

CUG 2008 Proceedings 1 of 6

Detecting System Problems
With Application Exit Codes

Nicholas P. Cardo
Lawrence Berkeley National Laboratory
National Energy Research Scientific Computing Center
cardo@nersc.gov

ABSTRACT: With today's large systems, it is often difficult to detect system problems
until a user reports an unexpected event. By analysing application exit codes and batch
job stderr/stdout files during batch job exit processing, it possible to detect and track
system related problems. A methodology was developed at the National Energy Research
Scientific Computing Center and implemented through custom utilities to detect and track
system problems. The details of this methodology along with the tools used will be
discussed in detail in this paper.

KEYWORDS: XT4, System Errors, Application Failures

1 Introduction

User applications can fail for a large variety of
reasons including user error and system problems. As
systems grow in scale, the ability to quickly identify
system related or node health problems diminishes.
Problems can manifest themselves in many ways from the
obvious where a node or the entire system fails, or more
subtle ways by simply causing applications to exit.

At NERSC, an effort has been put forth to attempt to
identify why an application failed. This effort must keep
in mind that some applications will fail, but what is to be
considered to be normal needs to be identified.

2 Data Collection

The first question to answer was whether or not an
application failure can be detected. Once a solution is
found then the second part of identify why it failed
becomes the challenge.

2.1 Application Exit Codes

It turns out that application exit codes are passed
back to aprun, whose exit code reflects the application
exit status. Therefore, if aprun exits with a non-zero
exit code, then there is a high likelihood, something failed
while running the application. It is possible for an

application to exit normally with a non-zero exit code,
which would cause a false hit for a failed application.
However, this is not a common occurrence.

Furthermore, applications are normally submitted
through a workload manager, further complicating
matters. It is possible for the batch processing script to
encounter errors resulting in no application being
launched.

Under XT 2.0, process accounting is based on the
BSD version 3 specifications. As such it includes many
fields that can help in identifying a failure and tracing that
failure. The exit code of the process is retained in that
accounting structure, so identifying aprun processes that
have non-zero exit codes is the first start. This is
complicated because aprun launches a second aprun
shepherd process. The exit code from the primary aprun
command is needed.

2.2 Process Accounting

Linking an aprun process with a specific batch job
is challenging, but not impossible. The process
accounting structure includes parent process ids, making
it possible to recreate a process tree where the root is the
start of the batch job.

The structure for BSD version 3 accounting records
is:

CUG 2008 Proceedings 2 of 6

char ac_flag; /* Flags */
char ac_version; /* ACCT_VERSION */
__u16 ac_tty; /* Control Terminal */
__u32 ac_exitcode; /* Exitcode */
__u32 ac_uid; /* Real User ID */
__u32 ac_gid; /* Real Group ID */
__u32 ac_pid; /* Process ID */
__u32 ac_ppid; /* Parent Process ID */
__u32 ac_btime; /* Creation Time */
#ifdef __KERNEL__
__u32 ac_etime; /* Elapsed Time */
#else
float ac_etime; /* Elapsed Time */
#endif
comp_t ac_utime; /* User Time */
comp_t ac_stime; /* System Time */
comp_t ac_mem; /* Avg Memory Usage */
comp_t ac_io; /* Chars Transferred */
comp_t ac_rw; /* Blocks Read/Write */
comp_t ac_minflt; /* Minor Pagefaults */
comp_t ac_majflt; /* Major Pagefaults */
comp_t ac_swaps; /* Number of Swaps */
char ac_comm[ACCT_COMM]; /* Command */

The key fields that are needed are ac_pid,
ac_ppid, and ac_comm. From these it is possible to
reconstruct a process tree.

The TORQUE epilog is passed the session
identifier as the fourth argument to the epilog. The
session identifier is the process identifier of the process
group leader for that batch job. This means that a process
tree can be linked back through parent process ids until
ac_pid is equal to the Session ID.

The result is that an aprun in the process accounting
file can now be linked back to a batch job.

2.3 Batch Job Automation

The key now is to automatically analyse a batch job’s
exit status as well as the exit status from any application
run within it.

With TORQUE as the workload manager, the ability
to design an epilogue that will automatically run at the
end of any batch is standard functionality.

We now have a means to a means to automatically
launch a check of a batch job.

