editing a file while scaling up to thousands of
nodes. The configuration specifications need also be
flexible enough to adapt to more complicated
configurations.

3.1 Goals

To measure the success of this project, the following
objectives were established:

• Single points of data entry for routing and interface
configurations.

• Scalable to support all service nodes.

• Flexible to handle complex routing if necessary.

• Minimal specialization.

3.2 Concept

The basic premise behind the solution is to utilize
common files that can provide the functionality across all

service nodes. Utilize a common directory that contains
all the network configuration files for the entire system.
All nodes should point to the files in this common
location.

All network interfaces for the entire system should be
defined in a common text file. One file would contain all
the interfaces for all the nodes. Startup scripts would
need to be modified to support such a file.

All network routes for the entire system should be
defined in a common tet file. One file would contain all
the routes for all the nodes. Startup files would need to be
modified to support such a file. Processing of routes
needs to be automatic and therefore the need for post
processing script once and interface has been configured
up.

4 Implementation

Although one objective was to minimize the per node
specialization of files, some set-up changes are required.
The extent of these changes is only to point key system
start-up files to a common file across all nodes.

4.1 Configuration Requirements

All of Franklin’s service nodes require publicly
addressable SeaStar interface addresses. This is
accomplished by adding a second address to the interface.
The primary address is private and assigned as part of the
system’s build and boot. Both addresses will function on
the same interface. The interface device designation is
“ss”.

Each of Franklin’s login nodes contains a dual port
Gigabit Ethernet card. These interfaces are designated
by the devices “eth0” and “eth1”.

Furthermore, each node may have unique network
traffic routing rules. However, these rules cannot be
specialized to individual nodes.

For performance reasons, the internal addresses need
to be pre-loaded into the ARP table at boot time.

Meanwhile, any custom routes need to be set as well
as any special network parameters. This can all be done
by the POST_UP_SCRIPT for the device being
configured.

4.2 Initial Set-up

As mentioned earlier, each interface requires an
initialization file in order to configure the device at
system boot. Additionally, pre-loading of the ARP table
needs to occur.

Basically the four files required to accomplish this
function need to be the same four files across the system.
This could be accomplished by modifying the specialized

CUG 2008 Proceedings 3 of 4

file. However, subsequent changes over time would again
require the need to use xtopview on the boot node. The
solution chosen was to turn these files into symbolic links
to a common area that holds the real start-up files. This
has the added benefit of consolidated all network
configuration files for the entire system into one directory
visible on all service nodes.

The first step is to create a directory for network
configuration files. On Franklin, the directory
/etc/NERSC was created for this purpose.

As already identified, there are three devices to
configure: ss, eth0, and eth1. Their respective
configuration files would be located in
/etc/sysconfig/network and are named ifcfg-ss,
ifcfg-eth0, and eth1. To begin create symbolic
links for the device configuration files to files of the same
name located in /etc/NERSC.

ln –s /etc/NERSC/ifcfg-ss ifcfg-ss
ln –s /etc/NERSC/ifcfg-eth0 ifcfg-eth0
ln –s /etc/NERSC/ifcfg-eth1 ifcfg-eth1

The next step is to do the same for the files required
to preload the ARP table and set any special routes for
that node. This script is called set-route-arp and is
located in /etc/sysconfig/network/scripts.
A symbolic link is again created for this file.
ln –s /etc/NERSC/set-route-arp set-route-arp

4.3 Address and Route Configuration Files

Two configuration files are used to define the full
network configuration of the system.

The first file, hosts-external, represents all the
interface configurations. It contains all the necessary
information to configure any of the network devices on all
of the service nodes. The file contains 7 fields:

1. Hostname

2. Physical address

3. Node identifying name

4. Interface device (ss, eth0, eth1)

5. Network address

6. Netmask

7. Device MTU

These fields provide sufficient information to
configure the interfaces. Additional fields could easily be
added as needed. The following example shows how to
configure one of Franklin’s login nodes which requires
both the ss and eth0 devices to be configured. There is
one line per device to be configured.

nid04100 c1-0c0s1n0 login01 eth0 128.55.81.34 255.255.248.0 9000

nid04100 c1-0c0s1n0 login01 ss 128.55.42.134 255.255.255.192 NA

The second file contains any special route
specifications. This file contains 9 fields:

1. Hostname

2. Physical address

3. Node identifying name

4. Interface device (ss, eth0, eth1)

5. Destination address

6. Gateway

7. Netmask

8. Route MTU

9. IPforward

While these fields provide sufficient information to
configure routing, additional fields could easily be added.
The login nodes for Franklin contain two routes, a default
route and a network specific route. The entries look like:

nid04100 c1-0c0s1n0 login01 eth0 default 128.55.80.1 NA NA 0

nid04100 c1-0c0s1n0 login01 ss 128.55.32.0 128.55.42.130 255.255.224.0
9000 0

4.4 Interface Configuration

The device configuration files need to be modified to
extract their required information from the hosts-
external file. The ifcfg-eth0 file looks like:

NID=`cat /proc/cray_xt/nid | \
 awk '{printf("nid%5.5d\n",$1)}'`

DEVICE="eth0"
BOOTPROTO='static'
IPADDR=`grep $NID /etc/NERSC/hosts-external | \
 grep -v "^#" | grep $DEVICE | \
 awk '{ print $5 }'`

If no address, then stop

if ["$IPADDR" = ""]
then
 exit 0
fi

GATEWAY=
NETMASK=`grep $NID /etc/NERSC/hosts-external | \
 grep -v "^#" | grep $DEVICE | \
 awk '{ print $6 }'`
NETWORK=
MTU=`grep $NID /etc/NERSC/hosts-external | \
 grep -v "^#" | grep $DEVICE | \
 awk '{ print $7 }'`
STARTMODE='onboot'
POST_UP_SCRIPT="set-route-arp"

CUG 2008 Proceedings 4 of 4

Other device files are identical with the exception of
the DEVICE field. This is adjusted to represent the
device to be configured.

4.5 Post Device Configuration

Identify this node

NID=`cat /proc/cray_xt/nid | \
 awk '{printf("nid%5.5d\n",$1)}'`

The file containing all the routes

ROUTESEXTERNAL=/etc/NERSC/routes-external

Populate the arp table

/sbin/arp -f /etc/NERSC/arp-ss -i ss

Loop through all route entries for this nid

for ln in `fgrep $NID $ROUTESEXTERNAL | \
 egrep -v "^#" | \
 awk '{print $4":"$5":"$6":"$7":"$8":"$9}'
do
 #
 # Parse the fields
 #
 DEV=`echo $ln | cut -f 1 -d :`
 ADR=`echo $ln | cut -f 2 -d :`
 GWY=`echo $ln | cut -f 3 -d :`
 MSK=`echo $ln | cut -f 4 -d :`
 MTU=`echo $ln | cut -f 5 -d :`
 FOR=`echo $ln | cut -f 6 -d :`
 #
 # Get the host addr from the full addr
 #
 HST=`echo $ADR | cut -f 4 -d \.`
 #
 # is this is a host or net route
 #
 if ["$ADR" = "default"]
 then
 TYP=""
 elif ["$HST" = "0"]
 then
 TYP="-net"
 else
 TYP="-host"
 fi
 #
 # Set the netmask if applicable
 #
 if ["$MSK" = "NA"]
 then
 L_MSK=""
 else
 L_MSK="netmask $MSK"
 fi
 #
 # Set the MTU if applicable
 #
 if ["$MTU" = "NA"]
 then
 L_MTU=""
 else
 L_MTU="mtu $MTU"
 fi
 #

 # Now create the route
 #
 /sbin/route add $TYP $ADR gw $GWY \
 $L_MSK dev $DEV $L_MTU
 #
 # Set IP Forwarding appropriately
 #
 echo $FOR >/proc/sys/net/ipv4/ip_forward
 #
 # Set arp flag for ss interface #
 if [\("$DEV" = "ss" \) -a $FOR -eq 1]
 then
 /sbin/ip link set $DEV arp on
 fi
done

5 Summary

Once the initial set-up is complete, changes only need
to be made to the hosts-external and routes-external file.
This has greatly simplified the number of modifications
required each time a network configuration change is
required.

6 Acknowledgments

This work was supported by the Director, Office of
Science, Division of Mathematical, Information, and
Computational Sciences of the U.S. Department of
Energy under contract number DE-AC02-05CH11231.

 This research used resources of the National Energy
Research Scientific Computing Center, which is
supported by the Office of Science of the U.S.
Department of Energy.

This work is an adaptation of the methodology
developed at Sandia National Laboratory.

7 About the Author

Nicholas P. Cardo is the Project Lead and Lead
System Administrator of Franklin. He is a senior member
of the Computational Systems Group at NERSC. He can
be reached at Lawrence Berkeley National Laboratory,
National Energy Research Scientific Computing Center, 1
Cyclotron Rd, bldg 943r0256, Berkeley, CA 94720 USA,
E-mail: cardo@nersc.gov.