2.4 apinfo

The utility, apinfo, was developed to walk the
process accounting data at the end of every batch job and
identify the aprun process records for each application
launched during that batch job.

This now provides the means to determine if further
analysis of the batch job is required. An exit code of 0 for
the aprun process indicates no failures and thus no
further action required.

3 Batch Job Analysis

Now that an application failure could be detected, the
second phase is to attempt to automatically identify why.

3.1 Error Analysis

Through the course of development, 13 unique
conditions were identified.

1. SUCCESS: All apruns within a single batch job
completed with an exit code of 0. No further analysis
required.

2. WALLTIME: The batch job exceeded its requested
wallclock time limit.

3. WIDTH: The width parameter for aprun exceeds
the mppwidth request.

4. NODEFAIL: The application aborted due to a node
failure.

5. UNEXBUFFER: The application requires a larger
MPICH_UNEXBUFFERSIZE.

6. ENOENT: The aprun command could not locate
the application to launch.

7. LIBSMA: Shared memory library error.

8. SIGTERM: The batch job was killed.

9. NOTRACE: The processing of accounting data
could not match an aprun command to the batch
job.

10. UNKNOWN: None of the other conditions could be
identified.

11. NOAPRUN: The batch did not execute aprun.

12. ATOMIC: For a brief time, shmem atomic
operations were disabled. This identified
applications that killed due to the attempted use of
shmem atomic operations.

13. QUOTA: The user exceeded their disk quota.

The information collected is then written out to a
daily log file and reports generated.

3.2 Error Messages

Common errors can be found in the stdout/stderr files
from batch jobs. Simple searches for strings can identify
these errors.

• WALLTIME: “PBS: job killed:
walltime”

• WIDTH: “exceeds confirmed width”

• NODEFAIL: “Received node failed or
halted event”

CUG 2008 Proceedings 3 of 6

• UNEXBUFFER:
“MPIDI_PortalsU_Request_PUPE(605):”

• ENOENT: “No such file or directory”
and “aprun: file * not found”

• LIBSMA: “LIBSMA ERROR:”

• SIGTERM: “aprun: Sending caught
Terminated signal to application”

4 Analysis of Job Failures

Having the data is the first part to the whole picture.
Now it is time to analyze the data to determine if system
problems are evident. One thing to keep in mind is that
conditions must be applied when analysing the data. In
some cases, the actual count of failures is relevant.
However, in other cases, looking at the percentage of jobs
in that category can show trends as well as what is to be
expected.

4.1 QUOTA

Looking at the actual count of jobs that failed due to
disk quota exceeded shows the following:

A quick look shows a couple of spikes and what

appears to be the expected failure rate. However, taking a
closer look shows:

The vertical line represents January 5, 2008. On that date
all users we given quota limits of 0, meaning unlimited.
All failures after that date could no longer be classified as
user error and actually represented a defect in the quota
software.

All the high counts prior to that date represent users
hitting yet another quota defect, which resulted in inode
quotas being enforced at the iunit level, not the actual
quota limit.

4.2 SUCCESS Rate

By looking at the success rate of jobs, it might be
possible to determine the expected success rate as well as
any day that requires further investigation.

From this display of data, it is unclear what the expected
job completion rate should be. As a starting point,
assume the success rate should be at least 70% and now
there are days to look at.

By plotting failure rates on the same chart as the
SUCCESS rate, we begin to see a pattern.

CUG 2008 Proceedings 4 of 6

In this case, we are seeing the effects of system wide
failures on job completions. Failure rates increase as
success rates decrease.

4.3 User versus System Error

Having investigated the various identifiable failed
applications, assumptions can now be made to assign the
cause of the application failure as either User error or
System error. In some cases, the error could represent
both.

For example, examining the plot for WALLTIME
percentages shows periodic spikes above 10%.

These spikes correspond with user reports of jobs that

started but did not make any progress. The normal range
appears to be between 5% and 10%. This category
contains both user and system root causes. However,
there is no way to be 100% certain of the root cause
without consulting with the user for each job. This is not
practical so trends must be used to identify anomalies.

Looking at all the categories, these breakdown into
the following explanations.

1. WALLTIME: User and System error.

2. WIDTH: User error.

3. NODEFAIL: System error.

4. UNEXBUFFER: User error.

5. ENOENT: User error.

6. LIBSMA: System error.

7. SIGTERM: Possible system.

8. NOTRACE: unknown root cause.

9. UNKNOWN: Unknown root cause.

10. NOAPRUN: User error.

11. ATOMIC: System error.

12. QUOTA: Currently system error.

Plotting the percent of jobs based on root cause shows the
following:

A careful examination of the plot shows minimal system
impact. However, careful analysis of the data shows a
direct correlation between system failures and jobs
classified as NOTRACE. Plotting just the NOTRACEs
with indications of system failures in the month of April
reveals the following:

CUG 2008 Proceedings 5 of 6

The effects of system failures can now be quantified over
time through trend analysis.

4.4 UNKNOWN Category

The UNKNOWN category contains all jobs where an
error could not be identified. What makes this difficult is
the ability of users to redirect STDOUT and STDERR,
thereby redirecting any error messages that could be used
to automatically determine the error.

5 Daily Reporting

By collecting the data and analysing on a daily basis,
it is possible to produce a summary report represent the
state of the system for that day. A sample report for
NERSC looks like:

From: 04/27/08 00:03:14
to: 04/27/08 23:57:58
-------------------------- -----
Exit Status Count
-------------------------- -----
APINFO_SUCCESS 676
APINFO_TORQUEWALLTIME 41
APINFO_APRUNWIDTH 0
APINFO_NODEFAIL 1
APINFO_MPICHUNEXBUFFERSIZE 0
APINFO_ENOENT 0
APINFO_LIBSMA 0
APINFO_SIGTERM 0
APINFO_NOAPRUN 9
APINFO_UNKNOWN 28
APINFO_NOTRACE 18
APINFO_SHMEMATOMIC 0
APINFO_DISKQUOTA 0

Top Ten Failed Users Report

 Count Username
 ----- --------

 8 user1
 7 user2
 6 user3
 5 user4
 5 user5
 5 user6
 5 user7
 5 user8
 4 user9

Top user in each failed category
--
Exit Code CNT Username
-------------------------- ---- --------
APINFO_TORQUEWALLTIME 2 usera
APINFO_ENOENT 1 userb
APINFO_NOAPRUN 7 userc
APINFO_UNKNOWN 14 userd
APINFO_NOTRACE 8 usere
APINFO_DISKQUOTA 1 userf

As normal rates are identified, thresholds can be
added to the report to automatically flag situations
requiring investigations.

6 Summary

Many errors can be identified and a root cause
automatically determined. However, there are a large
percentage of jobs that cannot be automatically identified
to root cause for failure. The exit processing from
aprun could be improved to provide a better
understanding of jobs failures. When an application exits,
the status of that application should be accurately
reflected in the exit processing of the aprun command.
This will allow the reduction in UNKNOWN application
failures and provide a more accurate account of job
success rates.

It has been shown that by understanding application
failures, system errors can be identified. The clearest of
this is the Disk Quota Exceeded (QUOTA) category.

CUG 2008 Proceedings 6 of 6

Since all users have no limits, there is obviously a
problem. Having identified the problem, and SPR can be
filed with Cray for corrective action.

Trending analysis can be used to determine the
steady state of the system. Deviations from normal
trends could indicate a problem in the system. Daily
reporting could be used to indicate if the system needs to
be examined in detail to see if nodes or subsystems are
misbehaving.

7 Acknowledgments

This work was supported by the Director, Office of
Science, Division of Mathematical, Information, and
Computational Sciences of the U.S. Department of
Energy under contract number DE-AC02-05CH11231.

 This research used resources of the National Energy
Research Scientific Computing Center, which is
supported by the Office of Science of the U.S.
Department of Energy.

This work is an adaptation of the methodology
developed at Sandia National Laboratory.

8 About the Author

Nicholas P. Cardo is the Project Lead and Lead
System Administrator of Franklin. He is a senior member
of the Computational Systems Group at NERSC. He can
be reached at Lawrence Berkeley National Laboratory,
National Energy Research Scientific Computing Center, 1
Cyclotron Rd, bldg 943r0256, Berkeley, CA 94720 USA,
E-mail: cardo@nersc.gov.

